Draft

Archaeological Data Recovery Plan for
SIHP # 50-80-14-7580,
Kamehameha Schools Kakaʻako Block I,
Honolulu Ahupuaʻa, Honolulu (Kona) District, Oʻahu,
TMKs: [1] 2-1-056:002, 007, and 008

Prepared for
Kamehameha Schools

Prepared by
Jon Tulchin, B.A.
and
Hallett H. Hammatt, Ph.D.

Cultural Surveys Hawaiʻi, Inc.
Kailua, Hawaiʻi
(Job Code: KAKAAKO 132)

August 2014

Oʻahu Office
P.O. Box 1114
Kailua, Hawaiʻi 96734
Ph.: (808) 262-9972
Fax: (808) 262-4950

Maui Office
1860 Main St.
Wailuku, Hawaiʻi 96793
Ph: (808) 242-9882
Fax: (808) 244-1994

www.culturalsurveys.com
Management Summary

<table>
<thead>
<tr>
<th>Reference</th>
<th>Archaeological Data Recovery Plan for SIHP # 50-80-14-7580, Kamehameha Schools Kaka‘ako Block I, Honolulu Ahupu‘a, Honolulu (Kona) District, O‘ahu, TMKs: [1] 2-1-056:002, 007, and 008 (Tulchin and Hammatt 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>August 2014</td>
</tr>
<tr>
<td>Project Number (s)</td>
<td>Cultural Surveys Hawai‘i Inc. (CSH) Job Code: KAKAAKO 132</td>
</tr>
<tr>
<td>Investigation Permit Number</td>
<td>CSH presently operates under Hawai‘i State Historic Preservation Division/Department of Land and Natural Resources (SHPD/DLNR) permit No. 14-04, issued per Hawai‘i Administrative Rules (HAR) Chapter 13-282.</td>
</tr>
<tr>
<td>Agencies</td>
<td>State of Hawai‘i Department of Land and Natural Resources / State Historic Preservation Division (DLNR / SHPD)</td>
</tr>
<tr>
<td>Project Location</td>
<td>The project area is in downtown Honolulu in the area known as Kaka‘ako, which is on the southern coastline of O‘ahu. The project area is within the block bounded by Ala Moana Boulevard, Koula and Auahi Streets. The Diamond Head border adjoins the former Bank of Hawaii property on the corner of Ward Avenue and Ala Moana Boulevard.</td>
</tr>
<tr>
<td>Land Jurisdiction</td>
<td>Private, Kamehameha Schools</td>
</tr>
</tbody>
</table>
| Project Description | The Block I project, known as Vida at 888 Ala Moana Boulevard, is a mixed-use joint development between Kobayashi Group and The MacNaughton Group on land presently owned by Kamehameha Schools. The Kobayashi Group and The MacNaughton Group will be responsible for implementation of this Mitigation Plan. Project details include:
- The project will include a 400-foot tall, 38-story mixed-use building consisting of approximately 265 residential units over 20,000 square feet of ground floor commercial space
- Structured parking for cars of above-grade parking on Levels 2, 3 and 4
- Amenity Podium at Level 5
- Landscaping and open spaces occur at the ground floor and Amenity Level
Ground-disturbing construction activities associated with the Project will include (i) the demolition of existing structures, foundation slabs, |
and utility lines, (ii) the construction of new foundations, building footings, and retaining walls, and (iii) the installation of new utility lines (water, electrical, sewer and drainage).

<table>
<thead>
<tr>
<th>Project Acreage</th>
<th>3.4 acres</th>
</tr>
</thead>
</table>

Background to the Plan

CSH conducted an archaeological inventory survey for the proposed project from July 2013 to January 2014. The inventory survey investigation was designed to fulfill the State requirements for archaeological inventory surveys per HAR Chapter 13-276. The project’s archaeological inventory survey report (Tulchin and Hammatt 2014) is currently under review by SHPD. The inventory survey documented six subsurface historic properties in the project area:

- State Inventory Survey of Historic Properties (SIHP) # 50-80-14-7578, an early to mid-twentieth century cultural layer
- SIHP # 50-80-14-7579, an early twentieth century cultural layer
- SIHP # 50-80-14-7580, pre-Contact to post-Contact cultural layer with a historic burial cluster
- SIHP # 50-80-14-7581, a pre-Contact traditional Hawaiian bundle burial
- SIHP # 50-80-14-7582, disarticulated human skeletal remains within a non-burial context
- SIHP # 50-80-14-7583, disarticulated human skeletal remains within a non-burial context

The inventory survey report’s effect recommendation was “affect, with agreed upon mitigation measures.” The recommended mitigation measures included an archaeological monitoring program during project construction, the preparation of a project specific burial treatment plan (a requirement of HAR Chapter 13-300), and the preservation of a portion of SIHP #50-80-14-7580 (a subsurface cultural layer).

<table>
<thead>
<tr>
<th>Historic Properties Addressed in this Plan</th>
<th>SIHP # 50-80-14-7580, pre-Contact to post-Contact cultural layer with a historic burial cluster</th>
</tr>
</thead>
</table>

Document Purpose and Historic Preservation Regulatory Context

This Data Recovery Plan fulfills the requirements of HAR §13-13-278-3 governing preparation of a data recovery plan. This document is intended to support the proposed project’s historic preservation review under Hawai‘i Revised Statutes (HRS) §6E-42 and HAR §13-13-284, as well as the project’s environmental review under HRS §343. It is also intended to support any project-related historic preservation consultation with stakeholders, such as state and county agencies and interested Native Hawaiian Organizations (NHOs) and community groups.
Data Recovery Plan Summary

The primary focus of the data recovery is to better determine the nature, density, and distribution of SIHP # 50-80-14-7580, through a synthesis of previous archaeological findings and data recovery fieldwork. Collected data will help expand knowledge of traditional and western influenced Hawaiian settlement within marginal coastal areas of southern O‘ahu. The synthesis of previous archaeological findings and data recovery fieldwork will be guided by the following research objectives:

Research Objective 1 - Acculturization: SIHP -7580 consists of a cultural layer associated with land use spanning from the pre-Contact (late-1400s) to post-Contact (early-1800s) period. Based on data obtained during the AIS (DRAFT Tulchin et al. 2014b) it appears that settlement associated with SIHP -7580 was less intensive and involved individuals of lesser social position compared with sites documented to the north along the Honolulu waterfront [ex. SIHP -5496 (Lebo and McGuirt 2000) and SIHP -4875 (Goodwin and Allen 2005)]. What are the differences of cultural assimilation between groups of varying status? Is the rate of acculturization the same? Are there certain aspects of western culture that were universally adopted, such as religious practices (ex. Extended burial vs flexed), and others that reflected social stratification, such as acquisition imported building materials? Are western introduced artifacts/materials utilized differently?

