Traffic Impact Report

Kakaako Block B Development

Prepared for:

Castle & Cooke Homes Hawaii, Inc.

Prepared by: Wilson Okamoto Corporation

February 2014

TRAFFIC IMPACT REPORT FOR THE KAKAAKO BLOCK B DEVELOPMENT

Prepared for:

Castle & Cooke Homes Hawaii, Inc. 680 Iwilei Road, Suite 510 Honolulu, Hawaii 96817

Prepared by:

Wilson Okamoto Corporation/W-Trans 1907 S. Beretania Street, Suite 400 Honolulu, Hawaii 96826 WOC Ref #10030-01

February 2014

TABLE OF CONTENTS

			Page
I.	Introd	duction	1
	A.	Purpose of Study	1
	B.	Scope of Study	1
II.	Proje	ct Description	1:
	A.	Location	1,
	B.	Project Characteristics	1,
III.	Existi	ing Traffic Conditions	3
	A.	Area Roadway System	3
	B.	Traffic Volumes and Conditions	7
		1. General	7
		a. Field Investigation	7
		b. Capacity Analysis Methodology	7
		2. Existing Peak Hour Traffic	8
		a. General	8
		b. South Street and Pohukaina Street	8
		c. Keawe Street and Pohukaina Street	10
		d. Keawe Street and Auahi Street	10
		e. South Street and Auahi Street	10
IV.	Proje	ected Traffic Conditions	11
	A.	Site-Generated Traffic	11
		1. Trip Generation Methodology	11
		2. Trip Distribution	12
	B.	Through-Traffic Forecasting Methodology	15
	C.	Other Considerations	15
	D.	Total Traffic Volumes Without Project	16
	E.	Total Traffic Volumes With Project	18
	F.	Total Traffic Volumes With Project With Alternate Layout	20
V.	Reco	ommendations	22
X 7 Y	Come	aluai an	22

LIST OF FIGURES

FIGURE 1	Location Map and Vicinity Map
FIGURE 2	Project Site Plan
FIGURE 3	Project Site Plan – Alternate Layout
FIGURE 4	Existing Lane Configurations
FIGURE 5	Existing Peak Hours of Traffic
FIGURE 6	Distribution of Site-Generated Vehicles
FIGURE 7	Distribution of Site-Generated Vehicles – Alternate Layout
FIGURE 8	Year 2016 Peak Hours of Traffic Without Project
FIGURE 9	Year 2016 Peak Hours of Traffic With Project
FIGURE 10	Year 2016 Peak Hours of Traffic With Project With Alternate Layout

LIST OF APPENDICIES

APPENDIX A	Existing Traffic Count Data
APPENDIX B	Level of Service Definitions
APPENDIX C	Capacity Analysis Calculations
	Existing Peak Period Traffic Analysis
APPENDIX D	Capacity Analysis Calculations
	Year 2016 Peak Period Traffic Analysis Without Project
APPENDIX E	Capacity Analysis Calculations
	Year 2016 Peak Period Traffic Analysis With Project
APPENDIX F	Capacity Analysis Calculations
	Year 2016 Peak Period Traffic Analysis With Project
	With Alternate Layout

I. INTRODUCTION

A. Purpose of Study

The purpose of this study is to identify and assess the traffic impacts resulting from a proposed Kakaako Block B development in Kakaako on the island of Oahu. The development is expected to include residential units for sale and rental, as well as, commercial uses.

B. Scope of Study

This report presents the findings and conclusions of the traffic study, the scope of which includes:

- 1. Description of the proposed project.
- 2. Evaluation of existing roadway and traffic operations in the vicinity.
- 3. Analysis of future roadway and traffic conditions without the proposed project.
- 4. Analysis and development of trip generation characteristics for the proposed project.
- 5. Superimposing site-generated traffic over future traffic conditions.
- 6. The identification and analysis of traffic impacts resulting from the proposed project.
- 7. Recommendations of improvements, if appropriate, that would mitigate the traffic impacts resulting from the proposed project.

II. PROJECT DESCRIPTION

A. Location

The proposed project site is located adjacent to Pohukaina Street in Kakaako on the island of Oahu (see Figure 1). The site is bounded by residential and commercial uses to the west, Pohukaina Street to the north, Keawe Street to the east, and Auahi Street to the south. The project site is further identified as Tax Map Keys (TMKs): 2-1-054: por. 025, 027, and 032. Access to the development will be provided via driveways off Pohukaina Street and Auahi Street.

B. Project Characteristics

The project site for the proposed Kakaako Block B development currently houses various commercial/industrial uses that are expected to be replaced by the proposed project. The proposed project is a multi-use development expected to

include the following:

- Multi-family residential building with 95 one- to three-bedroom condominium units, on-site parking, and approximately 9,852 square feet of commercial/retail uses of which approximately half is expected to include restaurant uses
- Multi-family residential building with 88 studio to three-bedroom rental units with on-site parking
- Amenities such as recreational and storage areas

The proposed development is expected to be completed and occupied by the Year 2016 with access to the condominium residential and commercial uses provided via a new driveway off Auahi Street, and access to the rental units provided via a new driveway off Pohukaina Street. An alternate layout for the proposed development is currently under consideration which entails an internal connection between the two residential buildings to relocate access for parking associated with the commercial uses to be provided via the driveway off Pohukaina Street. Figures 2 and 3 show the proposed project site plan and the proposed site plan with the alternate layout.

III. EXISTING TRAFFIC CONDITIONS

A. Area Roadway System

The proposed project site is located adjacent to Pohukaina Street in Kakaako. Pohukaina Street is a predominantly two-lane, two-way roadway generally oriented in the east-west direction between Punchbowl Street and Kamani Street. Northeast of the project site, Pohukaina Street intersects South Street. At this signalized intersection, both approaches of Pohukaina Street have two lanes that serve all traffic movements (see Figure 4). South Street is a two-lane, two-way roadway generally oriented in the north-south direction between Ala Moana Boulevard and Pohukaina Street that transitions to a predominantly four-lane, one-way (northbound) roadway north of Pohukaina Street. At the intersection with Pohukaina Street, northbound approach of South Street has two lanes that serve all traffic movements.

East of the intersection with South Street, Pohukaina Street intersects Keawe Street. Keawe Street is a predominantly two-lane, two-way roadway generally oriented in the north-south direction between Ilalo Street and Queen Street. At this all-way stop intersection, all approaches have one lane that serves all traffic movements.

KAKAAKO BLOCK B

PROJECT SITE PLAN

FIGURE

KAKAAKO BLOCK B

KAKAAKO BLOCK B

FIGURE

EXISTING LANE CONFIGURATIONS

South of the intersection with Pohukaina Street, Keawe Street intersects Auahi Street. In the vicinity of the project site, Auahi Street is a two-lane, two-way roadway oriented in the east-west direction between South Street and Cooke Street. At this all-way stop intersection, all approaches have one lane that serves all traffic movements.

West of Keawe Street, Auahi Street intersects South Street. At this T-intersection, the northbound approach of South Street has one through lane and a shared through and right-turn lane while the southbound approach of South Street has one through lane and a shared left-turn and through lane. The westbound approach of Auahi Street has one stop-controlled lane that serves left-turn and right-turn movements.

B. Traffic Volumes and Conditions

1. General

a. Field Investigation

Field investigations were conducted on April 14, 2011 and April 18, 2011 and consisted of manual turning movement count surveys during the morning peak hours between 6:00 AM and 9:00 AM, and the afternoon peak hours between 3:00 PM and 6:00 PM at the following intersections:

- South Street and Pohukaina Street
- Keawe Street and Pohukaina Street
- Keawe Street and Auahi Street
- South Street and Auahi Street

Appendix A includes the existing traffic count data.

b. Capacity Analysis Methodology

The highway capacity analysis performed in this study is based upon procedures presented in the "Highway Capacity Manual", Transportation Research Board, 2000, and the "Synchro" software, developed by Trafficware. The analysis is based on the concept of Level of Service (LOS) to identify the traffic impacts associated with traffic demands during the peak periods of traffic.

LOS is a quantitative and qualitative assessment of traffic operations. Levels of Service are defined by LOS "A" through "F"; LOS "A" representing ideal or free-flow traffic operating conditions and LOS "F" unacceptable or potentially congested traffic operating conditions.

"Volume-to-Capacity" (v/c) ratio is another measure indicating the relative traffic demand to the road carrying capacity. A v/c ratio of one (1.00) indicates that the roadway is operating at or near capacity. A v/c ratio of greater than 1.00 indicates that the traffic demand exceeds the road's carrying capacity. The LOS definitions are included in Appendix B.

2. Existing Peak Hour Traffic

a. General

Figure 5 shows the existing AM and PM peak period traffic volumes. The AM peak hour of traffic generally occurs between 7:15 AM and 8:15 AM. The PM peak hour of traffic general occurs between the hours of 4:15 PM and 5:15 PM. The LOS analysis is based on these peak hour time periods for each intersection to identify the traffic impacts resulting from the proposed project. LOS calculations are included in Appendix C.

b. South Street and Pohukaina Street

At the intersection with Pohukaina Street, the South Street approach carries 298 vehicles northbound during the AM peak period and 423 vehicles northbound during the PM peak period. The South Street approach operates at LOS "A" during both peak periods.

The Pohukaina Street approaches of the intersection carry 198 vehicles eastbound and 230 vehicles westbound during the AM peak period. During the PM peak period, the overall traffic volume is higher with 412 vehicles traveling eastbound and 187 vehicles traveling westbound. Both approaches of Pohukaina Street operate at LOS "A" during both peak periods.

LEGEND

Study Intersection
 A. M. Peak Hour Volume
 P.M. Peak Hour Volume

KAKAAKO BLOCK B

FIGURE

EXISTING PEAK HOURS OF TRAFFIC

c. Keawe Street and Pohukaina Street

At the intersection with Pohukaina Street, Keawe Street carries 67 vehicles northbound and 85 vehicles southbound during the AM peak period. During the PM peak period, traffic volumes are higher with 76 vehicles traveling northbound and 126 vehicles traveling southbound. Both approaches of Keawe Street operate at LOS "A" during both peak periods.

The Pohukaina Street approaches of the intersection carry 69 vehicles eastbound and 207 vehicles westbound during the AM peak period. During the PM peak period, the overall traffic volume is higher with 181 vehicles traveling eastbound and 166 vehicles traveling westbound. Both approaches of Pohukaina Street operate at LOS "A" during both peak periods.

d. Keawe Street and Auahi Street

At the intersection with Auahi Street, Keawe Street carries 100 vehicles northbound and 107 southbound during the AM peak period. During the PM peak period, the overall traffic volume is slightly higher with 70 vehicles traveling northbound and 159 vehicles traveling southbound. Both approaches of Keawe Street operate at LOS "A" during both peak periods.

The Auahi Street approaches of the intersection carry 43 vehicles eastbound and 77 westbound during the AM peak period.

During the PM peak period, the overall traffic volume is higher with 46 vehicles traveling eastbound and 76 vehicles traveling westbound.

Both approaches of Auahi Street operate at LOS "A" during both peak periods.

e. South Street and Auahi Street

At the intersection with Auahi Street, South Street carries 326 vehicles northbound and 69 vehicles southbound during the AM peak period. During the PM peak period, the overall traffic volume is higher with 293 vehicles traveling northbound and 230 vehicles

traveling southbound. Both approaches of South Street operate at LOS "A" during both peak periods.

The Auahi Street approach of the intersection carries 81 vehicles westbound during the AM peak period and 92 vehicles westbound during the PM peak period. This approach operates at LOS "B" during both peak periods.

IV. PROJECTED TRAFFIC CONDITIONS

A. Site-Generated Traffic

1. Trip Generation Methodology

The trip generation methodology used in this study is based upon generally accepted techniques developed by the Institute of Transportation Engineers (ITE) and published in "Trip Generation, 9th Edition," 2012. The ITE trip generation rates are developed empirically by correlating vehicle trip generation data with various land use characteristics such as the number of vehicle trips generated per dwelling unit or 1,000 square feet of development. The trip generation methodology developed by ITE also includes provisions for internal capture of trips. Internal capture of trips accounts for vehicles that visit more than one destination within the same area without adding external vehicular trips to the surrounding roadways. As such, the proposed peak hour trip generation for the development was adjusted for internal capture of trips. Table 1 summarizes the adjusted project site trip generation characteristics of the proposed project.

Table 1: Peak Hour Trip Generation (Adjusted)

APARTMENT (RENTAL UNITS)	
INDEPENDENT	VARIABLE: #	of dwelling units = 88
		PROJECTED TRIP ENDS
AM PEAK	ENTER	8
	EXIT	37
	TOTAL	45
PM PEAK	ENTER	42
	EXIT	22
	TOTAL	64

Table 1: Peak Hour Trip Generation (Adjusted) (Cont'd)

I TO THE OWNER OF THE PARTY OF	CONTRA MESTER	OTION
	CONDO/TOWNHO	
INDEPENDENT	VARIABLE: #	of dwelling units = 95
		PROJECTED TRIP ENDS
AM PEAK	ENTER	6
	EXIT	40
	TOTAL	46
PM PEAK	ENTER	37
	EXIT	17
	TOTAL	54
COMMERCIAL	/RETAIL (SPECIA	ALTY RETAIL CENTER)
INDEPENDENT	VARIABLE:	1,000 sf of development = 4.926
		PROJECTED TRIP ENDS
AM PEAK	ENTER	0
	EXIT	0
	TOTAL	0
PM PEAK	ENTER	5
	EXIT	6
	TOTAL	11
		ER SIT-DOWN RESTAURANT)
INDEPENDENT	VARIABLE:	1,000 sf of development = 4.926
		PROJECTED TRIP ENDS
AM PEAK	ENTER	26
	EXIT	21
	TOTAL	47
PM PEAK	ENTER	27
	EXIT	18
	TOTAL	45
TOTALS		
		PROJECTED TRIP ENDS
AM PEAK	ENTER	40
	EXIT	98
	TOTAL	138
PM PEAK	ENTER	111
	EXIT	63
	TOTAL	174

2. Trip Distribution

Figure 6 shows the distribution of site-generated traffic during the AM and PM peak periods and Figure 7 shows the distribution of site-generated traffic during the peak periods with the alternate layout. Access to the

LEGEND
Study Intersection

xx A.M. Peak Hour Volume (xx) P.M. Peak Hour Volume

KAKAAKO BLOCK B

LEGEND Study Intersection xx A.M. Peak Hour Volume

(xx) P. M. Peak Hour Volume

KAKAAKO BLOCK B

FIGURE

DISTRIBUTION OF SITE-GENERATED VEHICLES – ALTERNATE LAYOUT

condominium residential and commercial uses is provided via a new driveway off Auahi Street, and access to the rental units provided via a new driveway off Pohukaina Street. With the alternate layout under consideration, access to the condominium residential units would be provided via a new driveway off Auahi Street and access to the rental units and commercial uses would be provided via a new driveway off Pohukaina Street. Site-generated trips were distributed at the study intersections based upon their assumed origin/destination, relative convenience of the available routes, and existing distribution of traffic at the study intersections.