Research Objective 2 - Site formation and chronology: What do the components of the subsurface cultural layer(s) inform about prior land use within the project area? What is the relationship between cultural layer formation and pre-land reclamation geology/topography (i.e., coastal sand dune, tidal flats, and coastal lagoon)? How are the various land forms utilized? Is there spatial patterning where particular types of features occur? Is the discontinuous nature of the cultural layer a function of historic disturbance, selective archaeological investigation, or reflective of discrete zones of cultural use?

NOTE:

Burial treatment associated with SIHP # 50-80-14-7580 Burial Finds 1–8, and the cultural consultation related to burial treatment, are addressed in a project specific burial treatment plan, not in this data recovery plan.

Additionally, the project proponent, Kamehameha Schools, has expressed the desire to preserve in place a portion of the SIHP # 50-80-14-7580 subsurface cultural layer. The proposed preserve area for SIHP # -7580 is approximately 8,071 ft² and includes roughly the southern corner of the project area. This proposed archaeological preserve also encompasses. SIHP # 50-80-14-7580 Burial Finds 1–8.
Table of Contents

Management Summary ... i

Section 1 Introduction .. 1

1.1 Project Background ... 1
1.2 Historic Preservation Regulatory Context ... 1
1.3 Environmental Setting .. 6
1.3.1 Natural Environment ... 6
1.3.2 Built Environment ... 8

Section 2 Background Research ... 10

2.1 Traditional and Historical Background ... 10
2.1.1 Mythological and Traditional Accounts ... 10
2.1.2 Early Post-Contact History and Population Centers .. 13
2.1.3 Mid-Nineteenth Century to Twentieth Century ... 20
2.1.4 Early Twentieth Century to the Present .. 40
2.2 Previous Archaeological Research ... 50
2.2.2 South Street to Cooke Street ... 57
2.2.3 Honolulu High-Capacity Transit Corridor Project (Punchbowl Street to Ward Avenue) 60

Section 3 Archaeological Inventory Survey Results ... 63

3.1 Inventory Survey Summary .. 63
3.2 Historic Property Descriptions ... 69
3.2.1 SIHP # 50-80-14-7580 .. 69

Section 4 Community Consultation ... 88

4.1 Requirement for Consultation ... 88
4.2 Consultation Efforts ... 88
4.2.1 KS Cultural Stakeholders Meeting ... 88

Section 5 Data Recovery Research Objectives and Methods .. 89

5.1 Research Objectives ... 89
5.2 Data Requirements ... 89
5.3 Field Methods ... 90
5.3.1 Proposed Sample ... 90
5.3.2 Mechanically Assisted Excavation ... 90
5.3.3 Controlled Excavation ... 90
5.3.4 Subsurface Feature Documentation ... 92
5.3.5 Field Screening ... 92
5.3.6 Collection of Radiocarbon Samples ... 92
5.3.7 Collection of Artifacts .. 92
5.3.8 Collection of Faunal Remains ... 93
5.4 Laboratory Methods ... 93
5.4.1 Wood Taxa Identification .. 93
5.4.2 Radiocarbon Analysis ... 93
5.4.3 Artifact Analysis .. 93
5.4.4 EDXRF Analysis .. 93
5.4.5 Faunal Analysis ... 94
5.5 Data Recovery Report Production ... 94
5.6 Burials .. 95
5.7 Disposition of Collections ... 95

Section 6 References Cited ... 96
List of Figures

Figure 1. 1998 Honolulu USGS 7.5-Minute Series Topographic Quadrangle showing the project area location ...2
Figure 2. Tax Map Key (TMK) [1] 2-1-056, showing the project area location (Hawai`i TMK Service 2013) ...3
Figure 3. Aerial photograph showing the project area (source: Google Earth 2013)4
Figure 4. Block I Landscape Plan detailing proposed redevelopment (source: Arquitectonica 2014) ..5
Figure 5. Aerial photograph showing the project area and the location of the proposed SIHP # 7580 cultural layer preserve, and the proposed SIHP #’s 7580, -7581, -7582, and -7583 burial preserve (source: Google Earth 2013) ...7
Figure 6. Soil survey geographic (SSURGO) database overlay (source: Foote et al. 1972)9
Figure 7. 1817 map of South O`ahu by Otto von Kotzebue, showing taro lo`i, fishponds, and salt pans in Honolulu and Waikīkī; note the presence of traditional Hawaiian habitation within and in the vicinity of the project area (map reprinted in Fitzpatrick 1986:48-49). 15
Figure 8. 1855 map of Honolulu by Lt. Joseph de La Passe of the French vessel L`Eurydice; note the project area is indicated within an area of coastal habitation (reprinted in Fitzpatrick 1986:82-83) ..17
Figure 9. Portion of 1834 sketch by anonymous illustrator entitled “Town of Honolulu: Island of Woahoo: Sandwich Islands” (original sketch at Bishop Museum; reprinted in Grant 2000:64-65); project area would be makai of Kawaiaha`o Church, at this time a long grass-thatched structure ...18
Figure 10. 1850 sketch by Paul Emmert (original sketch at Hawaiian Historical Society; reprinted in Grant 2000:5); the project area would be makai of the Kawaiaha`o Church, by this time a stone structure with a steeple ..18
Figure 11. 1887 (ca.) photograph of Honolulu and Waikīkī; Kawaiaha`o Church in left foreground; the cupola on the roof of the Ward’s House on the mauka end of Old Plantation can be seen in the upper left of the photograph; the project area is within the marshlands seen in the right upper background (original photograph at Hawai`i State Archives, Henry L. Chase Collection; reproduced in Stone 1983:84-85)19
Figure 12. Enlarged inset section on 1887 (ca.) photograph (Figure 11 above) showing marshlands and scattered huts along the coast near the project area ...19
Figure 13. 1876 map of Ka`ākaukui and Pu`unui `Ili by C.J. Lyons ..22
Figure 14. 1884 map of Honolulu, Kewalo Section (portion) by Sereno Bishop showing the locations of LCA parcels, fishponds, salt lands, and house lots; note the absence of houses within the project area ..23
Figure 15. 1887 map of Honolulu (portion) by W.A. Wall (copy at Library of Congress, Geography and Map Division), showing project area location ...24
Figure 16. 1838 sketch of “Honolulu Salt Pan, near Kaka`ako” drawn by a French visitor, Auguste Borget (original sketch at Peabody Essex Museum, Salem, Massachusetts; reprinted in Grant 2000:64-65) ...27
Figure 17. 1845 sketch of “Native Church [Kawaiaha`o Church], Oahu, from the Old Salt Pans,” drawn by John B. Dale, from the U.S. Exploring Expedition led by Lt. Charles Wilkes (J.
Welles Henderson Collection, reprinted in Forbes 1992:126); the sketch is probably from the salt pans in the Kaʻākaukukui area ... 27