B. Through Traffic Forecasting Methodology

The travel forecast is based upon historical traffic count data obtained from the State DOT, Highways Division at survey stations located in the vicinity of the project site. The historical data indicates a stable or declining growth in traffic and, as such, an annual traffic growth rate of approximately 0.5% was conservatively assumed in the project vicinity. As such, using 2013 as the Base Year, a growth rate factor of 1.015 was applied to the existing traffic demands in the project vicinity to achieve the projected Year 2016 traffic demands.

C. Other Considerations

There are two planned developments in the vicinity of the proposed Kakaako Block B development. Halekauwila Place is currently under construction and is located on the southeast corner of the intersection of Halekauwila Street and Keawe Street. The proposed project is expected to include affordable rental units and retail space. As described in the "Traffic Impact Report for Halekauwila Place" dated October 2009, the trips associated with this future residential development were incorporated into Year 2016 without project conditions to account for the traffic expected to be generated by this development.

In addition, the Keauhou Lane development will be located one block north of the Kakaako Block B development and includes residential and commercial uses. As described in the "Traffic Impact Report for Keauhou Lane" dated December 2013, the trips associated with this future development were incorporated into Year 2016

without project conditions to account for the traffic expected to be generated by this development.

D. Total Traffic Volumes Without Project

The projected Year 2016 AM and PM peak period traffic volumes and operating conditions without the proposed Kakaako Block B development are shown in Figure 8, and summarized in Table 2. The existing levels of service are provided for comparison purposes. LOS calculations are included in Appendix D.

Table 2: Existing and Projected Year 2016 (Without Project) LOS

Traffic Operating Conditions

Intersection	Approach	A	M	P	M
		Exist	Year 2016 w/out Proj	Exist	Year 2016 w/out Proj
South St/	Eastbound	A	A	A	A
Pohukaina St	Westbound	A	\mathbf{A}_{ij}	A	A
	Northbound	A	A	A	A
Keawe St/	Eastbound	A	A	A	A
Pohukaina St	Westbound	A	A	A	A
	Northbound	A	A	A	A
	Southbound	A	A	A	A
Keawe St/	Eastbound	A	A	Α	A
Auahi St	Westbound	A	A	Α	A
	Northbound	A	A	A	A
	Southbound	A	A	A	A
South St/	Westbound	В	В	В	В
Auahi St	Southbound	A	A	A	A

Traffic operations under Year 2016 without project conditions are expected to remain similar to existing conditions. The approaches of the study intersections are expected to continue operating at levels of service similar existing conditions despite the anticipated increases in traffic due to ambient growth and the completion of the other development in the project vicinity.

LEGEND

Study Intersection

A.M. Peak Hour Volume

(xx) P.M. Peak Hour Volume

KAKAAKO BLOCK B

FIGURE

YEAR 2016 PEAK HOURS OF TRAFFIC WITHOUT PROJECT

E. Total Traffic Volumes With Project

The Year 2016 cumulative AM and PM peak hour traffic conditions resulting from the projected external traffic and the proposed Kakaako Block B development are shown on Figure 9 and summarized in Table 3. The cumulative volumes consist of site- generated traffic superimposed over Year 2016 projected traffic demands. The existing and projected Year 2016 (Without Project) operating conditions are provided for comparison purposes. LOS calculations are included in Appendix E.

Table 3: Existing and Projected Year 2016 (Without and With Project)
LOS Traffic Operating Conditions

Intersection	Approach		AM			PM	
T		Exist	Year	2016	Exist	Year	2016
			w/out	w/		w/out	w/
			Proj	Proj		Proj	Proj
South St/	Eastbound	A	A	A	A	A	A
Pohukaina St	Westbound	A	Α	Α	Α	A	Α
	Northbound	A	A	A	A	A	A
Keawe St/	Eastbound	A	A	A	A	A	A
Pohukaina St	Westbound	A	A	A	A	A	A
	Northbound	A	A	A	A	A	A
	Southbound	A	A	A	A	A	A
Keawe St/	Eastbound	A	A	A	A	,A	A
Auahi St	Westbound	A	A	A	A	A	A
	Northbound	A	A	A	A	A	A
	Southbound	A	A A		A	A	A
South St/	Westbound	В	В	В	В	В	В
Auahi St	Southbound	A	Α	A	A	A	Α

Traffic operations under Year 2016 with project conditions are expected to remain similar to existing and Year 2016 without project conditions despite the addition of new site-generated traffic to the surrounding roadways. Along Pohukaina Street, the approaches of the study intersections are expected to continue operating at LOS "A" during both peak periods. Along Auahi Street, the approaches of the study intersections are expected to continue operating at LOS "A" during the peak periods with the exception of the westbound approach of the intersection of South Street and

LEGEND Study Intersection

xx A.M. Peak Hour Volume (xx) P.M. Peak Hour Volume

KAKAAKO BLOCK B

FIGURE

YEAR 2016 PEAK HOURS OF TRAFFIC WITH PROJECT

Auahi Street which is expected to continue operating at LOS "B" during both peak periods.

F. Total Traffic Volumes With Project and Alternate Layout

The Year 2016 cumulative AM and PM peak hour traffic conditions with the alternate layout for the Kakaako Block B development are shown in Figure 10 and summarized in Table 4. The cumulative volumes consist of site- generated traffic superimposed over Year 2016 projected traffic demands. The existing and projected Year 2016 (Without Project) operating conditions are provided for comparison purposes. LOS calculations are included in Appendix F.

Table 4: Existing and Projected Year 2016 (Without and With Project With Alternate Layout) LOS Traffic Operating Conditions

Intersection	Approach		AM			PM	
T		Exist	Year	2016	Exist	Year	2016
				w/ Proj			w/ Proj
			w/out	w/ Alt		w/out	w/ Alt
			Proj	Layout		Proj	Layout
South St/	Eastbound	A	A	A	Α	Α	A
Pohukaina St	Westbound	ı A	Α	A	A	Α	A
	Northbound	Α	Α	A	A	Α	A
Keawe St/	Eastbound	Α	Α	A	A	Α	A
Pohukaina St	Westbound	A	A	A	A	A	A
	Northbound	Α	A	A	A	A	A
	Southbound	A	A	A	A	A	A
Keawe St/	Eastbound	A	A	A	A	A	A
Auahi St	Westbound	A	A	A	A	A	A
	Northbound	\mathbf{A}_{i_0}	A	A	A	A	A
	Southbound	A	A	A	A	A	A
South St/	Westbound	В	В	В	В	В	В
Auahi St	Southbound	A	A	A	A	A	A

With the development of the Kakaako Block B project with the alternate layout, traffic operations are expected to remain similar to existing and Year 2016 without project conditions despite the addition of new site-generated traffic to the surrounding roadways. The approaches of the study intersections along Pohukaina Street and Auahi Street are expected to continue

LEGEND Study Intersection

KAKAAKO BLOCK B

FIGURE

YEAR 2016 PEAK HOURS OF TRAFFIC WITH PROJECT WITH ALTERNATE LAYOUT

operating at LOS "A" during both peak periods with the exception of the westbound approach of the intersection of South Street and Auahi Street. This approach is expected to continue operating at LOS "B" during both peak periods.

VI. RECOMMENDATIONS

Based on the analysis of the traffic data, the following are the recommendations of this study to be incorporated in the project design.

- 1. Maintain sufficient sight distance for motorists to safely enter and exit the project driveway. Parking along Auahi Street and Pohukaina Street fronting the project site may need to be restricted, the extent of which should be determined during the design phase of the project.
- 2. Provide adequate on-site loading and off-loading service areas and prohibit off-site loading operations.
- 3. Provide adequate turn-around area for service, delivery, and refuse collection vehicles to maneuver on the project site to avoid vehicle-reversing maneuvers onto public roadways.
- 4. Provide sufficient turning radii at all project driveways to avoid or minimize vehicle encroachments to oncoming traffic lanes.
- 5. If access at the entrances to the parking areas are controlled, provide sufficient storage for entering vehicles at the parking area access controls (i.e., automatic gate, etc.) to ensure that queues do not extend onto the adjacent public roadways.
- 6. Provide pedestrian facilities throughout the project site to encourage pedestrian activity. Ensure adequate internal pedestrian circulation and connections to sidewalk facilities within the public right-of-way to facilitate pedestrian movement.

VII. CONCLUSION

The proposed Kakaako Block B development entails the replacement of existing commercial/industrial buildings in Kakaako with a new multi-use development that will include residential and commercial uses. Although access is expected to be provided via new driveways off Pohukaina Street and Auahi Street, two internal layouts are currently under consideration for the development to determine which uses would be served by the two driveways. Traffic operations in the vicinity of the proposed development are expected to remain similar to existing and without project conditions regardless of which of the two internal layouts is selected for the project. As such, with the implementation of the

Traffic Impact Report for the Kakaak	o Block	B Devel	opment
--------------------------------------	---------	---------	--------

aforementioned recommendations, the proposed Kakaako Block B development is not expected to have a significant impact on traffic operations in the vicinity.

APPENDIX A EXISTING TRAFFIC COUNT DATA

1907 S. Beretania Street Honolulu, Hi 96826

> Counter:5673,5676 Counted By:EM, SM Weather:Clear

File Name: SouPoh AM Site Code: 00000004 Start Date: 4/14/2011 Page No: 1

			Assessment by believe but	The second second			The second second	Andread or Committee or American					THE PERSON NAMED IN COLUMN NAM								
		<i>0,</i> 0	South Street	set			Pohu	Ikaina Str	eet			ഗ് 2	South Street	- at			Poh T	Pohukaina Street Fasthound	reet		
Start Time	Left	Thra	Right	Peds	App.	Left	Thru	Right	Peds	App.	Left	Three	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
06:00 AM	0	0	0	e	က	0	4	3	-	8	2	23		-	27	10	13	œ	4	35	
06:15 AM	0	0	0	17	17	-	e	10	က	17	4	8	7	7	38	58	=	4	7	46	
06:30 AM	0	0	0	14	4	2	4	12	4	25	7	45	4	4	25	78	17	15	7	29	
06:45 AM	0	0	0	1	11	6	13	11	7	4	-	36	က	6	25	15	19	9	9	46	
Total	0	0	0	45	45	15	24	45	10	16	6	134	10	16	169	82	09	33	19	194	
07:00 AM	0	0	0	15	15	9	22	23	ო	54	7	47	ო	4	19	29	20	4	13	9/	206
07:15 AM	0	0	0	17	17	10	15	21	4	20	œ	8	က	9	81	24	59	တ	=	73	
07:30 AM	0	0	0	30	30	o	27	44	6	88	œ	4	4	13	88	23	19	00	12	62	
07:45 AM	0	0	0	16	16	18	24	31	5	78	7	69	က	=	8	19	20	∞	œ	65	
Total	0	0	0	78	78	43	88	119	21	271	30	244	13	34	321	92	00	49	44	276	
08:00 AM	0	0	0	80	80	12	24	28	2	69	15	51	4	2	11	22	25	15	9	89	
08:15 AM	0	0	0	10	10	13	24	18	4	29	15	47	12	7	8	20	15	13	1	59	
08:30 AM	0	0	0	4	4	12	20	Ξ	80	5	17	99	10	∞	101	21	19	16	9	62	
08:45 AM	0	0	0	9	9	9	14	56	2	48	o	22	က	7	69	27	30	00	4	79	30
Total	0	0	0	28	28	43	82	83	19	227	26	219	29	24	328	06	89	62	27	268	
Grand Total	0	0	0	151	151	101	194	244	90	589	95	265	25	74	818	267	237	144	06	738	C)
Apprch %	0 (0	0	9 6	0	17.1	32.9	41.4	8.5	1	11.6	23	4.0	6	C C	36.2	32.1	19.5	12.2	ç	
otal %	0	0	>	0.0	0.0	4.4	φ. 4.	10.6	7.7	7.07	4	97	2.3	3.2	32.0	0	10.3	0.0	٠. ن	32.1	