Figure 18. Traditional-type salt evaporation pans in Hanapēpē, Kauaʻi (photograph from Hawaiʻi State Historic Preservation Division). ... 28

Figure 19. 1902 photograph of Kewalo brine basins, showing rectangular, grid-like pans (original photograph at Bishop Museum; reprinted in Scott 1968:579) ... 28

Figure 20. 1881 Hawaiian Government Survey map of Oʻahu, Hawaiian Islands, by R. Covington, showing project parcel in Kaʻākaukukui ʻIli in salt pan (grid) area 30

Figure 21. 1886 photograph of patients’ Oceanside cottages at the Kakaʻako Leper Detention Center (reprinted in Hanley and Bushnell 1980: photograph section) 32

Figure 22. 1886 photograph of the Kapiʻolani Home for Girls within the Kakaʻako Leper Detention Center; Mother Marianne Copeland is the second woman from the right (reprinted in Hanley and Bushnell 1980: photograph section) .. 32

Figure 23. 1887 photograph of the Kakaʻako Saluting Battery and flagstaff (original photograph taken by Karl Kortum and archived at the San Francisco Maritime Museum; reprinted in Scott 1968:176) ... 34

Figure 24. 1901 (ca.) photograph of the Honolulu Iron Works complex; note the empty lots east of the complex; the study parcels would be to the east or right of this complex (original photograph at Bernice Pauahi Bishop Museum; reprinted in Myatt 1991:40-41) 36

Figure 25. 1919 War Department map (Honolulu Quadrangle) showing location of the project area .. 41

Figure 26. 1927 Honolulu USGS quadrangle showing the project area location 43

Figure 27. 1927 aerial photograph of the Waikiki coast (University of Hawaiʻi School of Ocean and Earth Science and Technology [SOEST]) showing the project area location 44

Figure 28. 1952 aerial photograph of the Kakaʻako coast (University of Hawaiʻi School of Ocean and Earth Science and Technology [SOEST]) showing the project area location 45

Figure 29. 1914 Sanborn Fire Insurance Map showing the project area location 46

Figure 30. 1927 Sanborn Fire Insurance Map showing the project area location 47

Figure 31. 1950 Sanborn Fire Insurance Map showing the project area location 48

Figure 32. 1956 Sanborn Fire Insurance Map showing the project area location 49

Figure 33. Previous archaeological studies in the vicinity of the project area 51

Figure 34. Historic properties identified in the vicinity of the project area 52

Figure 35. Historic properties identified within the project area ... 64

Figure 36. Stratigraphic zones present within the project area ... 66

Figure 37. Distribution of SIHP # -7580 throughout the project area 70

Figure 38. Representative photographs of SIHP # -7580, Features (top) and Subfeatures (bottom) 80

Figure 39. SIHP # -7580, Feature K photo collage ... 81

Figure 40. SIHP # -7580, Feature O, plan view photos from TE 40E .. 83

Figure 41. Locations of burial finds within the project area .. 84

Figure 42. Location of SIHP # -7580 Burial Find # s 1–8 .. 85

Figure 43. Aerial photograph showing the project area and the location of the proposed location of data recovery excavations (source: Google Earth 2013) 91
List of Tables

Table 1. Previous Archaeological Work in Kaka’ako Near the Project Area (All Sites Begin with 50-80-14-) ..53
Table 2. Historic Properties Identified within the Project Area ...65
Table 3. SIHP # 50-80-14-7580 Feature Table ..71
Table 4. SIHP # 50-80-14-7580 Subfeature Table ..76
Table 5. SIHP # 50-80-14-7580 Burial Finds ..86
Section 1 Introduction

1.1 Project Background

At the request of the land owner, Kamehameha Schools, Cultural Surveys Hawai‘i, Inc. (CSH) has prepared this archaeological data recovery plan to address treatment of SIHP # 50-80-14-7580, discovered at 800, 900 and 914 Ala Moana Boulevard, Honolulu Ahupua‘a, Honolulu (Kona) District, O‘ahu, TMKs: [1] 2-1-056:002, 007, and 008.

The project area is in downtown Honolulu in the area known as Kaka‘ako, which is on the southern coastline of O‘ahu. The project area is within the block bounded by Ala Moana Boulevard, Koulal and Auahi Streets. The Diamond Head border adjoins the former Bank of Hawaii property on the corner of Ward Avenue and Ala Moana Boulevard. The project area is shown on a U. S. Geological Survey (U.S.G.S.) topographic map (Figure 1), a Hawai‘i Tax Map Key (TMK) (Figure 2), and on an aerial photograph (Figure 3).

The Block I project, known as Vida at 888 Ala Moana Boulevard, is a mixed-use joint development between The MacNaughton Group and Kobayashi Group (MK) on land presently owned by Kamehameha Schools (Figure 4).

Project details include:

- The project will include a 400-foot tall, 38-story mixed-use building consisting of approximately 265 residential units over 20,000 square feet of ground floor commercial space
- Structured parking for cars of above-grade parking on Levels 2, 3 and 4
- Amenity Podium at Level 5
- Landscaping and open spaces occur at the ground floor and Amenity Level

Ground-disturbing construction activities associated with the Project will include (i) the demolition of existing structures, foundation slabs, and utility lines, (ii) the construction of new foundations, building footings, and retaining walls, and (iii) the installation of new utility lines (water, electrical, sewer and drainage).

1.2 Historic Preservation Regulatory Context

As a privately funded venture on private lands, the proposed project is subject to the cultural resource management requirements of State of Hawai‘i historic preservation (Hawaii Revised Statutes [HRS] Chapter 6E-42 and Hawai‘i Administrative Rules [HAR] Chapter 13-284).