Start Time Left Thru Right App. Total Ph App. Total App. Total			South	South Street Southbound			Pohukair Westb	a Street ound			South	Street			Pohukair Eastb	na Street ound		
1 10 15 21 46 8 64 3 75 24 29 0 18 24 31 73 7 69 3 79 19 20 0 12 24 28 64 4 76 23 19 20 0 18 24 31 73 7 69 3 79 19 20 0 12 24 28 64 15 51 4 70 22 25 0 49 90 124 263 38 248 14 300 88 93 18.6 34.2 47.1 23 49 37.1 38.1 40.3 .000 .681 .833 .705 .822 .633 .899 .875 .949 .917 .802	Start Time	Left	ם	Ħ	App. Total	Left	Thru			Left	Thru			Left	Thru	R	ht	iht App. Total
1 0 10 15 21 46 8 64 3 75 24 29 19 20 19 27 44 80 8 64 4 76 23 19 19 20 18 24 31 73 7 69 3 79 19 20 20 12 24 28 64 15 51 4 70 22 25 25 19 20 124 263 38 248 14 300 88 93 12.7 82.7 4.7 30.0 681 833 .705 .822 653 .899 .875 .949 .917 .802	Peak Hour Analysis Fi	70m 06:00	AM to 08:4	15 AM - Pe	ak 1 of 1			Į	and the Charles Standard Court And Standard			[
0 0 0 10 15 21 46 8 64 3 75 24 29 0 0 0 9 27 44 80 8 64 4 76 23 19 0 0 0 18 24 31 73 7 69 3 79 19 20 1 0 0 0 12 24 26 44 15 4 70 22 25 1 0 0 0 49 90 124 263 348 14 300 88 93 1 0 0 0 49 90 124 263 38.7 4.7 38.1 40.3 0 0 0 0 61 83 776 82.7 4.7 77 38.1 40.3 0 0 0 0 49 90 124 <td>Peak Hour for Entire In</td> <td>ntersection</td> <td>ι Begins at</td> <td>07:15 AM</td> <td></td>	Peak Hour for Entire In	ntersection	ι Begins at	07:15 AM														
0 0 0 9 27 44 80 8 64 4 76 23 19 0 0 0 0 18 24 31 73 7 69 3 79 19 20 1 0 0 0 12 24 28 64 15 51 4 70 22 25 1 0 0 0 49 90 124 263 38 248 14 300 88 93 0 0 0 0 49 90 124 263 87.7 4.7 38.1 40.3 0 0 0 0 0 681 833 7705 ,633 .899 875 949 917 802	07:15 AM	0	0	0	0	10	15	21	46	80	9	က	75	24	53		6	
0 0 0 0 18 24 31 73 7 69 3 79 19 20 0 0 0 0 12 24 28 64 15 51 4 70 22 25 0 0 0 0 49 90 124 263 38 248 14 300 88 93 0 0 0 18.6 34.2 47.1 12.7 82.7 4.7 4.7 38.1 40.3 000 000 000 681 83 .705 .822 .633 .899 .875 .949 .917 .802	07:30 AM	0	0	0	0	6	27	44	80	80	9	4	92	23	19	80		
0 0 0 0 12 24 28 64 15 51 4 70 22 25 0 0 0 0 49 90 124 263 38 248 14 300 88 93 0 0 0 18.6 34.2 47.1 12.7 82.7 4.7 4.7 38.1 40.3 000 000 .000 .000 .681 .833 .705 .822 .633 .899 .875 .949 .917 .802	07:45 AM	0	0	0	0	18	24	31	73	7	69	က	79	19	20	18		
0 0 0 0 49 90 124 263 38 248 14 300 88 93 0 0 0 0 18.6 34.2 47.1 12.7 82.7 4.7 38.1 40.3 000 000 .000 .000 .001 .681 .833 .705 .822 .633 .899 .875 .949 .917 .802	08:00 AM	0	0	0	0	12	24	28	2	15	51	4	20	22	52	15		62
0 0 0 0 0 18.6 34.2 47.1 12.7 82.7 4.7 38.1 40.3 0.00	Total Volume	0	0	0	0	49	06	124	263	38	248	14	300	88	93	20		231
. 000 . 000 . 000 . 000 . 681 . 833 . 705 . 822 . 633 . 899 . 875 . 949 . 917 . 802	% App. Total	0	0	0		18.6	34.2	47.1		12.7	82.7	4.7		38.1	40.3	21.6		
	PHF	000	000	000	000.	.681	.833	.705	,822	.633	668.	875	.949	.917	.802	.694		.931

1907 S. Beretania Street Honolulu, Hi 96826

> Counter:5673,5676 Counted By:EM, SM Weather:Clear

File Name: SouPoh PM Site Code: 000000004 Start Date: 4/14/2011 Page No: 1

		Int. Total	274	190	255	268	987	266	268	323	274	1131	321	246	204	234	1005	3123		
		App. Total	105	89	101	107	381	98	92	127	9/	381	117	8	09	82	351	1113	1	35.6
	reet	Peds	13	9	4	9	39	0	9	14	F	40	တ	7	œ	30	54	133	11.9	4 . ε.
	Pohukaina Street Eastbound	Right	53	22	9	32	113	27	24	30	4	92	30	55	15	17	8	292	26.2	6.3
	Poh	Thru	25	17	25	36	103	23	29	39	27	118	4	35	23	19	118	339	30.5	10.9
		Left	38	23	32	33	126	27	33	44	24	128	37	22	14	19	92	349	31.4	11.2
		App. Total	79	8	98	88	335	104	108	104	116	432	119	06	6	100	388	1166		37.3
	절절	Peds	7	æ	4	4	23	4	6	10	15	48	19	∞	9	15	48	119	10.2	
	South Street Northbound	Right	12	2	7	7	31	9	10	00	11	35	10	4	=	9	33	97	8.3	3.1
_	ŏΖ	Thr	25	64	99	7	256	79	87	82	85	333	88	73	99	22	303	892	76.5	28.6
Jushifted		Left	2	4	6	7	25	2	2	4	S	16	-	2	7	4	17	28	, 2	9.
Groups Printed- Unshifted		App. Total	64	39	28	64	225	19	69	7	69	260	9/	99	39	14	212	269	6	22.3
Group	reet 1	Peds	2	က	2	2	o	4	9	7	9	23	20	9	4	2	32	64	9.5	7
	ohukaina Street Westbound	Right	36	21	35	34	126	32	33	34	33	132	36	25	17	15	93	351	50.4	11.2
	Pohr	Thru	14	80	14	17	23	14	13	19	13	29	15	12	11	16	54	166	23.8	5.3
		Left	12	7	7	1	37	E	7	=	17	46	လ	13	7	ω	33	116	16.6	3.7
		App. Total	56	7	1	80	46	15	6	77	5	28	6	=	15	ω	43	147	į	4.7
	g et	Peds	56	7	10	œ	46	15	o	21	13	28	တ	1	15	00	43	147	9 !	4.7
	South Street Southbound	Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0
	တို့ တိ	Thru	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0
		Left	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0
		Start Time	03:00 PM	03:15 PM	03:30 PM	03:45 PM	Total	04:00 PM	04:15 PM	04:30 PM	04:45 PM	Total	05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total	Grand Total	Apprch %	lotal %

Right App. Total Left Thru 10 99 33 29 8 94 44 39 11 101 24 27 10 39 394 138 136 9.9 37.1 36.6 886 .975 .784 .829	South Street Southbound		Northbo		Ponuk Eas	aina Street stbound	
53 2 87 10 99 33 29 24 86 64 4 82 8 94 44 39 30 113 63 5 85 11 101 24 27 14 65 56 1 89 10 100 37 41 30 108 236 12 343 39 394 136 98 372 3 87.1 9.9 37.1 36.6 26.3 3 922 .600 .963 .886 .975 .784 .829 .817 .823	otal Left Thru	Left	Thru	App.	off Thru	Right /	
53 2 87 10 99 33 29 24 86 64 4 82 8 94 44 39 30 113 63 5 85 11 101 24 27 14 65 56 1 89 10 100 37 41 30 108 236 12 343 39 394 138 136 98 37.1 322 .600 .963 .886 .975 .784 .829 .817 .823	eak 1 of 1	ű.		Į			1:
53 2 87 10 99 33 29 24 86 64 4 82 8 94 44 39 30 113 63 5 85 11 101 24 27 14 65 56 1 89 10 100 37 41 30 108 236 12 343 39 394 138 136 98 37.2 322 600 963 886 975 784 829 817 823							
64 4 82 8 94 44 39 30 113 63 5 85 11 101 24 27 14 65 56 1 89 10 100 37 41 30 108 236 12 343 39 394 136 98 372 3 87.1 9.9 37.1 36.6 26.3 522 .600 .963 .886 .975 .784 .829 .817 .823	0 0 7 13	2	87				98
63 5 85 11 101 24 27 14 65 56 1 89 10 100 37 41 30 108 236 12 343 39 394 138 136 98 372 3 87.1 9.9 37.1 36.6 26.3 37 522 .600 .963 .886 .975 .784 .829 .817 .823		4	82				113
56 1 89 10 100 37 41 30 108 236 12 343 39 394 138 136 98 372 3 87.1 9.9 37.1 36.6 26.3 .922 .600 .963 .886 .975 .784 .829 .817 .823	0 0 17 13	9	82				65
236 12 343 39 394 138 136 98 372 3 37.1 36.6 26.3 3 87.1 9.9 37.1 36.6 26.3 87.1 36.0 .963 .886 .975 .784 .829 .817 .823	0 0 5 15	-	89				108
3 87.1 9.9 37.1 36.6 26.3 .922 .600 .963 .886 .975 .784 .829 .817 .823	0 0 40 60	12	343				372
.922 .600 .963 .886 .975 .784 .829 .817 .823			87.1				
	.000 .000	.600	.963				.823

Wilson Okamoto Corporation 1907 S. Beretania Street Honolulu, Hi 96826

Counter:D4-3890, D4-3891 Counted By:EM, SM Weather:Clear

File Name: KeaPoh AM Site Code: 000000004 Start Date: 4/18/2011 Page No: 1

	Int. Total	63	70	91	118	342	140	131	171	185	627	190	134	109	115	548	1517	
	App. Total	21	18	27	36	102	28	27	23	59	107	37	23	22	23	108	317	
rreet	Peds	က	9	က	5	17	6	4	2	4	22	Ø	2	9	4	20	59	18.6
Pohukaina Street Eastbound	Right	7	~	4	2	17	က	9	0	2	4	6	9	3	5	23	5	17
P. P.	Thru	10	1	20	23	9	16	16	17	20	69	9	13	15	1	22	190	59.9
	Left	-	0	0	ന	4	0	_	<u>_</u>	0	2	2	2	_	က	80	4	4.4
	App. Total	12	17	23	23	75	31	28	42	51	152	38	25	20	18	101	328	
set Id	Peds	4	က	4	7	18	က	2	<u>_</u>	5	1	2	4	4	9	16	45	13.7
Keawe Street Northbound	Right	က	9	က	9	18	13	13	g	17	52	13	10	9	4	33	103	31.4
<u> </u>	Thru	2	2	12	9	25	12	6	23	17	61	17	2	00	7	37	123	37.5
	Left	က	6	4	4	4	က	4	0	12	28	9	9	2	-	15	22	17.4
	App. Total	φ	4	16	32	70	37	38	28	56	189	54	33	36	35	164	423	
rreet d	Peds	က	0	0	0	က	~	_	0	0	2	2	2	-	0	2	10	2.4
ukaina Street Vestbound	Right	0	5	0	က	∞	4	2	က	0	18	3	2	2	4	17	43	10.2
Poh	Thru	4	7	15	23	49	27	31	52	43	153	36	27	24	25	112	314	74.2
	Left	-	2	_	9	10	5	4	က	4	16	13	ιC	9	9	30	26	13.2
	App. Total	22	21	25	27	92	44	38	48	49	179	61	47	28	39	175	449	
et Id	Peds	-	4	က	4	12	00	2	9	0	16	7	2	_	-	7	39	8.7
Keawe Street Southbound	Right	4		7	œ	20	4	11	16	13	54	20	21	13	4	89	142	31.6
Ž ω	Thru	12	0	1	7	39		1	14	15	51	18	14	00	15	22	145	32.3
	Left	5	7	4	80	24	_	14	12	21	58	16	10	9	တ	4	123	27.4
	Start Time	06:00 AM	06:15 AM	06:30 AM	06:45 AM	Total	07:00 AM	07:15 AM	07:30 AM	07:45 AM	Total	08:00 AM	08:15 AM	08:30 AM	08:45 AM	Total	Grand Total	Apprch %

Keawe Street				Pohukain	ukaina Street			Keawe Street	Street			Pohukaina Street	a Street		
Southbound			\$	/estb	punc			Northbound	pund			Eastbo	Eastbound		
Left Thru Right App. Total Left T	Left		_	Thru	Right A	App. Total	Left	Thru		App. Total	Left	Thru	Right	App. Total	Int. Total
eak Hour Analysis From 06:00 AM to 08:45 AM - Peak 1 of 1	Peak 1 of 1										į				
eak Hour for Entire Intersection Begins at 07:30 AM	M														
12 14 16 42 3	42 3	က		52	က	28	6	23	6	4	_	17	0	18	15
21 15 13 49: 4	49 4	4		43	o	56	12	17	17	46	0	20	5	25	17
16 18 20 54 13	54 13	13		36	က	52	9	17	13	36	2	18	6	29	17
10 14 21 45 5	45 5	S		27	2	37	9	2	10	21	2	13	9	21	12
59 61 70 190 25	190 25	25		158	20	203	33	62	49	144	Ś	89	20	93	630
32.1 36.8		12.3		77.8	0.0		22.9	43.1	34		5.4	73.1	21.5		
.833 .880		.481		.760	.556	.875	.688	.674	.721	.783	.625	.850	.556	802	.895

1907 S. Beretania Street Honolulu, Hi 96826 File Name: KeaPoh PM

: 00000004

Site Code Start Date

: 4/18/2011

Page No

Counter:D4-3890, D4-3891 Counted By:EM, SM Weather:Clear

		Keawe Street Southbound	Street			Pohukaina S Westboul	a Street ound			Keawe Street Northbound	Street			Pohukair Eastb	na Street ound		
Start Time	Left	Thru	Right /	Right App. Total	Left	Thru	Right	App. Total	Left	Thru	_	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 03:00 PM to 05:45 PM - Peak 1 of 1	n 03:00 F	M to 05:4	5 PM - Pea	k 1 of 1													
Peak Hour for Entire Intersection Begins at 04:15 PM	tersection I	Begins at (04:15 PM														
04:15 PM	2	22	7	31	4	4	4	25	2	F	œ	21	2	21	12	32	
04:30 PM	9	53	13	48	9	35	7	49	8	4	2	27	4	45	4	53	
04:45 PM	13	25	2	43	12	4	7	69	6	9	9	53	7	37	7	51	182
MG 00:00	6	22	4	35	16	35	00	29	6	13	9	28	2	21	9	29	
Total Volume	30	86	29	157	42	151	26	219	28	48	29	105	15	124	53	168	
% App. Total	19.1	62.4	18.5	C. C	19.2	68.9	11.9		26.7	45.7	27.6		8.9	73.8	17.3		
품	.577	.845	.558	.818	.656	.858	.813	.928	.778	.857	.725	906	.536	.689	.604	.792	.891

1907 S. Beretania Street Honolulu, Hi 96826 File Name : KeaAua AM

. 000000000

Site Code Start Date

Page No

Counter:D4-5671, D4-5674 Counted By:RF, SF Weather:Clear

5671, D4-5674 RF_SF

74 60 93 114 341 99 68 51 74 74 £ 8 1 8 9 50 CF 64 Peds Auahi Street Eastbound 15 10.9 1.8 Right 0 2 7 - 6 29 21 3.5 - 040 B 32 38 38 125 24 9.8 2.9 20-26 w 4 - 4 5 € 0 N 4 @ Keawe Street Northbound Right 67 27.5 8.1 95571 စက္စည္လ 128 52.5 15.6 23 - 15 3 3 Groups Printed- Unshifted 0012 25 10.2 3 App. Total 5 13 2 9 9 34 17 17 25 77 27 20 17 18 82 2 - 2 0 00000 Auahi Street Westbound Right 23 23 96 49.7 11.7 200000 400 5 6 4 5 8 21 10.9 2.6 04--0 App. 16 14 19 15 64 24 43 43 83 83 83 22 2 2 2 2 2 2 3 2 3 2 4404 39 15.7 4.7 Keawe Street Southbound დ ი ი ი ტ 95 38.3 11.5 22 6 5 6 77 31 9.4 4045 06:00 AM 06:15 AM 06:30 AM 06:45 AM 07:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM Total Apprch % Total % Total Total **Grand Total** Start Time

		Keawe	Keawe Street Southbound			Auahi Street Westbound	Street			Keawe Street Northbound	Street			Auahi S Eastbo	2 2		
Start Time	Left	Thr	Ħ	App. Total	Left	The	Right	App. Total	Left	Thr		App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 06:00 AM to 08:45 AM - Peak 1 of	rom 06:00	AM to 08:4	15 AM - Pea	k1 of 1													
reak noul tol Effille Illersection begins at 07:30 Aim 07:30 AM	mersection 4	Deyllis at	3	19	-	4	2	10	7	20	œ	35	4	7	τ-	12	76
07.45 AM	12	<u>τ</u> Φ	~	38	-	12	12	25	တ	16	13	34	7	-	0	က	100
08:00 AM	4	5	. 10	3 5	. 12	12	9	23	9	6	5	20	ဇ	თ	-	13	87
08.15 AM	00	C.	9	19	G	o	4	19	0	6	8	F	2	80	ιΩ	15	64
Total Volume	37	49	21	107	13	37	27	11	18	25	28	100	=	52	7	43	327
% App. Total	34.6	45.8	19.6		16.9	48.1	35.1		18	54	58		25.6	58.1	16.3		
Hd	712	645	750	704	.542	.771	.563	.770	.643	.675	.538	.714	.688	.694	.350	717.	.818

1907 S. Beretania Street Honolulu, Hi 96826

File Name: KeaAua PM Site Code: 000000005 Start Date: 4/18/2011 Page No: 1

Counter:D4-5671, D4-5674 Counted By:RF, SF Weather:Clear

	Int. Total						88	91	104	100	383	66	80	77	38	294	1066	
	App. Total	21	15	=	13	09	18	10	15	15	58	18	13	F	œ	20	168	15.8
# T	Peds	စ	0		-	00	8	က	က	4	12	7	τ-	0	-	4	24	74.3 2.3
Auahi Street Eastbound	Right	4	က	-	0	∞	-	-	က	-	9	7	_	4	0	7	21	12.5 2
₹ ш	Thru	10	œ	7	6	34	12	2	9	S	28	თ	∞	9	4	27	88	8.3 8.3
	Left	-	4	7	က	10	က	-	က	2	12	2	က	•	က	12	8	20.2 3.2
	App. Total	18	19	12	23	72	18	17	17	23	75	21	16	15	13	69	212	19.9
n et	Peds	o	2	-	œ	20	က	က	-	7	6	2	က	6	2	19	48	22.6 4.5
Keawe Street Northbound	Right	m	က	9	9	18	ဖ	,	10	9	23	5	9	က	9	20	61	28.8
	Thro	9	12	က	7	28	7	8	2	13	33	11	7	က	-	22	83	39.2 7.8
	Left	0	7	2	2	9	2	2	-	2	10	က	0	0	-	4	20	4. 0.
	App. Total	30	20	32	20	102	23	26	25	15	88	18	19	23	9	99	257	24.1
	Peds	2	7	ო	-	œ	2	ა	2	0	6	←	2	က	-	7	24	9.3
uahi Street Vestbound	Right	6	4	6	9	28	က	2	7	~	16	9	7	4	0	17	61	23.7
∢>	Thru	14	10	13	တ	46	12	13	13	13	51	o	2	13	က	30	127	49.4
	Left	2	4	7	4	20	9	က	က	-	13	2	2	က	2	12	45	17.5 4.2
	App.	49	36	42	28	155	29	38	47	47	161	42	32	28	7	113	429	40.2
d et	Peds	2	0	ω	4	14	~	2	2	က	7	Ŋ	2	4	0	11	36	8 6 4 4
Keawe Street Southbound	Right	14	တ	9	4	33	7	4	2	2	21	œ	9	2	2	21	75	17.5
S &	ם	25	22	19	19	85	13	22	30	33	98	23	17	19	က	62	245	57.1
	Left	80	Ŋ	o	-	23	∞	10	7	. 9	31	9	7	က	က	19	73	17
	Start Time	03:00 PM	03:15 PM	03:30 PM	03:45 PM	Total	04:00 PM	04:15 PM	04:30 PM	04:45 PM	Total	05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total	Grand Total	Apprch %

	Χ 0)	Southbound	reet Ind			Auahi 3 Westb	Street			≇≨	Street			Auani Street Eastbound	Street		
ت	Left T	마	Right App. Total	pp. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
om 0	Peak Hour Analysis From 03:00 PM to 05:45 PM - Peak 1 of 1	3 05:45 P	M - Peak	1 of 1													
terse	Peak Hour for Entire Intersection Begins at 04:15 PM	ins at 04:	15 PM														
	10	22	4	36	ო	13	5	21	2	۵	-	4	—	2	Ψ-	7	78
		30	S	42	(*)	13	7	23	-	S	9	16	က	9	ო	12	93
	9	33	2	44	_	13	<u></u>	15	7	13	9	21	9	2	~	1	91
	9	23	œ	37	2	6	9	17	က	=	ည	19	5	6	7	16	88
ľ	29 1	108	22	159	0	48	19	76	1	37	22	20	14	25	7	46	351
2	18.2 6	67.9	13.8		11.8	63.2	25		15.7	52.9	31.4		30.4	54.3	15.2	000	The second secon
7.		318	.688	.903	.750	.923	629	.826	.550	.712	.550	.833	.700	.694	.583	.719	.944

1907 S. Beretania Street Honolulu, Hi 96826

> Counter:0769,3889 Counted By:PA,JH Weather:Clear

File Name: SouAua AM Site Code: 000000002 Start Date: 4/14/2011 Page No::1

		4	Ĕ			0 89		325	107			0 141		133		139		0 499	1322		_
	L	Eastbound	App. Total		_	_	J								_	_					
		- Company	App. Total	33	26	51	5	194	09	73	93	78	304	82	75	92	69	302	800		200
	₩.		Peds	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
	South Street	Northbound	Right	4	10	•	8	17	5	9	4	Ω	20	2	2	2	4	13	20	6.2	c
			Thro	58	46	20	25	177	55	29	89	73	284	80	20	74	65	289	750	93.8	1
			Left	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
			App. Total	6	13	15	12	49	19	22	12	35	88	27	17	27	16	87	224		0
Unshifted		į	Peds A	ო	4	က	8	12	ø	0	-	ဖ	15	æ	7	7	2	<u>0</u>	46	20.5	•
Groups Printed- Unshifted	Auahi Street	Westbound	Right	4	4	7	7	22	6	18	თ	23	28	12	01	16	13	51	131	58.5	0
Grou	A		Thru	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
			Left	2	2	9	e	15	7	4	7	7	15	7	S	4	_	17	47	21	0
			App. Total	27	15	23	17	82	28	23	27	28	106	24	22	36	28	110	298		1 00
	فند		Peds	1	S	9	4	22	00	9	10	1	35	9	4	12	∞	30	87	29.2	
	South Street	Southbound	Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	S	S	Thru	12	S	9	0	32	7	4	4	12	51	6	13	4	16	52	135	45.3	
			Left	8	2	1	4	28	6	m	m	2	20	σ	10	10	4	28	92	25.5	
			Start Time	06:00 AM	06:15 AM	06:30 AM	06:45 AM	Total	07:00 AM	07:15 AM	07:30 AM	07:45 AM	Total	08:00 AM	08:15 AM	08:30 AM	08:45 AM	Total	Grand Total	Approch %	

Might App. Total Left Thru Right App. Total Left Thru Right App. Total Left Thru Right App. Total App. To			South Street	Street			Auahi Street	treet			South S	treet			
Left Thru Right App. Total Left Thru Right App. Total Left Thru Right App. Total App. To			Southb	punou			Westbo	punc			Northbe	punc		Eastbound	
ak 1 of 1 4 0 18 22 0 67 6 73 0 17 2 0 9 11 0 89 4 93 0 17 7 0 22 29 0 73 5 78 0 18 7 0 12 19 0 80 2 82 0 69 20 61 81 0 309 17 326 0 24,7 0 75,3 69 309 17 326 000 958 .714 .000 .693 .000 .868 .708 .876 .00	Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	App. Total	Int. Total
0 17 4 0 18 22 0 67 6 73 0 17 2 0 9 11 0 89 4 93 0 17 7 0 22 29 0 73 5 78 0 18 7 0 12 19 0 80 2 82 0 69 20 61 81 0 309 17 326 0 24.7 0 75.3 69 94.8 5.2 30 000 958 .714 .000 693 .000 .868 .708 .876 .00	eak Hour Analysis From	06:00 AM to C	38:45 AM - F	Peak 1 of 1	A STANSON OF THE PROPERTY OF T										
0 17 4 0 18 22 0 67 6 73 0 17 2 0 9 11 0 89 4 93 0 17 7 0 22 29 0 73 5 78 0 69 20 0 61 81 0 80 2 82 0 69 20 61 81 0 309 17 326 0 24,7 0 75,3 69 5.2 876 .00 000 958 .714 .000 693 .000 .868 .708 .876 .00	eak Hour for Entire Inter	section Begins	s at 07:15 Al	Σ										1000	
3 14 0 17 2 0 9 11 0 89 4 93 5 12 0 17 7 0 22 29 0 73 5 78 9 9 0 18 7 0 12 19 0 80 2 82 20 49 0 69 20 61 81 0 309 17 326 29 71 0 24.7 0 75.3 0 94.8 5.2 556 .875 .000 .958 .714 .000 .693 .698 .000 .868 .708 .706 .00	07:15 AM	ິຕ	4	0	17	4	0	18	22	0	29	ဖ	73	0	112
5 12 0 17 7 0 22 29 0 73 5 78 9 9 0 18 7 0 12 19 0 80 2 82 20 49 0 69 20 61 81 0 309 17 326 29 71 0 24.7 0 75.3 0 94.8 5.2 556 .875 .000 .958 .714 .000 .693 .698 .000 .868 .708 .876 .00	07:30 AM	c	4	0	17	7	0	6	7	0	88	4	93	0	121
9 9 0 18 7 0 12 19 0 80 2 82 20 49 0 69 20 0 61 81 0 309 17 326 29 71 0 24.7 0 75.3 0 94.8 5.2 5.2 556 .875 .000 .958 .714 .000 .693 .698 .000 .868 .708 .876 .000	07:45 AM	5	12	0	17	7	0	22	29	0	73	S	78	0	124
20 49 0 69 20 0 61 81 0 309 17 326 29 71 0 24.7 0 75.3 0 94.8 5.2 36 .56 .875 .000 .958 .714 .000 .693 .698 .000 .868 .708 .876 .00	08:00 AM	· თ	6	0	18	7	0	12	19	0	80	7	82	0	119
29 71 0 24.7 0 75.3 0 94.8 5.2 5.6 .875 .000 .958 .714 .000 .693 .698 .000 .868 .708 .876	Total Volume	20	49	0	69	20	0	61	158	0	309	17	326	0	476
.556 .875 .000 .958 .714 .000 .693 .698 .000 .868 .708 .876	% App. Total	59	71	0		24.7	0	75.3		0	94.8	5.2			
	PHF	.556	.875	000	.958	.714	000	.693	869.	000	.868	.708	.876	000	.960