CSH conducted an archaeological inventory survey for the proposed project from July 2013 to January 2014. The inventory survey investigation was designed to fulfill the State requirements for archaeological inventory surveys per HAR Chapter 13-276. The project’s archaeological inventory survey report (Tulchin and Hammatt 2014) is currently under review by SHPD. The inventory survey documented six subsurface historic properties in the project area:
Figure 1. 1998 Honolulu USGS 7.5-Minute Series Topographic Quadrangle showing the project area location
Figure 2. Tax Map Key (TMK) [1] 2-1-056, showing the project area location (Hawai‘i TMK Service 2013)
Figure 3. Aerial photograph showing the project area (source: Google Earth 2013)
Figure 4. Block I Landscape Plan detailing proposed redevelopment (source: MK 2014)
• SIHP # 50-80-14-7578, an early to mid-twentieth century cultural layer
• SIHP # 50-80-14-7579, an early twentieth century cultural layer
• SIHP # 50-80-14-7580, pre-Contact to post-Contact cultural layer with a historic burial cluster
• SIHP # 50-80-14-7581, a pre-Contact traditional Hawaiian bundle burial
• SIHP # 50-80-14-7582, disarticulated human skeletal remains within a non-burial context
• SIHP # 50-80-14-7583, disarticulated human skeletal remains within a non-burial context

The inventory survey report’s effect recommendation was “affect, with agreed upon mitigation measures.” The recommended mitigation measures included an archaeological monitoring program during project construction, the preparation of a project specific burial treatment plan (a requirement of HAR Chapter 13-300), and the preservation of a portion of SIHP #50-80-14-7580 (a subsurface cultural layer) (Figure 5).

This Data Recovery Plan fulfills the requirements of HAR §13-13-278-3 governing preparation of a data recovery plan. This document is intended to support the proposed project’s historic preservation review under HRS §6E-42 and HAR §13-13-284, as well as the project’s environmental review under HRS §343. It is also intended to support any project-related historic preservation consultation with stakeholders, such as state and county agencies and interested Native Hawaiian Organizations (NHOs) and community groups.

NOTE: Burial treatment associated with SIHP #50-80-14-7580 Burial Finds 1–8, and the cultural consultation related to burial treatment, are addressed in a project specific burial treatment plan, not in this preservation plan.

1.3 Environmental Setting

1.3.1 Natural Environment

The project area is within a topographic section of O’ahu called the Honolulu Plain, an area generally less than 4.5 m, or 15 ft above sea level (Davis 1989:5). The Honolulu Plain is stratified with late-Pleistocene coral reef substrate overlaid with calcareous marine beach sand or terrigenous sediments, and stream fed alluvial deposits (Armstrong 1983:36). The top soil stratum consists of Fill land, mixed (Fl), “containing areas filled with material dredged from the ocean and hauled from nearby areas” (Foote et al. 1972).

The modern Hawaiian shoreline configuration is primarily the result of 1) rising sea level following the end of the Pleistocene (Macdonald et al. 1983; Stearns 1978), 2) the mid- to late Holocene ca. 1.5-2.0 m high-stand of the sea (see summary in Dye and Athens 2000:18-19), and 3) pre-Contact and post-Contact human landscape modification. At the end of the Pleistocene, between approximately 20,000 and 5-6,000 years ago, water previously locked in glacial ice returned to the world’s oceans, and the sea level rose over 100 m to approximately its current level. In the vicinity of the current project area, rising sea levels flooded the previously dry, earlier Pleistocene reef deposits, which had formed hundreds of thousands of years previously when sea level was comparable to modern levels. When sea levels reached approximately modern levels, the now coastal regions became depositional environments where for tens of thousands of years previously, during the lower sea levels, they had been erosional environments.
Figure 5. Aerial photograph showing the project area and the location of the proposed SIHP # 7580 cultural layer preserve, and the proposed SIHP #’s 7580, 7581, 7582, and 7583 burial preserve (source: Google Earth 2013)
A high stand of the sea for the Hawaiian Islands, ca. 1.5 to 2.0 m above present sea level, has been well documented between 4,500 and 2,000 years ago (Athens and Ward 1991; Fletcher and Jones 1996; Grossman and Fletcher 1998; Grossman et al. 1998; Harney et al. 2000; Stearns 1978). During this high stand, there appears to have been an increase in coral reef production and the production of detrital reef sediments. Littoral environments appear to have been augmented substantially by the deposition of marine sediments. “What this means is that the great shoreline sand berms must have developed around the islands at this time because this was when calcareous sand was being produced and delivered to the shorelines in large quantities” (Dye and Athens 2000:19).

The Honolulu coastline was likely greatly affected by the deposition of marine sediments during this elevated sea level. The subsequent drop in sea level to its present level, ca. 2,000 years ago, most likely created a slightly erosional regime that may have removed sediments deposited during the preceding period of deposition (Dye and Athens 2000:19). However, the net gain in sediments would have been substantial. In 1911, it was estimated that about one-third of the Honolulu Plain was a wetland (Hawaiian Territory Sanitary Commission report in Nakamura 1979:65). Pre-Contact Hawaiians used the lagoonal/estuary environment of the Honolulu plain to construct fishponds. Fishpond walls served as sediment anchors for the accumulation of detrital reef sediments. They also likely affected long shore sedimentary transport, resulting in new littoral deposition and erosion patterns. In the post- Western Contact period, when the fishponds were no longer utilized, they became obvious locations for the deposition of fill. These reclaimed/landfill areas provided valuable new land near the heart of growing urban Honolulu.

The undeveloped natural condition of the vicinity consisted of low-lying marshes, tidal flats, fishponds, and reef areas. Beginning in the late nineteenth century, these low-lying areas were filled in and then developed, which permanently changed the area into its present fully-urbanized character. Foote et al. (1972) show the entire project area as being Fill land, mixed (FL) (Figure 6). The authors provide the following description of this soil series:

Fill land, mixed (FL)—This land type occurs mostly near Pearl Harbor and in Honolulu, adjacent to the ocean. It consists of areas filled with material dredged from the ocean or hauled from nearby areas, garbage, and general material from other sources. [Foote et al. 1972:31]

In this area of the Honolulu District, rainfall averages less than 30 inches per year (Armstrong 1983:62). Northeasterly trade winds prevail throughout the year, although their frequency varies from more than 90% during the summer months to 50% in January; the average annual wind velocity is approximately 10 miles per hour (Wilson Okamoto 1998). Vegetation within the project area is limited to a few ornamental trees in grass parking lot dividers and along the project area margins.

1.3.2 Built Environment

The project area is located within central Honolulu and is surrounded by modern urban development including asphalt paved streets, concrete sidewalks, and utility infrastructure. A majority of the project area consists of asphalt paved parking lots, with several existing buildings, structures and associated infrastructure (see Figure 3).
Figure 6. Soil survey geographic (SSURGO) database overlay (source: Foote et al. 1972)
Section 2 Background Research

2.1 Traditional and Historical Background

2.1.1 Mythological and Traditional Accounts

2.1.1.1 Brief Overview for Kaka‘ako

The current urban district known as Kaka‘ako is significantly larger than the traditional area of the same name, which is described in mid-nineteenth century documents and maps as a small ‘ili (traditional land unit). In addition to Kaka‘ako, the present Kaka‘ako area included lands once known as Ka‘ākaukukui, Kukulu‘e,o, and Kewalo, and even smaller areas—possibly portions of ‘ili—called Kawaiha‘o, Honuakaha, Pu‘unui, Ka‘ala‘a, ‘Āpua, and ‘Auwaiolimu. The current project area is within the ‘ili of Ka‘ākaukukui.

The original location and extent of an area called Kaka‘ako was, based on maps and ethnographic information, close to present day South Street. The ethnographer Henry Kekahuna (1958:4), who was born in Hawai‘i in 1891 and was a long-time resident of Honolulu, placed it “on the Ewa side of Kuloloia Stream where the Honolulu Iron Works and Fort Armstrong are now,” an area now covered by One Waterfront Plaza.

2.1.1.2 Place Names

Place name translations presented without attribution in this subsection are from Place Names of Hawaii (Pukui et al. 1974). The researchers for this book based their interpretations not only on literal (phonetic) translations of the words, but also on oral traditions and historic documents. In this work, the place names of geographic features and ahupua‘a names are translated; however, ‘ili names (small land divisions within ahupua‘a) are not usually presented.

Thomas Thrum also published a short paper on place names in the 1922 edition of Lorrin Andrews’ A Dictionary of the Hawaiian Language (2003), based only on the phonetic translations of the place names. This work does have a large number of translated ‘ili names. Because there are no oral or written documents to confirm Thrum’s interpretations, Mary Pukui (Pukui et al. 1974:136) cautioned that Thrum’s translations were sometimes “unreliable.” Thrum’s translations will be presented here since it is our only source for many ‘ili names, but Pukui’s cautionary note for these interpretations should be kept in mind.

Pukui et al. (1974) do not give a meaning for the place name Kaka‘ako, but the Hawaiian word kākā‘ako can be translated as “dull, slow” (Pukui and Elbert 1986:110). Thrum (1923:639) translated the word as “prepare the thatching” (kākā = to chop, beat, or thresh; ako = thatch). If Thrum’s translation is correct, it could be related to the fact that salt marshes, such as areas like Kaka‘ako, were excellent places to gather tall pili grass, which Hawaiians traditionally used to thatch their houses.

According to Kekahuna (1958:4), Ka‘ākaukukui was “a beautiful sand beach that formerly extended along Ala Moana Park to Kewalo Basin, aquarter mile long reef extended along the shore.” Pukui et al. (1974) describe Ka‘ākaukukui as a [f]illed-in reef. The name means “the right (or north) light,” and it may have referred to a maritime navigation landmark. Thrum (1923:635) translates it as “radiating place for lamp.” In the early twentieth century, it was translated as “to the right of the
lighthouse” by the squatters who lived in the area (Gessler 1938:187). This would have been an accurate description of the area at that time as Ka‘ākaukukui was east, or “to the right,” of the Honolulu Lighthouse in the harbor. However, this is probably a historic, not an ancient, interpretation as the Honolulu Lighthouse was not built until 1869 (Dean 1991:7).

Kukuluāe‘o, translates literally as the “Hawaiian stilt (bird),” Himantopus himantopus, and from the word kukuluāe‘o, which means “to walk on stilts.” Pukui et al. (1974) described the area as “formerly fronting Ke-walo Basin” and “containing marshes, salt ponds, and small fishponds,” an environment well suited for this type of bird (Griffin et al. 1987:36). Kekahuna (1958:4) described it as “the land on the upland side of Ka‘ākaukukui. Salt was formerly made there.”

Kewalo literally means “the calling (as an echo).” Land Commission and other historic-era documents identify it as the area between Cooke and Sheridan streets, mauka of Queen Street and the coastal sections of Ka‘ākaukukui, Kukuluāe‘o, and Kālia. According to Pukui et al. (1974:109), “outcasts (kauwā) intended for sacrifice were drowned here” (see mo‘olelo below). Kekeahuna (1958) said that at one time it also had a sand beach as a part of the area where various sports such as surfing were held.

2.1.1.3 Mo‘olelo Associated with Place Names

The present study area is generally located in a region known as Ka‘ākaukukui. It is makai (seaward) of Kewalo on early historic maps and west of the land called Kukuluāe‘o. The names Ka‘ākaukukui and Kukuluāe‘o do not appear in any citations in Hawaiian Island Legends Index or in the index to Fornander’s Collection of Hawaiian Antiquities and Folklore. There are a few mentions of the place names Kewalo and Kaka‘ako in various legends and traditions. Kaka‘ako and Kukuluāe‘o are mentioned in some post-contact Chants.

From these legendary accounts it can be seen that Ka‘ākaukukui, Kukuluāe‘o, and Kewalo were traditionally noted for their fishponds and salt pans, for the marsh lands where pili grass and other plants could be collected, for ceremonial sites such as Pu‘ukea Heiau, Kewalo Spring, and Kawailumalumai Pond at which sacrifices were made, and for their trails that allowed transport between the more populated areas of Waikīkī and Honolulu. Important chiefs were born in the area and conducted religious rites, and commoners traveled to the area to procure food and other resources; some commoners probably also lived in the area, possibly adjacent to the ponds and the trails.

Kaka‘ako is mentioned in Thrum’s version of the legend of Kū‘ula, the god presiding over the fish, and his son ‘Ai‘ai, who was the first to teach the Hawaiians how to make various fishing lines and nets, the first to set up a ko‘a kū‘ula, a rock shrine on which the fishermen would place their first catch as an offering to Kū‘ula, and the first to set up ko‘a ia, fishing stations where certain fish were known to gather. Leaving his birthplace in Maui, ‘Ai‘ai traveled around the islands, establishing ko‘a kū‘ula and ko‘a ia. On O‘ahu, he landed first at Makapu‘u in Ko‘olinaupoko, then traveled clockwise around the island.