1907 S. Beretania Street Honolulu, Hi 96826

> Counter:0769, 3889 Counted By:PA, JH Weather:Clear

File Name: SouAuaPM Site Code: 00000002 Start Date: 4/14/2011 Page No: 1

		S	South Srteet	می				Auahi Street	**			U)	South Srteet	1			
		3)	Southbound					Westbound					Northbound			ш	
Start Time	Left	Thr	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	App. Total	Int. Total
03:00 PM	9	4	0	9	53	12	0	12	7	31	0	53	9	-	09		14
03:15 PM	7	31	0	7	45	16	0	12	က	31	0	99	80	0	64		4
03:30 PM	1	34	0	O	54	O	0	80	4	21	0	9/	9	0	82	0	15
03:45 PM	12	31	0	S	48	80	0	14	•	23	0	68	က	0	71		142
Total	36	137	0	27	200	45	0	46	15	106	0	253	23	_	277	0	58
04:00 PM	6	55	0	12	92	5	0	12	13	30	0	63	4	0	29	0	173
04:15 PM	13	34	0	9	53	11	0	4	9	31	0	78	5	0	83	0	16
04:30 PM	7	22	0	17	62	10	0	18	80	36	0	63	4	0	29	0	18
04:45 PM	10	47	0	S	62	80	0	14	က	25	0	7	5	0	76	0	16
Total	39	191	0	40	270	34	0	58	30	122	0	275	18	0	293	0	89
05:00 PM	10	44	0	9	09	6	0	9	13	28	0	61	-	-	63	0	151
05:15 PM	9	49	0	7	62	12	0	10	7	29	0	9	၉	0	63	0	¥
05:30 PM	2	26	0	6	37	Ø	0	10	က	22	0	54	7	0	61	0	12
05:45 PM	12	56	0	က	4	က	0	11	2	16	0	65	4	0	69	0	12
Total	30	145	0	25	200	33	0	37	25	95	0	240	15	-	256	0	56
Grand Total	105	473	0	92	029	112	0	141	70	323	0	768	56	2	826	0	1819
Apprch %	15.7	9.07	0	13.7		34.7	0	43.7	21.7		0	93	6.8	0.2			
Total 9/	u	90	_	T.	0 00	9	c	1	000	470	_	0 07	2	,	15 1		

Start Time Left Thu Right App. Total App. Total Int. Total Int. Total Left Thu Right App. Total App. Total Int. Total Int. Total Int. Total App. Total Int. Total I							0.14				O or the O	4000			
App. Total Left Thru Right App. Total Left Thru Right App. Total App. Total Int. Thru App. Total Int. Thru App. Total App. Total Int. Thru Int. Thru App. Total Int. Thru App. Total Int. Thru Int. Thru			South	Srteet			Auani S Westbo	rreer			Northbo	ound		Eastbound	
14 5 0 12 17 0 63 4 67 0 0 4	Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	App. Total	Int. Total
0 64 5 0 12 17 0 63 4 67 0 0 47 11 0 14 25 0 78 5 83 0 0 62 10 14 28 0 63 4 67 0 0 57 8 0 14 22 0 71 5 76 0 0 230 34 0 58 92 0 275 18 293 0 0 37 63 821 .000 .881 .900 .883 .000	eak Hour Analysis From	03:00 PM to (05:45 PM - I	Peak 1 of 1	and the same of th										
0 64 5 0 12 17 0 63 4 67 0 0 47 11 0 14 25 0 78 5 83 0 0 62 10 14 25 0 63 4 67 0 0 57 8 0 14 22 0 71 5 76 0 0 230 34 0 58 92 0 275 18 293 0 0 37 63 86 821 300 881 300 883 300	eak Hour for Entire Inters	section Begins	s at 04:00 P	M											
13 34 0 47 11 0 14 25 0 78 5 83 0 7 55 0 62 10 0 18 28 0 63 4 67 0 10 47 0 57 8 0 14 22 0 71 5 76 0 39 191 0 230 34 0 58 92 0 275 18 293 0 17 83 0 37 63 6.1 39.9 6.1 883 90 750 .868 .000 .881 .900 .881 .900 .900	04:00 PM	ာ်တ	22	0	64	2	0	12	17	0	63	4	29	0	148
7 55 0 62 10 0 18 28 0 63 4 67 0 10 47 0 57 8 0 14 22 0 71 5 76 0 39 191 0 230 34 0 58 92 0 275 18 293 0 17 83 0 37 0 63 0 93.9 6.1 883 .000 750 .868 .000 .898 .773 .000 .806 .821 .000 .881 .900 .900	04:15 PM	13	34	0	47	11	0	14	25	0	78	ıg	83	0	155
10 47 0 57 8 0 14 22 0 71 5 76 0 39 191 0 230 34 0 58 92 0 275 18 293 0 17 83 0 37 0 63 0 93.9 6.1 86.1 0 750 .868 .000 .898 .773 .000 .806 .821 .000 .881 .900 .893 .000	04:30 PM	7	55	0	62	10	0	18	28	0	63	4	29	0	157
39 191 0 230 34 0 58 92 0 275 18 293 0 17 83 0 37 0 63 0 93.9 6.1 86.1 0 6.1	04:45 PM	10	47	0	22	Φ	0	14	22	0	71	2	9/	0	155
17 83 0 37 0 63 0 93.9 6.1 750 .868 .000 .881 .000 .881 .000 .883 .000	Total Volume	39	191	0	230	34	0	58	92	0	275	18	293	0	615
.750 .868 .000 .898 .773 .000 .806 .821 .000 .881 .900 .883 .000	% App. Total	17	83	0		37	0	63		0	93.9	6.1			
	PHF	.750	868	000	898	.773	000	806	.821	000	.881	006.	.883	000	979.

APPENDIX B LEVEL OF SERVICE DEFINITIONS

LEVEL OF SERVICE DEFINITIONS

LEVEL-OF-SERVICE CRITERIA FOR UNSIGNALIZED INTERSECTIONS

Level of Service (LOS) criteria are given in Table 1. As used here, control delay is defined as the total elapsed time from the time a vehicle stops at the end of the queue to the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position, including deceleration of vehicles from free-flow speed to the speed of vehicles in the queue.

The average total delay for any particular minor movement is a function of the service rate or capacity of the approach and the degree of saturation. If the degree of saturation is greater than about 0.9, average control delay is significantly affected by the length of the analysis period.

Table 1: Level-of-Service Criteria for Unsignalized Intersections

Level of Service	Average Control Delay (Sec/Veh)	= = :
A	≤10.0	
В	>10.0 and ≤ 15.0	
C	>15.0 and ≤ 25.0	
D	>25.0 and ≤ 35.0	
E	$>35.0 \text{ and } \le 50.0$	
F	>50.0	

[&]quot;Highway Capacity Manual," Transportation Research Board, 2000,

LEVEL OF SERVICE DEFINITIONS

LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

Level of Service (LOS) can be characterized for the entire intersection, each intersection approach, and each lane group. Control delay alone is used to characterize LOS for the entire intersection or an approach. Control and volume—to-capacity .ratio are used to characterize LOS for a lane group. Delay quantifies the increase in travel time due to traffic signal control. It is also a surrogate measure of driver discomfort and fuel consumption. The volume-to-capacity ratio quantifies the degree to which a phase's capacity is utilized by a lane group.

Table 1: Level-of-Service Criteria for Signalized Intersections

Level of Service	LOS by Volume-to-Capacity Ratio
A	≤10
В	>10 - 20
C	>20 – 35
D	>35 - 55.0
E	>55.0 - 80.0
F	>80.0

Level of Service A describes operation with a control delay of 10 s/veh or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is exceptionally favorable or the cycle length is very short. If it is due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.

Level of Service B describes operations with control delay between 10 and 20 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

Level of Service C describes operations with control delay between 20 and 35 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual cycle failures (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.

Level of Service D describes operations with control delay between 35 and 55 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

[&]quot;Highway Capacity Manual," Transportation Research Board, 2000.

Level of Service E describes operation with control delay between 55 and 80 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

Level of Service F describes operation with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. The level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

APPENDIX C

CAPACITY ANALYSIS CALCULATIONS EXISTING PEAK PERIOD TRAFFIC ANALYSIS

	•	→	*	1	←	*	1	†	1	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		474			472			47>				
Volume (vph)	82	57	59	55	89	86	47	239	12	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0				
Lane Util. Factor		0.95			0.95			0.95				
Frt		0.96			0.94			0.99				
Flt Protected		0.98			0.99			0.99				
Satd. Flow (prot)		3313			3301			3491				
Flt Permitted		0.77			0.84			0.99				
Satd. Flow (perm)		2616			2795	111		3491		سيان		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	90	63	65	60	98	95	52	263	13	0	0	0
RTOR Reduction (vph)	0	50	0	0	73	0	0	5	0	0	0	0
Lane Group Flow (vph)	0	168	0	0	180	0	0	323	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases	10,000	6			2			4				
Permitted Phases	6			2			4					
Actuated Green, G (s)		5.4			5.4			8.0				
Effective Green, g (s)		5.4			5.4			8.0				
Actuated g/C Ratio		0.23			0.23			0.34				
Clearance Time (s)		5.0			5.0			5.0				
Vehicle Extension (s)		3.0			3.0			3.0				
Lane Grp Cap (vph)		603			645			1193				
v/s Ratio Prot												
v/s Ratio Perm		0.06			c0.06			0.09				
v/c Ratio		0.28			0.28			0.27				
Uniform Delay, d1		7.4			7.4			5.6				
Progression Factor		1.00			1.00			1.00				
Incremental Delay, d2		0.3			0.2			0.1				
Delay (s)		7.7			7.6			5.7				
Level of Service		Α			Α			Α				
Approach Delay (s)		7.7			7.6			5.7			0.0	
Approach LOS		Α			Α			Α			Α	
Intersection Summary		SI SE		11	OI NOT			200		die.		
HCM 2000 Control Delay			6.8	Н	ICM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.27									
Actuated Cycle Length (s)			23.4			t time (s)			10.0			
Intersection Capacity Utilizat	ion		33.5%	10	CU Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

1: South St & Pohukaina St t EBT EBR WBT NBL **NBT NBR** SBL SBT SBR EBL WBL **WBR** Movement Lane Configurations 41 414 41 121 49 91 21 363 39 0 0 0 160 131 47 Volume (vph) 1900 1900 1900 1900 1900 1900 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 5.0 5.0 Total Lost time (s) 5.0 Lane Util. Factor 0.95 0.95 0.95 Frt 0.96 0.93 0.99 0.98 0.99 1.00 Flt Protected 3319 3238 3481 Satd. Flow (prot) 0.78 FIt Permitted 0.78 1.00 Satd. Flow (perm) 2635 2562 3481 0.96 0.96 Peak-hour factor, PHF 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0 0 0 126 51 49 95 22 378 41 167 136 Adj. Flow (vph) 0 0 0 0 0 RTOR Reduction (vph) 0 84 0 0 64 0 14 0 0 345 0 0 131 0 0 427 0 0 0 Lane Group Flow (vph) NA Perm NA Perm NA Perm Turn Type 4 6 2 **Protected Phases Permitted Phases** 6 2 4 9.6 9.6 9.4 Actuated Green, G (s) 9.6 9.6 9.4 Effective Green, g (s) Actuated g/C Ratio 0.32 0.33 0.33 5.0 5.0 Clearance Time (s) 5.0 3.0 3.0 3.0 Vehicle Extension (s) 872 848 1128 Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm c0.13 0.05 0.12 0.40 0.16 0.38 v/c Ratio 7.5 6.8 7.5 Uniform Delay, d1 1.00 1.00 1.00 **Progression Factor** Incremental Delay, d2 0.3 0.1 0.2 7.8 6.9 7.8 Delay (s) Level of Service Α Α Α 7.8 0.0 6.9 7.8 Approach Delay (s) Α Α A Α

Intersection Summary				
HCM 2000 Control Delay	7.6	HCM 2000 Level of Service	A	
HCM 2000 Volume to Capacity ratio	0.39			
Actuated Cycle Length (s)	29.0	Sum of lost time (s)	10.0	
Intersection Capacity Utilization	42.2%	ICU Level of Service	Α	
Analysis Period (min)	15			
c Critical Lane Group				

Approach LOS

	۶	→	7	1	←	4	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	6	47	16	17	170	20	11	43	13	8	28	49
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Hourly flow rate (vph)	8	59	20	22	215	25	14	54	16	10	35	62
Direction, Lane #	EB1	WB 1	NB 1	SB 1					3 4 3			Phil
Volume Total (vph)	87	262	85	108								
Volume Left (vph)	8	22	14	10								
Volume Right (vph)	20	25	16	62								
Hadj (s)	-0.09	-0.01	-0.05	-0.29								
Departure Headway (s)	4.6	4.5	4.8	4.5								
Degree Utilization, x	0.11	0.33	0.11	0.14								
Capacity (veh/h)	729	769	690	727								
Control Delay (s)	8.2	9.6	8.4	8.3								
Approach Delay (s)	8.2	9.6	8.4	8.3								
Approach LOS	Α	Α	A	Α								
Intersection Summary	400	14.	وكالوروق	Carrier Control	87.43		w _i éy	sold or i	19 8	110,	17.3	This for
Delay			8.9									
Level of Service			Α									
Intersection Capacity Utilizatio	n		26.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	-	*	1	+-	1	4	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	13	155	13	24	132	10	22	31	23	27	76	26
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	14	165	14	26	140	11	23	33	24	29	81	28
Direction, Lane #	EB 1	WB1	NB 1	SB 1					320		a arr	E 715
Volume Total (vph)	193	177	81	137								
Volume Left (vph)	14	26	23	29								
Volume Right (vph)	14	11	24	28								
Hadj (s)	0.01	0.03	-0.09	-0.05								
Departure Headway (s)	4.7	4.7	4.9	4.9								
Degree Utilization, x	0.25	0.23	0.11	0.19								
Capacity (veh/h)	722	717	670	682								
Control Delay (s)	9.2	9.1	8.5	9.0								
Approach Delay (s)	9.2	9.1	8.5	9.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary		JA P.	715	15.3	PAK :	will be		110	No.	r-tarley	170.5	TIV-THE
Delay			9.0					No Fi				
Level of Service			Α									
Intersection Capacity Utilization	on		29.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	→	*	1	—	4	1	Ť	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	e lu
Volume (vph)	11	25	7	13	37	27	18	54	28	37	49	21
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	13	30	9	16	45	33	22	66	34	45	60	26
Direction, Lane #	EB 1	WB 1	NB 1	SB 1	W.H			time ,	10 1			
Volume Total (vph)	52	94	122	130								
Volume Left (vph)	13	16	22	45								
Volume Right (vph)	9	33	34	26								
Hadj (s)	-0.01	-0.14	-0.10	-0.01								
Departure Headway (s)	4.6	4.4	4.3	4.4								
Degree Utilization, x	0.07	0.11	0.15	0.16								
Capacity (veh/h)	730	764	801	784								
Control Delay (s)	7.9	8.0	8.0	8.2								
Approach Delay (s)	7.9	8.0	8.0	8.2								
Approach LOS	Α	Α	Α	Α								4
Intersection Summary	3,50	J 1971	1 8			- 1	120		9 146	بالبودم		
Delay			8.0									
Level of Service			Α									
Intersection Capacity Utiliza	ation		22.4%	10	U Level	of Service			Α			
Analysis Period (min)			15									