Aiai came to Kalia [Waikīkī] and so on to Kakaako. Here he was befriended by a man named Apua, with whom he remained several days, observing and listening to the murmurs of the chief named Kou. This chief was a skillful haiku [Katsuwonus pelamis; bonito] fisherman, his grounds being outside of Mamala
until you came to Moanalua. There was none so skilled as he, and generous withal, giving akus to the people throughout the district. [Thrum 1998:242]

Ka‘ākaukukui is briefly mentioned in the legend of Hi‘iaka, beloved sister of the Hawaiian volcano goddess, Pele. Hi‘iaka and her companions had been traveling around O‘ahu on the land trails, but decided to travel from Pu‘uloa (on Pearl Harbor in ‘Ewa) to Waikīkī by canoe. At Pu‘uloa, Hi‘iaka met a party who were planning on traveling to the house of the chiefess Pele‘ula in Waikīkī. Hi‘iaka recited a chant, telling the people that although they were going by land and she was going by sea they would meet again in Kou (ancient name of Honolulu). One portion of the chant mentions the place Ka‘ākaukukui, with reference to a pool, possibly a reference to the salt ponds of the area:

\[
\begin{align*}
A pehea lā āu, e Honoka‘upu, ku‘u aloha & \quad \text{And what of me, O Honoka‘upu, my love} \\
I ka weleleau nalu kai o Uhi, o ‘Ōa & \quad \text{Upon the crest of the surf at Uhi and ‘Oā} \\
‘O nā makai ke ao (pō) o poina & \quad \text{Eyes in the living realm (night) of oblivion} \\
Ma hea lā wau, e ke aloha lā & \quad \text{Where am I, O my love} \\
‘O Kou ka papa & \quad \text{Kou is the coral flat} \\
\end{align*}
\]

\[
\begin{align*}
‘O Kaʻākaukukui ka loko & \quad \text{Ka‘ākaukukui is the pool} \\
‘O ka ‘alamihi a‘e nō & \quad \text{Some ‘alamihi indeed} \\
‘O ka lā a pō iho & \quad \text{Wait all day until night} \\
Huī aku i Kou nā maka. & \quad \text{Friends shall meet in Kou.} \\
\end{align*}
\]

[Ho‘oulumāhiehie 2006a:297; Ho‘oulumāhiehie 2006b:277]

The exact meaning of the word ‘alamihi within this chant is unknown. ‘Alamihi is the name of a native Hawaiian small black crab (Metopograpsus thukuhar), a scavenger often associated in Hawaiian sayings with corpse-eating (Pukui and Elbert 1986:18). Alamihi is also used as a place name that can mean “path [of] regret” (Pukui et al. 1974:9).

2.1.1.4 Trails

John Papa ‘Ī‘ī addresses some of the place names mentioned previously while discussing early nineteenth century trails in the Honolulu/Waikīkī area. Because this area was characterized by ponds, marshlands, and lo‘i, any trails near the coastline must have run on a sand berm raised above surrounding wetlands and coral flats. Regarding the middle trail (probably close to the current alignment of Queen Street), walking from Waikīkī to Honolulu, ‘Ī‘ī stated,

The trail from Kalia led to Kukuluaeo, then along the graves of those who died in the smallpox epidemic of 1853, and into the center of the coconut grove of Honuakaha. On the upper side of the trail was the place of Kinau, the father of Kekauonohi. [‘Ī‘ī 1959:89]

The grave site referred to is the Honuakaha Cemetery at the makai corner of Halekauwila and South streets, makai of Kawaiaha‘o Church. Honuakaha was a settlement located generally between Punchbowl and South streets, on the makai side of Queen Street. On the lower, coastal trail, walking from Honolulu towards Waikīkī, ‘Ī‘ī stated, “From the makai side of Kaoaopa was a trail to the sea at Kakaako, where stood the homes of the fishermen. Below the trail lived Hehehewa and his fellow kahunas” (‘Ī‘ī 1959:91).
2.1.2 Early Post-Contact History and Population Centers

The ‘ili of Kaʻākaukukui is between two traditional population centers, Kou (Honolulu) and Waikīkī, on the southern shore of O‘ahu. In Waikīkī, a system of irrigated taro lo‘i (irrigated fields) fed by streams descending from Makiki, Mānoa and Pālolo valleys blanketed the plain, and networks of fishponds dotted the shoreline. Similarly, Kou—the area of downtown Honolulu surrounding the harbor—possessed shoreward fishponds and irrigated fields watered by ample streams descending from Nu‘uanu and Pauoa valleys. The pre-Contact population and land use patterns of Kaʻākaukukui may have derived from its relationship to these two densely populated areas; it may have participated in some of the activities associated with them. Thus, the attempt to reconstruct the region—as it existed for Hawaiians during the centuries before Western Contact and the modern urbanization that has reconfigured the landscape—must begin with accounts of Kou and Waikīkī.

Waikīkī is actually the name of a large ahupua‘a (traditional land division) encompassing lands stretching from Honolulu to Maunalua Bay. Within that ahupua‘a, by the time of the arrival of Europeans during the late eighteenth century, the area today known as Waikīkī had long been a center of population and political power on O‘ahu. According to Martha Beckwith (1940:383), by the end of the fourteenth century, Waikīkī had become “the ruling seat of the chiefs of O‘ahu.” The pre-eminence of Waikīkī continued into the eighteenth century and is confirmed by the decision of Kamehameha, in the midst of unifying control of the islands, to reside there after winning control of O‘ahu by defeating the island’s chief, Kalanikūpule.

Chiefly residences were only one element of a complex of features sustaining a large population that characterized Waikīkī up through the pre-Contact period. Beginning in the fifteenth century, a vast system of irrigated taro fields was constructed, extending across the littoral plain from Waikīkī to lower Mānoa and Pālolo valleys. This field system, an impressive feat of engineering design traditionally attributed to the chief Kalamakua, took advantage of streams descending from Makiki, Mānoa, and Pālolo valleys, which also provided ample fresh water for the Hawaiians living in the ahupua‘a. Water was also available from springs in nearby Mō‘ili‘ili and Punahou. Closer to the Waikīkī shoreline, coconut groves and fishponds dotted the landscape. A continuous zone of population and cultivation, from the shoreline of present day Waikīkī Beach, extended north well into Mānoa Valley. The western and eastern bounds of this zone are less clear, and there are no specific references to Waikīkī’s abundance reaching into the Kewalo region (Handy and Handy 1972).