	٨	→	*	1	4-	•	4	1	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	14	25	7	9	48	19	11	37	22	29	108	22
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	15	27	7	10	51	20	12	39	23	31	115	23
Direction, Lane #	EB1	WB 1	NB1	SB 1	8 2 100 1			3 W.S.	1.4		-	T TO
Volume Total (vph)	49	81	74	169								
Volume Left (vph)	15	10	12	31								
Volume Right (vph)	7	20	23	23								
Hadj (s)	0.00	-0.09	-0.12	-0.01								
Departure Headway (s)	4.5	4.4	4.3	4.3								
Degree Utilization, x	0.06	0.10	0.09	0.20								
Capacity (veh/h)	736	761	804	807								
Control Delay (s)	7.8	7.9	7.7	8.3								
Approach Delay (s)	7.8	7.9	7.7	8.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary	3/8			i kaji	Div.		il suc	MI US			6117	10000
Delay			8.0									
Level of Service			Α									
Intersection Capacity Utilization			23.9%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
												170

	1	4	†	-	-	1
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	N/		†			414
Volume (veh/h)	20	61	309	17	20	49
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	21	64	322	18	21	51
Pedestrians		2/2	-			
Lane Width (ft)					S. 10	
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)			1000			623
pX, platoon unblocked						
vC, conflicting volume	398	170			340	
vC1, stage 1 conf vol	000	110			0.0	
vC2, stage 2 conf vol						
vCu, unblocked vol	398	170			340	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)	0.0	0.0				
tF (s)	3.5	3.3			2.2	
p0 queue free %	96	92			98	
cM capacity (veh/h)	570	844			1216	
	370					
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	84	215	125	38	34	
Volume Left	21	0	0	21	0	
Volume Right	64	0	18	0	0	
cSH	755	1700	1700	1216	1700	
Volume to Capacity	0.11	0.13	0.07	0.02	0.02	
Queue Length 95th (ft)	9	0	0	1	0	
Control Delay (s)	10.4	0.0	0.0	4.5	0.0	
Lane LOS	В			Α		
Approach Delay (s)	10.4	0.0		2.4		
Approach LOS	В					
Intersection Summary					WALL.	
Average Delay			2.1			
Intersection Capacity Utiliza	tion		27.3%	10	CU Level	of Service
Analysis Period (min)			15			
THE PERSON NAMED IN						

	•	4	↑	~	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		^			41	
Volume (veh/h)	34	58	275	18	39	191	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	
Hourly flow rate (vph)	35	59	281	18	40	195	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)						547	
pX, platoon unblocked							
vC, conflicting volume	467	149			299		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol		NAME OF TAXABLE PARTY.					
vCu, unblocked vol	467	149			299		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	93	93			97		
cM capacity (veh/h)	508	870			1259		N. H. St. Dr. M. C. St. St. St. St. St.
			ND 0	00.4			
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total				40	0		
Volume Left	35	0	0		0		
Volume Right	59		18	1050	1700		
cSH	689	1700	1700	1259			No. of Victorian Association (Victorian Association)
Volume to Capacity	0.14	0.11	0.07	0.03	0.08		
Queue Length 95th (ft)	12	0	0	2	0		
Control Delay (s)	11.0	0.0	0.0	3.2	0.0		
Lane LOS	B	0.0		A			
Approach Delay (s)	11.0	0.0		1.4			
Approach LOS	В						
Intersection Summary			AL THURS			V -5 17 11	部。1915年1月1日 · 1000年1月1日 · 1000年1日 · 100
Average Delay			2.2				
Intersection Capacity Utiliza	ation		30.0%	IC	U Level	of Service	A A
Analysis Period (min)			15				

APPENDIX D

CAPACITY ANALYSIS CALCULATIONS PROJECTED YEAR 2016 PEAK PERIOD TRAFFIC ANALYSIS WITHOUT PROJECT

	۶	→	*	1	+	•	1	1	~	-	\	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4T÷			414			414				
Volume (vph)	83	58	60	56	90	87	48	243	12	0	0	0
	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0				
Lane Util. Factor		0.95			0.95			0.95				
Frt		0.96			0.94			0.99				
Flt Protected		0.98			0.99			0.99				
Satd. Flow (prot)		3312	B. 1		3301			3491				
FIt Permitted		0.77			0.83			0.99				
Satd. Flow (perm)		2615	1 - 1		2788	1		3491				
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	91	64	66	62	99	96	53	267	13	0	0	0
RTOR Reduction (vph)	0	51	0	0	74	0	0	5	0	0	0	0
Lane Group Flow (vph)	0	170	0	0	183	0	0	328	0	0	0	0
Turn Type F	erm	NA		Perm	NA		Perm	NA				
Protected Phases		6			2			4				
Permitted Phases	6			2			4					
Actuated Green, G (s)		5.4			5.4			8.1				
Effective Green, g (s)		5.4			5.4			8.1				
Actuated g/C Ratio		0.23			0.23			0.34				
Clearance Time (s)		5.0			5.0			5.0				
Vehicle Extension (s)		3.0			3.0			3.0			-1 -00	
Lane Grp Cap (vph)		600			640			1203				
v/s Ratio Prot												
v/s Ratio Perm		0.07			c0.07			0.09				
v/c Ratio		0.28			0.29			0.27				
Uniform Delay, d1		7.5			7.5			5.6				
Progression Factor		1.00			1.00			1.00				
Incremental Delay, d2		0.3			0.2			0.1				
Delay (s)		7.7			7.7			5.7				
Level of Service		Α			Α			Α				
Approach Delay (s)		7.7			7.7			5.7			0.0	
Approach LOS		Α			Α			Α			Α	
Intersection Summary		أمواله			, Martin	111181		1			W.	
HCM 2000 Control Delay			6.9	Н	ICM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.28									
Actuated Cycle Length (s)			23.5	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization			33.8%	= = 10	CU Level	of Service)		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	•	←	*	4	1	~	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		47>			414			474				
Volume (vph)	162	133	123	50	48	92	21	368	40	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0				
Lane Util. Factor		0.95			0.95			0.95				
Frt		0.96			0.93			0.99				
Flt Protected		0.98			0.99			1.00				
Satd. Flow (prot)		3319			3239			3481				
Flt Permitted		0.78			0.78			1.00				
Satd. Flow (perm)		2633			2556			3481	100			
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	169	139	128	52	50	96	22	383	42	0	0	0
RTOR Reduction (vph)	0	85	0	0	64	0	0	14	0	0	0	0
Lane Group Flow (vph)	0	351	0	0	134	0	0	433	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		6			2			4				
Permitted Phases	6			2			4					
Actuated Green, G (s)		9.7			9.7			9.5				
Effective Green, g (s)		9.7			9.7			9.5				
Actuated g/C Ratio		0.33			0.33			0.33				
Clearance Time (s)		5.0			5.0			5.0				
Vehicle Extension (s)		3.0			3.0			3.0		The S		
Lane Grp Cap (vph)		874			849			1132				
v/s Ratio Prot												
v/s Ratio Perm		c0.13			0.05			0.12				
v/c Ratio		0.40			0.16			0.38				
Uniform Delay, d1		7.5			6.9			7.6				
Progression Factor		1.00			1.00			1.00				
Incremental Delay, d2		0.3			0.1			0.2				
Delay (s)		7.8			7.0			7.8				
Level of Service		Α			Α			Α				
Approach Delay (s)		7.8			7.0			7.8			0.0	
Approach LOS		Α			Α			Α			Α	
Intersection Summary	of February	717	4	Y 4 7	all ma	31, 31		81	2018		Mary S.	1
HCM 2000 Control Delay			7.7	H	ICM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.39									400
Actuated Cycle Length (s)			29.2	S	Sum of los	t time (s)			10.0			
Intersection Capacity Utilizat	ion		42.6%	10	CU Level	of Service	9		Α			
Analysis Period (min)			15									
o Critical Lana Croup												

c Critical Lane Group

	•	→	*	1	4-	4	1	1	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	6	47	16	17	172	20	11	45	13	8	30	55
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Hourly flow rate (vph)	8	59	20	22	218	25	14	57	16	10	38	70
Direction, Lane #	EB1	WB 1	NB 1	SB 1		184	1114	15 10				Way.
Volume Total (vph)	87	265	87	118								
Volume Left (vph)	8	22	14	10								
Volume Right (vph)	20	25	16	70								
Hadj (s)	-0.09	-0.01	-0.05	-0.30								
Departure Headway (s)	4.6	4.5	4.8	4.5								
Degree Utilization, x	0.11	0.33	0.12	0.15								
Capacity (veh/h)	721	762	684	726								
Control Delay (s)	8.2	9.7	8.5	8.3								
Approach Delay (s)	8.2	9.7	8.5	8.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary	a Kin		West Control			100	311	Sec. C		100	J ns	
Delay			9.0									
Level of Service			Α									
Intersection Capacity Utiliza	ation		27.4%	IC	U Level	of Service	-		Α			
Analysis Period (min)			15									
							- 74.7					1111

	*	→	*	1	-		4	Ť	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			43	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	14	156	13	24	133	10	22	32	23	27	78	26
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	15	166	14	26	141	11	23	34	24	29	83	28
Direction, Lane #	EB 1	WB1	NB 1	SB 1	17.1	THE S		The ite	Week'ns		W. A	3-0
Volume Total (vph)	195	178	82	139								
Volume Left (vph)	15	26	23	29								
Volume Right (vph)	14	11	24	28								
Hadj (s)	0.01	0.03	-0.09	-0.04								
Departure Headway (s)	4.7	4.7	4.9	4.9								
Degree Utilization, x	0.25	0.23	0.11	0.19								
Capacity (veh/h)	720	715	667	680								
Control Delay (s)	9.3	9.2	8.5	9.0								
Approach Delay (s)	9.3	9.2	8.5	9.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary	14/1-3/1	1971.11	1800		13.6	11/2/20		455	A TONIE	7 24		
Delay			9.1									
Level of Service			Α									
Intersection Capacity Utiliza	tion		29.8%	iC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	→	7	*	+	4	4	Ť	1	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	11	25	7	13	38	27	18	55	28	38	50	21
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	13	30	9	16	46	33	22	67	34	46	61	26
Direction, Lane #	EB 1	WB 1	NB 1	SB 1		Grij Ni	1 5 1 1	11113		7 1		
Volume Total (vph)	52	95	123	133								
Volume Left (vph)	13	16	22	46								
Volume Right (vph)	9	33	34	26								
Hadj (s)	-0.01	-0.14	-0.10	-0.01								
Departure Headway (s)	4.6	4.4	4.3	4.4								
Degree Utilization, x	0.07	0.12	0.15	0.16								
Capacity (veh/h)	727	762	799	783								
Control Delay (s)	7.9	8.0	8.0	8.2								
Approach Delay (s)	7.9	8.0	8.0	8.2								
Approach LOS	Α	Α	Α	Α								
Intersection Summary						Post.	156		2 8/1111			11 D
Delay			8.1									
Level of Service			Α									
Intersection Capacity Utiliza	ation		22.7%	IC	CU Level	of Service)		Α			
Analysis Period (min)			15									

	۶	→	*	•	+	4	1	†	<i>></i>	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	14	25	7	9	50	19	11	38	22	29	110	22
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	15	27	7	10	53	20	12	40	23	31	117	23
Direction, Lane #	EB1	WB1	NB 1	SB 1	Control	37/3		100			10	
Volume Total (vph)	49	83	76	171								
Volume Left (vph)	15	10	12	31								
Volume Right (vph)	7	20	23	23								
Hadj (s)	0.00	-0.09	-0.12	-0.01								
Departure Headway (s)	4.6	4.4	4.3	4.3								
Degree Utilization, x	0.06	0.10	0.09	0.20								
Capacity (veh/h)	733	759	802	805								
Control Delay (s)	7.9	7.9	7.7	8.4								
Approach Delay (s)	7.9	7.9	7.7	8.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary	1776	All Maria	di je n			SIV:	7 118	All h	RE LIVE	TO US	to d	
Delay			8.1									
Level of Service			Α									
Intersection Capacity Utiliza	ition		24.2%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

	1	4	Ť	-	-	‡
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	NA.		1			44
Volume (veh/h)	20	62	314	17	20	50
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	21	65	327	18	21	52
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						623
pX, platoon unblocked						
vC, conflicting volume	404	172			345	
vC1, stage 1 conf vol	- AN-OUR					
vC2, stage 2 conf vol						
vCu, unblocked vol	404	172			345	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)		0.0				
tF (s)	3.5	3.3			2.2	
p0 queue free %	96	92			98	
cM capacity (veh/h)	565	841			1211	7 7
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	NEW CO.
Volume Total	85	218	127	38	35	
Volume Left	21	0	0	21	0	
Volume Right	65	0	18	0	0	
cSH	752	1700	1700	1211	1700	
Volume to Capacity	0.11	0.13	0.07	0.02	0.02	
Queue Length 95th (ft)	10	0	0	1	0	
Control Delay (s)	10.4	0.0	0.0	4.4	0.0	
Lane LOS	В			Α		
Approach Delay (s)	10.4	0.0		2.3		
Approach LOS	В					
Intersection Summary		4 . 5 .	100	7		
Average Delay			2.1			
Intersection Capacity Utiliza	ation		27.5%	IC	U Level o	of Service
Analysis Period (min)			15			