A basic description of Honolulu and Kou, up to western contact, is given by E. S. Craighill and Elizabeth Handy:

What is now Honolulu was originally that flatland area between the lower ends of Nu‘uanu and Pauoa Valleys and the harbor. [W.D.] Westervelt . . . wrote that ‘Honolulu was probably a name given to a very rich district of farm land near what is now . . . the junction of Liliha and School Streets, because its chief was Honolulu, one of the high chiefs at the time of Kakuhihewa’ It is probable that the chief referred to by Westervelt took his name from the harbor and adjoining land. The original name of the land where the town grew when the harbor became a haven for foreign ships was Kou. . . . The number of heiau in
this area indicates that it was a place of first importance before the era of foreign contact. [Handy and Handy 1972:479]

Rev. Hiram Bingham, arriving in 1820, described Honolulu as still a Native “village” on the brink of Western-induced transformations:

We can anchor in the roadstead abreast of Honolulu village, on the south side of the island, about 17 miles from the eastern extremity. . . . Passing through the irregular village of some thousands of inhabitants, whose grass thatched habitations were mostly small and mean, while some were more spacious, we walked about a mile northwardly to the opening of the valley of Pauoa, then turning southeasterly, ascending to the top of Punchbowl Hill, an extinguished crater, whose base bounds the northeast part of the village or town. . . . Below us, on the south and west, spread the plain of Honolulu, having its fishponds and salt making pools along the seashore, the village and fort between us and the harbor, and the valley stretching a few miles north into the interior, which presented its scattered habitations and numerous beds of kalo (arum esculentum) in its various stages of growth, with its large green leaves, beautifully embossed on the silvery water, in which it flourishes. [Bingham 1847:92-93]

The Ka'ākaukukui region would have been in Bingham’s view as he stood atop “Punchbowl Hill” looking toward Waikīkī to the south; it would have comprised part of the area he describes as the “plain of Honolulu” with its “fishponds and salt making pools along the seashore.”

Another visitor to Honolulu in the 1820s, Captain Jacobus Boelen, hints at the possible pre-Contact character of Honolulu and its environs, including the Kewalo area:

It would be difficult to say much about Honoruru. On its southern side is the harbor or the basin of that name (which as a result of variations in pronunciation [sic] is also written as Honolulu, and on some maps, Hoonoonono). The landlocked side in the northwest consists mostly of tarro fields. More to the north there are some sugar plantations and a sugar mill, worked by a team of mules. From the north toward the east, where the beach forms the bight of Whytetee, the soil around the village is less fertile, or at least not greatly cultivated. [Boelen 1988:62]

Boelen’s description implies the Ka‘ākaukukui region and the present project area are within a “not greatly cultivated” region of Honolulu perhaps extending from Pūowaina (Punchbowl Crater) at the north through Kaka‘ako to the Kālia portion of Waikīkī in the east.

An early, somewhat generalized depiction of the pre-Contact Native Hawaiian shaping of Waikīkī, Honolulu, and the Ka‘ākaukukui region is given on an 1817 map (Figure 7) by Otto von Kotzebue, commander of the Russian ship Rurick, who visited O‘ahu the previous year. The map shows taro lo‘i (illustrated by the rectangles representing irrigated fields) massed around the streams descending from Nu‘uanu and Mānoa valleys. The depicted areas of population and habitation concentration (illustrated by the trapezoids) probably reflect an early post-Contact shift of Hawaiians to the area around Honolulu harbor—the only sheltered landing on O‘ahu and the center of increasing trade with visiting foreign vessels. Kamehameha himself had moved from Waikīkī to Honolulu in 1809.
Figure 7. 1817 map of South O‘ahu by Otto von Kotzebue, showing taro lo‘i, fishponds, and salt pans in Honolulu and Waikīkī; note the presence of traditional Hawaiian habitation within and in the vicinity of the project area (map reprinted in Fitzpatrick 1986:48-49)
Kotzebue’s map illustrates that the land between Pūowaina (Punchbowl Crater) and the shoreline—which would include the Kaʻākaukukui area—formed a “break” between the heavily populated and cultivated centers of Honolulu and Waikīkī; the area is only characterized by fishponds, salt ponds, trails connecting Honolulu and Waikīkī, and occasional taro lo‘i and habitation sites. However, habitation sites are depicted within and in the vicinity of the project area (see Figure 7). An 1855 map of Honolulu by Joseph de la Passe, a lieutenant aboard the French vessel *L’Eurydice*, also illustrates sparse coastal habitation within the project area (Figure 8).

A clearer picture of Kaʻākaukukui and the project area develops with accounts dating to the first half of the nineteenth century by other Honolulu visitors and/or settlers. Gorman D. Gilman, who arrived in Honolulu in 1841, recalled in a memoir the limits of Honolulu during the early 1840s:

> The boundaries of the old town may be said to have been, on the makai [seaward] side, the waters of the harbor; on the mauka [inland] side, Beretania street; on the Waikīkī side [i.e., the area just beyond Punchbowl Street], the barren and dusty plain, and on the Ewa [west] side, the Nuuanu Stream. [Gilman 1904:97]

Gilman further described the “barren and dusty plain” beyond (east of) Punchbowl Street:

> The next and last street running parallel [he had been describing the streets running mauka-makai, or from the mountains to the shore] was that known as Punchbowl Street. There was on the entire length of this street, from the makai side to the slopes of Punchbowl, but one residence, the two-story house of Mr. Henry Diamond, mauka of King Street. Beyond the street was the old Kawaiahao church and burying ground. A more forsaken, desolate looking place than the latter can scarcely be imagined. One, to see it in its present attractiveness of fences, trees and shrubbery, can hardly believe its former desolation, when without enclosure, horses and cattle had free access to the whole place. [Gilman 1904:89]

That the environs of the missionary enclave and Kawaiahao Church were indeed “forsaken” and “desolate looking” in the 1820s when the missionaries first settled there is confirmed in the memoirs of the American missionary C.S. Stewart who, arriving on Maui after living at the mission, declared Lahaina to be “like the delights of an Eden” after “four weeks residence on the dreary plain of Honoruru” (Stewart 1970:177). It is likely these descriptions of the Honolulu plain also include the area now known as Kaka’ako. The barrenness of the Kaka’ako area is illustrated in two sketches, one made in 1834 (Figure 9) when Kawaiahao church was still a long grass-thatched building and one made in 1850 (Figure 10) after the grass hut had been replaced by a large coral stone structure with a steeple. Between Kawaiahao Church and the sea are only a few scattered huts along the shore and aligned along the inland trail (now covered by King Street). An 1887 photograph (Figure 11 and Figure 12) of the area also shows the marshy nature of the area, with only scattered houses near the ponds or near the shore makai of Kawaiahao Church.
Figure 8. 1855 map of Honolulu by Lt. Joseph de La Passe of the French vessel L’Eurydice; note the project area is indicated within an area of coastal habitation (reprinted in Fitzpatrick 1986:82-83)
Figure 9. Portion of 1834 sketch by anonymous illustrator entitled “Town of Honolulu: Island of Woahoo: Sandwich Islands” (original sketch at Bishop Museum; reprinted in Grant 2000:64-65); project area would be *makai* of Kawaiahaʻo Church, at this time a long grass-thatched structure