	1	*	↑	-	\	†			
Movement	WBL	WBR	NBT	NBR	SBL	SBT	es e la Cal		
Lane Configurations	sha		† p			414			
Volume (veh/h)	35	59	280	18	40	194			
Sign Control	Stop		Free			Free			
Grade	0%		0%			0%			
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98			
Hourly flow rate (vph)	36	60	286	18	41	198			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type			None			None			
Median storage veh)									
Upstream signal (ft)						547			
pX, platoon unblocked									
vC, conflicting volume	476	152			304				
vC1, stage 1 conf vol	410	102							
vC2, stage 2 conf vol									
vCu, unblocked vol	476	152			304				
tC, single (s)	6.8	6.9			4.1				
tC, 2 stage (s)	0.0	0.0			30.01				
tF (s)	3.5	3.3			2.2				
p0 queue free %	93	93			97				
cM capacity (veh/h)	501	867			1254				
	501								
Direction, Lane #	WB1	NB 1	NB 2	SB 1	SB 2	485		40	(CONTRACTOR
Volume Total	96	190	114	107	132				
Volume Left	36	0	0	41	0				
Volume Right	60	0	18	0	0				
cSH	682	1700	1700	1254	1700				
Volume to Capacity	0.14	0.11	0.07	0.03	0.08				
Queue Length 95th (ft)	12	0	0	3	0				
Control Delay (s)	11.1	0.0	0.0	3.2	0.0				
Lane LOS	В			Α					
Approach Delay (s)	11.1	0.0		1.4					
Approach LOS	В								
Intersection Summary	15.	Lang.		W.S.			374		11/1
Average Delay			2.2						
Intersection Capacity Utiliz	ation		30.4%	IC	CU Level	of Service		Α	
Analysis Period (min)			15						
mayoro i oriou (iliili)			Ly use						

APPENDIX E

CAPACITY ANALYSIS CALCULATIONS PROJECTED YEAR 2016 PEAK PERIOD TRAFFIC ANALYSIS WITH PROJECT

	٨	→	7	1	+	1	4	†	1	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			474			4 1				
Volume (vph)	83	61	73	56	101	107	48	277	14	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0				
Lane Util. Factor		0.95			0.95			0.95				
Frt		0.95			0.94			0.99				
Fit Protected		0.98			0.99			0.99				
Satd. Flow (prot)		3298			3289			3493				
FIt Permitted		0.77			0.84			0.99				
Satd. Flow (perm)		2578			2798	THE THE		3493				
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	91	67	80	62	111	118	53	304	15	0	0	0
RTOR Reduction (vph)	0	62	0	0	91	0	0	6	0	0	0	0
Lane Group Flow (vph)	0	176	0	0	200	0	0	366	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		6			2			4				
Permitted Phases	6			2			4					
Actuated Green, G (s)		5.4			5.4			8.5				
Effective Green, g (s)		5.4			5.4			8.5				
Actuated g/C Ratio		0.23			0.23			0.36				
Clearance Time (s)		5.0			5.0			5.0				
Vehicle Extension (s)		3.0			3.0			3.0				
Lane Grp Cap (vph)		582			632			1242				
v/s Ratio Prot												
v/s Ratio Perm		0.07			c0.07			0.10				
v/c Ratio		0.30			0.32			0.29				
Uniform Delay, d1		7.7			7.7			5.5				- 1
Progression Factor		1.00			1.00			1.00				
Incremental Delay, d2		0.3			0.3			0.1				
Delay (s)		8.0			8.0			5.7				
Level of Service		A			A			Α				
Approach Delay (s)		8.0			8.0			5.7			0.0	
Approach LOS		Α			Α			Α			Α	
Intersection Summary	1 5		1177	- 4						V The) of
HCM 2000 Control Delay			7.0	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.30									
Actuated Cycle Length (s)			23.9	S	um of lost	t time (s)			10.0			
Intersection Capacity Utilization	1		36.3%			of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

·	۶	→	*	1	+	4	1	Ť	<i>></i>	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4ी रे			414			सी कि				
Volume (vph)	162	149	151	50	54	104	21	391	50	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0				
Lane Util. Factor		0.95			0.95			0.95				
Ert		0.95			0.93			0.98				
Flt Protected		0.98			0.99			1.00				
Satd. Flow (prot)		3308			3235			3474				
FIt Permitted		0.78			0.78			1.00				
Satd. Flow (perm)		2632			2558			3474				
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	169	155	157	52	56	108	22	407	52	0	0	0
RTOR Reduction (vph)	0	104	0	0	71	0	0	17	0	0	0	0
Lane Group Flow (vph)	0	377	0	0	145	0	0	464	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		6			2			4				
Permitted Phases	6			2			4					
Actuated Green, G (s)		10.3			10.3			10.1				
Effective Green, g (s)		10.3			10.3			10.1				
Actuated g/C Ratio		0.34			0.34			0.33				
Clearance Time (s)		5.0			5.0			5.0				
Vehicle Extension (s)		3.0			3.0			3.0				100
Lane Grp Cap (vph)		891			866			1154				
v/s Ratio Prot					11 11 11							-
v/s Ratio Perm		c0.14			0.06			0.13				
v/c Ratio		0.42			0.17			0.40				
Uniform Delay, d1		7.8			7.0			7.8				
Progression Factor		1.00			1.00			1.00				
Incremental Delay, d2		0.3			0.1			0.2				
Delay (s)		8.1			7.1			8.1				
Level of Service		Α			А			Α				
Approach Delay (s)		8.1			7.1			8.1			0.0	
Approach LOS		А			Α			Α			Α	
Intersection Summary	198	FE.	H, Y,	35,0	14.31	YE JUNE	S. W. J.	3 12 3		HUL S	18 S.	14 11/2
HCM 2000 Control Delay			7.9	H	ICM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.41									
Actuated Cycle Length (s)			30.4	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization	1		45.5%		CU Level				Α			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	→	7	1	+	4	4	1	~	-	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	6	47	22	17	172	20	13	45	13	8	33	56
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Hourly flow rate (vph)	8	59	28	22	218	25	16	57	16	10	42	71
Direction, Lane#	EB 1	WB 1	NB 1	SB 1	- X X 0	4			100	77.1		
Volume Total (vph)	95	265	90	123								
Volume Left (vph)	8	22	16	10								
Volume Right (vph)	28	25	16	71								
Hadj (s)	-0.13	-0.01	-0.04	-0.30								
Departure Headway (s)	4.6	4.5	4.9	4.6								
Degree Utilization, x	0.12	0.33	0.12	0.16								
Capacity (veh/h)	722	755	678	721								
Control Delay (s)	8.3	9.8	8.5	8.4								
Approach Delay (s)	8.3	9.8	8.5	8.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary	ik ka ik	Mrs.		do					i iv	West.	The It	111.5
Delay			9.0									
Level of Service			A									
Intersection Capacity Utilization	on		28.3%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	1	←	4	4	Ť	1	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	14	156	16	24	133	10	32	32	23	27	85	30
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	15	166	17	26	141	11	34	34	24	29	90	32
Direction, Lane #	EB1	WB 1	NB 1	SB 1	100	100		J 70	8,40	1-57	4 17 ×	A-16
Volume Total (vph)	198	178	93	151								
Volume Left (vph)	15	26	34	29								
Volume Right (vph)	17	11	24	32								
Hadj (s)	0.00	0.03	-0.05	-0.05								
Departure Headway (s)	4.8	4.8	5.0	4.9								
Degree Utilization, x	0.26	0.24	0.13	0.21								
Capacity (veh/h)	709	702	657	676								
Control Delay (s)	9.4	9.3	8.7	9.2								
Approach Delay (s)	9.4	9.3	8.7	9.2								
Approach LOS	Α	Α	Α	A								24.0
Intersection Summary		العال	Photo:		<u> 1</u> 1 5	Times a			L LEYS	, July 1	11/3	4 W.A.
Delay			9.2									
Level of Service			Α									
Intersection Capacity Utiliza	ation		30.0%	10	CU Level	of Service			Α			
Analysis Period (min)			15									

	٠	→	*	•	←	4	1	1	~	>	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	11	25	16	13	38	27	26	57	28	38	56	24
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	13	30	20	16	46	33	32	70	34	46	68	29
Direction, Lane #	EB 1	WB1	NB 1	SB 1			at, Ho			2015		
Volume Total (vph)	63	95	135	144								
Volume Left (vph)	13	16	32	46								
Volume Right (vph)	20	33	34	29								
Hadj (s)	-0.11	-0.14	-0.07	-0.02								
Departure Headway (s)	4.5	4.5	4.4	4.4								
Degree Utilization, x	0.08	0.12	0.16	0.18								
Capacity (veh/h)	730	746	786	776								
Control Delay (s)	7.9	8.1	8.2	8.3								
Approach Delay (s)	7.9	8.1	8.2	8.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary	40.0	AT A	11.45.83	Siry I				Y 1	631			
Delay			8.2									
Level of Service			Α									
Intersection Capacity Utiliza	ation		22.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	→	7	1	4-	4	4	†	7	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	14	25	13	9	50	19	29	48	22	29	113	29
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	15	27	14	10	53	20	31	51	23	31	120	31
Direction, Lane #	EB 1	WB 1	NB 1	SB 1		W. F.		, illy	INE	0.00		n File
Volume Total (vph)	55	83	105	182								
Volume Left (vph)	15	10	31	31								
Volume Right (vph)	14	20	23	31								
Hadj (s)	-0.06	-0.09	-0.04	-0.03								
Departure Headway (s)	4.6	4.5	4.4	4.3								
Degree Utilization, x	0.07	0.10	0.13	0.22								
Capacity (veh/h)	723	736	782	796								
Control Delay (s)	7.9	8.1	8.0	8.5								
Approach Delay (s)	7.9	8.1	8.0	8.5								
Approach LOS	Α	Α	Α	Α								
Intersection Summary	e ball	in in	والتجا	e, sthe	No.	414	1911		W.	VY 37	Alte.	A PA
Delay			8.2									
Level of Service			Α									
Intersection Capacity Utiliza	tion		22.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
1 2 41 2 50												

	1	4	1	~	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	A		1 13			414
Volume (veh/h)	38	96	316	25	33	50
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	40	100	329	26	34	52
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						623
pX, platoon unblocked						
vC, conflicting volume	437	178			355	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	437	178			355	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)	0.0	0.0				
tF (s)	3.5	3.3			2.2	
p0 queue free %	93	88			97	
cM capacity (veh/h)	532	835			1200	
			110.0	00.4		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	140	219	136	52	35	
Volume Left	40	0	0	34	0	
Volume Right	100	0	26	0	0	
cSH	719	1700	1700	1200	1700	
Volume to Capacity	0.19	0.13	0.08	0.03	0.02	
Queue Length 95th (ft)	18	0	0	2	0	
Control Delay (s)	11.2	0.0	0.0	5.5	0.0	
Lane LOS	В			Α		
Approach Delay (s)	11.2	0.0		3.3		
Approach LOS	В					
Intersection Summary	O 1511 151	10 X 11		o films	- Ju	(F11.0)
Average Delay			3.2			
Intersection Capacity Utiliza	ation		30.9%	IC	U Level	of Service
Analysis Period (min)			15			
			W. B			

Peak Hour Factor 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98		1	4	†	~	\	Ţ
Lane Configurations	Movement	WBL	WBR	NBT	NBR	SBL	SBT
Volume (veh/h)							
Sign Control Stop Grade Free Own			82		36	68	
Grade 0% 0% 0% 0% 0% 0% 0% 0% 098 0.98 0.98 0.98 0.98 0.98 0.98 0.98				Free			Free
Hourly flow rate (vph) 49 84 296 37 69 198 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 552 166 333 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, single (s) 6.8 6.9 4.1 CC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 89 90 94 cM capacity (veh/h) 437 849 1223 Direction, Lane # WB1 NB1 NB2 SB1 SB2 Volume Total 133 197 135 135 132 Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 CSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B Intersection Summary Average Delay Intersection Capacity Utilization Intersection Capacity Uti	Grade			0%			0%
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 8 tF (s) p0 queue free % p0 queue	Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 8 tC, single (s) tC, 2 stage (s) tF (s) pO queue free % pO queue free	Hourly flow rate (vph)	49	84	296	37	69	198
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) tF (s)	Pedestrians						
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) tF (s)	Lane Width (ft)						
Percent Blockage Right turn flare (veh) Median type							
Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol tC, 2 stage (s) tF (s) p0 queue free % p1 queue free % p2 queue free % p1 queue free % p2 queue free % p3 queue free % p2 queue fre							
Median type None None Median storage veh) Upstream signal (ft) 547 pX, platoon unblocked vC, conflicting volume 552 166 333 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) 4.1 tC, 2 stage (s) tC, 2 stage (s) 6.8 6.9 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 89 90 94 condition to the point of the part of the pa							
Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, single (s) tC, 2 stage (s) tF (s) p0 queue free % p1 queue free % p0 queue free % p0 queue free % p0 queue free % p1 queue free % p2 queue free % p1 queue free % p2 queue free % p2 queue free % p3 queue free % p4 queue free free free free free free free	Median type			None			None
Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, single (s) tC, 2 stage (s) tF (s) p0 queue free % p1 queue free % p0 queue free % p0 queue free % p0 queue free % p1 queue free % p2 queue free % p1 queue free % p2 queue free % p1 queue free % p2 queue							
pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol vC3, stage 2 conf vol vC4, unblocked vol vC5, stage (s) tC, single (s) tC, 2 stage (s) tF (s)							547
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 552 166 333 tC, single (s) 6.8 6.9 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 89 90 94 cM capacity (veh/h) 437 849 1223 tCM capacity (veh/h) 133 197 135 135 132 tCM capacity 49 0 0 69 0 tCM capacity 49 0 0 69 0 tCM capacity 60 0 0 69 0 tCM capacity 60 0 0 69 0 tCM capacity 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 552 166 333 tC, single (s) 6.8 6.9 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 89 90 94 cM capacity (veh/h) 437 849 1223 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 133 197 135 135 132 Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay Intersection Capacity Utilization 34.2% ICU Level of Service		552	166			333	
vC2, stage 2 conf vol vCu, unblocked vol 552 166 333 tC, single (s) 6.8 6.9 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 89 90 94 cM capacity (veh/h) 437 849 1223 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 133 197 135 135 132 Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay Intersection Capacity Utilization 34.2% ICU Level of Service							
VCU, unblocked vol 552 166 333 tC, single (s) 6.8 6.9 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 89 90 94 cM capacity (veh/h) 437 849 1223 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 133 197 135 135 132 Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay Intersection Capacity Utilization 34.2% ICU Level of Service							
tC, single (s) 6.8 6.9 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 89 90 94 cM capacity (veh/h) 437 849 1223 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 133 197 135 135 132 Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay Intersection Capacity Utilization 34.2% ICU Level of Service		552	166			333	
tC, 2 stage (s) tF (s)							
tF (s) 3.5 3.3 2.2 p0 queue free % 89 90 94 cM capacity (veh/h) 437 849 1223 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 133 197 135 135 132 Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay Intersection Capacity Utilization 34.2% ICU Level of Service		3.0					
p0 queue free % 89 90 94 cM capacity (veh/h) 437 849 1223 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 133 197 135 135 132 Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay Intersection Capacity Utilization 34.2% ICU Level of Service		3.5	3.3			2.2	
Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2							
Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 133 197 135 135 132 Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B A Intersection Summary 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service							
Volume Total 133 197 135 135 132 Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B A Intersection Summary 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service					-		
Volume Left 49 0 0 69 0 Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B A Intersection Summary 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service							
Volume Right 84 0 37 0 0 cSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B 3.0 Intersection Summary 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service							
CSH 630 1700 1700 1223 1700 Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service							
Volume to Capacity 0.21 0.12 0.08 0.06 0.08 Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service							
Queue Length 95th (ft) 20 0 0 5 0 Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service							
Control Delay (s) 12.2 0.0 0.0 4.4 0.0 Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service							
Lane LOS B A Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service							
Approach Delay (s) 12.2 0.0 2.2 Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service	Control Delay (s)	12.2	0.0	0.0	4.4	0.0	
Approach LOS B Intersection Summary Average Delay 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service	Lane LOS						
Intersection Summary Average Delay Intersection Capacity Utilization 3.0 34.2% ICU Level of Service	Approach Delay (s)	12.2	0.0		2.2		
Average Delay 3.0 Intersection Capacity Utilization 34.2% ICU Level of Service	Approach LOS	В					
Intersection Capacity Utilization 34.2% ICU Level of Service	Intersection Summary		100	211-222	15-41	12.50	
Intersection Capacity Utilization 34.2% ICU Level of Service	Average Delay			3.0			
		ation		34.2%	IC	U Level	of Service
,							

APPENDIX F

CAPACITY ANALYSIS CALCULATIONS PROJECTED YEAR 2016 PEAK PERIOD TRAFFIC ANALYSIS WITH PROJECT WITH ALTERNATE LAYOUT

	۶	→	*	1	—	4	1	†	~	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			414			€ि				
Volume (vph)	83	71	63	56	107	119	48	265	20	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0				
Lane Util. Factor		0.95			0.95			0.95				
Frt		0.96			0.94			0.99				
Fit Protected		0.98			0.99			0.99				
Satd. Flow (prot)		3322			3283			3482				
FIt Permitted		0.75			0.84			0.99				
Satd. Flow (perm)		2545			2788			3482	100	4	5.6	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	91	78	69	62	118	131	53	291	22	0	0	0
RTOR Reduction (vph)	0	49	0	0	93	0	0	9	0	0	0	0
Lane Group Flow (vph)	0	189	0	0	218	0	0	357	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		6			2			4				
Permitted Phases	6			2			4					
Actuated Green, G (s)		7.4			7.4			8.1				
Effective Green, g (s)		7.4			7.4			8.1				
Actuated g/C Ratio		0.29			0.29			0.32				
Clearance Time (s)		5.0			5.0			5.0				
Vehicle Extension (s)		3.0			3.0		11 11 11 11	3.0			100	400
Lane Grp Cap (vph)		738			809			1106				
v/s Ratio Prot												
v/s Ratio Perm		0.07			c0.08			0.10				
v/c Ratio		0.26			0.27			0.32				
Uniform Delay, d1		6.9			7.0			6.6				
Progression Factor		1.00			1.00			1.00				
Incremental Delay, d2		0.2			0.2			0.2				
Delay (s)		7.1			7.1			6.8				
Level of Service		Α			Α			Α				
Approach Delay (s)		7.1			7.1			6.8			0.0	
Approach LOS		Α			Α			Α			Α	
Intersection Summary	100	W 153	, 27 U.S.	E PIN	AS IN A	WITS.	A.T.E		10.5	100	1384	AC TO
HCM 2000 Control Delay			7.0	Н	ICM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.30									
Actuated Cycle Length (s)			25.5	S	um of los	t time (s)			10.0			
Intersection Capacity Utilizati	ion		36.7%			of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	1	—	•	4	1	~	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			413			र्नी				
Volume (vph)	162	162	138	50	62	117	21	378	58	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0				
Lane Util. Factor		0.95			0.95			0.95				
Frt		0.96			0.92			0.98				
FIt Protected		0.98			0.99			1.00				
Satd. Flow (prot)		3322			3233			3464				
Flt Permitted		0.77			0.79			1.00				
Satd. Flow (perm)		2618			2591			3464		A. 01	البروا	2 W
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	169	169	144	52	65	122	22	394	60	0	0	0
RTOR Reduction (vph)	0	94	0	0	80	0	0	21	0	0	0	0
Lane Group Flow (vph)	0	388	0	0	159	0	0	455	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		6			2			4				
Permitted Phases	6			2			4					
Actuated Green, G (s)		10.5			10.5			10.1				
Effective Green, g (s)		10.5			10.5			10.1				
Actuated g/C Ratio		0.34			0.34			0.33				
Clearance Time (s)		5.0			5.0			5.0				
Vehicle Extension (s)		3.0			3.0			3.0				TO LO
Lane Grp Cap (vph)		898			889			1143				
v/s Ratio Prot												
v/s Ratio Perm		c0.15			0.06			0.13				
v/c Ratio		0.43			0.18			0.40				
Uniform Delay, d1		7.8			7.0			7.9				
Progression Factor		1.00			1.00			1.00				
Incremental Delay, d2		0.3			0.1			0.2				
Delay (s)		8.1			7.1			8.1				
Level of Service		Α			Α			Α				
Approach Delay (s)		8.1			7.1			8.1			0.0	
Approach LOS		Α			Α			Α			Α	
Intersection Summary	7 4.4	y XXVII. II	12.17			44.4	MILE			18	21/4/11	التحد
HCM 2000 Control Delay			7.9	F	ICM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacit	ty ratio		0.42									
Actuated Cycle Length (s)			30.6	S	Sum of los	t time (s)			10.0			
Intersection Capacity Utilization	on		45.9%		CU Level				Α			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	7	1	+	•	4	†	<i>></i>	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	6	47	25	17	172	20	19	45	13	8	31	58
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Hourly flow rate (vph)	8	59	32	22	218	25	24	57	16	10	39	73
Direction, Lane #	EB 1	WB1	NB 1	SB 1	350	7 1			12		tire si	****
Volume Total (vph)	99	265	97	123								
Volume Left (vph)	8	22	24	10								
Volume Right (vph)	32	25	16	73								
Hadj (s)	-0.14	-0.01	-0.02	-0.31								
Departure Headway (s)	4.6	4.6	4.9	4.6								
Degree Utilization, x	0.13	0.33	0.13	0.16								
Capacity (veh/h)	720	750	673	718								
Control Delay (s)	8.3	9.8	8.7	8.4								
Approach Delay (s)	8.3	9.8	8.7	8.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary		No.	11/2			WEST.	100	14.	4 4	10.	, i ak	N
Delay			9.1									200
Level of Service			Α									
Intersection Capacity Utiliza	ation		30.4%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
The state of the s												

	٠	→	•	1	+	4	1	Ť	~	1	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	14	156	20	24	133	10	40	32	23	27	82	33
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	15	166	21	26	141	11	43	34	24	29	87	35
Direction, Lane #	EB1	WB1	NB 1	SB 1	1 15	100		V III e	177	82.1	NV.	TO NE
Volume Total (vph)	202	178	101	151								
Volume Left (vph)	15	26	43	29								
Volume Right (vph)	21	11	24	35								
Hadj (s)	-0.01	0.03	-0.03	-0.07								
Departure Headway (s)	4.8	4.8	5.0	4.9								
Degree Utilization, x	0.27	0.24	0.14	0.21								
Capacity (veh/h)	706	696	653	671								
Control Delay (s)	9.5	9.4	8.9	9.2								100
Approach Delay (s)	9.5	9.4	8.9	9.2								
Approach LOS	Α	Α	Α	Α								
Intersection Summary	Value of		1	j mi	W. Z. E		101	1100			M -	
Delay			9.3									
Level of Service			Α									
Intersection Capacity Utiliza	ation		31.7%	IC	U Level	of Service	15 1		Α			
Analysis Period (min)			15									

	۶	-	*	1	+	•	1	1	~	\	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	11	25	13	13	38	27	20	63	28	38	59	22
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	13	30	16	16	46	33	24	77	34	46	72	27
Direction, Lane #	EB 1	WB1	NB 1	SB 1	H w	71.7	ned to	of the Pi	10.75	8 "5 i "	15116	
Volume Total (vph)	60	95	135	145								
Volume Left (vph)	13	16	24	46								
Volume Right (vph)	16	33	34	27								
Hadj (s)	-0.08	-0.14	-0.08	-0.01								
Departure Headway (s)	4.6	4.5	4.3	4.4								
Degree Utilization, x	0.08	0.12	0.16	0.18								
Capacity (veh/h)	725	746	789	776								
Control Delay (s)	8.0	8.1	8.2	8.4								
Approach Delay (s)	8.0	8.1	8.2	8.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary	No.	Taylor		in Tub		1 , 1		FR	115,5			
Delay			8.2									
Level of Service			Α									
Intersection Capacity Utilizat	tion		23.2%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	٨	-	7	1	4	1	1	Ť	1	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	14	25	10	9	50	19	21	56	22	29	117	26
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	15	27	11	10	53	20	22	60	23	31	124	28
Direction, Lane #	EB 1	WB 1	NB 1	SB 1	13	N. Year			201	y " A		HX.
Volume Total (vph)	52	83	105	183								
Volume Left (vph)	15	10	22	31								
Volume Right (vph)	11	20	23	28								
Hadj (s)	-0.03	-0.09	-0.06	-0.02								
Departure Headway (s)	4.6	4.5	4.4	4.3								
Degree Utilization, x	0.07	0.10	0.13	0.22								
Capacity (veh/h)	718	737	786	796								
Control Delay (s)	8.0	8.1	8.0	8.5								
Approach Delay (s)	8.0	8.1	8.0	8.5								
Approach LOS	Α.	Α	A	Α								, Y
Intersection Summary	West of the second	-1-30	81.5	-4.3	P. P. I.		3700		113 X		ATTE OF	HW.
Delay			8.2									
Level of Service			Α									
Intersection Capacity Utiliza	ation		23.7%	10	U Level	of Service			Α			
Analysis Period (min)			15									

	1	1	†	-	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1			44
Volume (veh/h)	32	84	322	19	23	50
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	33	88	335	20	24	52
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						623
pX, platoon unblocked						
vC, conflicting volume	419	178			355	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	419	178			355	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	94	90			98	
cM capacity (veh/h)	551	835			1200	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	121	224	132	41	35	-11.54
Volume Left	33	0	0	24	0	
Volume Right	88	0	20	0	0	
cSH	731	1700	1700	1200	1700	
Volume to Capacity	0.17	0.13	0.08	0.02	0.02	
Queue Length 95th (ft)	15	0	0	2	0	
Control Delay (s)	10.9	0.0	0.0	4.7	0.0	
Lane LOS	В			Α		
Approach Delay (s)	10.9	0.0		2.6		
Approach LOS	В					
Intersection Summary	in the last	V	- The State of the	Wingston		Alle
Average Delay			2.7			
Intersection Capacity Utiliz	ation		29.8%	IC	U Level	of Service
Analysis Period (min)			15			
THE RESERVE OF						

	1	1	†	1	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		1			414
Volume (veh/h)	40	69	298	28	55	194
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	41	70	304	29	56	198
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			· · · · · · · · · · · · · · · · · · ·			
Upstream signal (ft)						547
pX, platoon unblocked						
vC, conflicting volume	530	166			333	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	530	166			333	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)	0.0	0.0			- 3	
tF (s)	3.5	3.3			2.2	
p0 queue free %	91	92			95	
cM capacity (veh/h)	457	849			1223	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	111	203	130	122	132	
Volume Left	41	0	0	56	0	
Volume Right	70	0	29	0	0	
cSH	646	1700	1700	1223	1700	
Volume to Capacity	0.17	0.12	0.08	0.05	0.08	
Queue Length 95th (ft)	15	0	0	4	0	
Control Delay (s)	11.7	0.0	0.0	3.9	0.0	
Lane LOS	В			Α		
Approach Delay (s)	11.7	0.0		1.9		
Approach LOS	В					
Intersection Summary	e lecton	Cell I	110	N. C.		23 W
Average Delay			2.6			
Intersection Capacity Utiliza	ation		32.5%	IC	U Level	of Service
Analysis Period (min)			15			