Figure 10. 1850 sketch by Paul Emmert (original sketch at Hawaiian Historical Society; reprinted in Grant 2000:5); the project area would be *makai* of the Kawaiahaʻo Church, by this time a stone structure with a steeple
Figure 11. 1887 (ca.) photograph of Honolulu and Waikīkī; Kawaiahaʻo Church in left foreground; the cupola on the roof of the Ward’s House on the mauka end of Old Plantation can be seen in the upper left of the photograph; the project area is within the marshlands seen in the right upper background (original photograph at Hawaiʻi State Archives, Henry L. Chase Collection; reproduced in Stone 1983:84-85)

Figure 12. Enlarged inset section on 1887 (ca.) photograph (Figure 11 above) showing marshlands and scattered huts along the coast near the project area
2.1.3 Mid-Nineteenth Century to Twentieth Century

2.1.3.1 The Māhele and Land Commission Awards

Among the first descriptions of Kaʻākaukukui by Hawaiians are the testimonies recorded during the 1840s in documents associated with Land Commission Awards (LCA) and awardees of the Māhele—the division of Hawaiian lands—which introduced private property into Hawaiian society. The LCA records indicate the traditional Hawaiian usage of the region and its environs may have been confined to salt making and farming of fishponds, with some wetland agriculture in those areas mauka or toward Waikīkī at the very limits of the field system descending from Makiki and Mānoa valleys. However, the testimonies do indicate the area was occupied and shaped by Hawaiians before the nineteenth century. The LCA records also reveal that midway through the nineteenth century taro cultivation, traditional salt making, and fishpond farming activities continued within the Kaʻākaukukui area. These activities and the land features that supported them would subsequently be eliminated/or buried by urbanization during the remainder of the nineteenth century. The LCA records and historic maps and archival photographs document more precisely traditional Hawaiian settlement and subsequent historic land usage within and around the present project area.

The ‘ili of Kaʻākaukukui (LCA 7713) was awarded to Victoria Kamāmalu, the sister of Kamehameha IV and Kamehameha V. Kaʻākaukukui consisted of three non-contiguous sections, a type of ‘āina (land) called a lele. An early surveyor for the Hawaiian Government Survey office explains about lele in general, and Kaʻākaukukui in particular:

There were two features of the ili, referred to by the terms lele . . . the ili often consisted of several distinct sections of land—one, for instance, on the seashore, another on dry, open land, or kula, another in the regularly terraced and watered kalo patch or aina loi district, and another still in the forest, thus again carrying out the equitable division system which we have seen in the ahupuaa.

These separate pieces were called, lele, i.e., ‘jumps,’ and were most common on Oahu. . . . Kaakaukukui held Fisherman’s Point and the present harbor of Honolulu; then kalo land near the present Kukui street, and also a large tract of forest at the head of Pouoa [Pauoa] Valley. . . .

These different pieces were called variously, either by their own individual name or by that of the whole ili, thus puzzling one sadly when attempting to obtain information with respect to them. [Lyons 1894:1697]

There were no smaller kuleana awards to commoners within this award. The award also included the southern portion of the ‘ili of Puʻunui and a large fishpond (labeled Loko Kaʻākaukukui) surrounded by land in the ‘ili of ‘Auwaiolimu. Loko Kaʻākaukukui was probably a fishpond fed by spring water, but the other ponds in her award, Loko Kaimukana, Loko Kalokoeli, and possibly Loko Kuimeki, were probably salt ponds filled by tidal waters. This land does not seem to have been used in this period for habitation.

There are three LCAs shown on maps on the northwestern border of Kaʻākaukukui. In the Māhele testimony, these awards are listed as within the ‘ili of Kakaʻako.
LCA 4457 to Ana Kaloa was inhabited by her family since the days of Kamehameha I; it had four fishponds, an ‘auwai and a house enclosed by a fence.

LCA 3455 to Kaule for Liliha, a house lot (pahale) bound by the sea and the mouth of a stream (muliwa'i), was inherited from Kamehameha I.

LCA 247, a house lot, was claimed by Charles Kana‘ina for W.C. Lunalilo, who received his land before the Māhele from his mother (mamua loa). Kana‘ina was a friend to Kamehameha II and married his fifth wife Kekauluohi. Their son was Lunalilo, who became the sixth monarch of Hawai‘i.

An 1876 map of the 'ili of Ka‘ākaukukui and Pu‘unui (Figure 13) shows the project area just mauka of the coastline with an area of salt pans to the northwest; there are no kuleana lots to commoners and no habitations. All habitation lots near Ka‘ākaukukui are located in clusters near Queen Street, most in the settlement at Honuakaha, or further inland along King Street, as shown on a 1884 map (Figure 14) and a 1887 map (Figure 15).

2.1.3.2 Kaka‘ako Salt Works and the Salt Pans of Kewalo and Kukuluā‘o

As noted in the Land Commission Award testimony, much of the land in Ka‘ākaukukui and Kukuluā‘o was used to produce salt. The Hawaiians used pa‘akai (salt) for a variety of purposes, to flavor food, to preserve fish by salting, for medicines, and for ceremonial purposes. David Malo described the traditional method of making salt:

O ka paakai kekahi mea e pono ai, he mea e ono ai, ka ia, a me ke koekoe o ka paina ana, he mea hana ia ka paakai, ma kekahi aina, aole i hana a ma kekahi aina, o ke kai makai, e kii aku no ka wahine, a lawe mai ma ke poi, a ke kai hooholo ia mai kekahi ma kauwahi mai.

E waiho kela kai ma kekahi poho paha, he ekaha paha, he kahe ka paha, a liu malaila, alaila lawe ana kauwahi e, a paakai iho la no ia, o ka papa laau ka mea kui poi. [Malo 2006:73]

Translation

Pa‘akai (salt) is another beneficial item. It is used to make fish delicious and tasteless foods edible. Pa‘akai is made at a particular place, [but] it [salt] is not actually made from this spot, rather it [salt water] came from the sea. A woman went to get some when the sea crashed [upon the rocks] and she ran back [the salt water] to this particular spot.

That salt water (kai) is placed in, perhaps, a depression (poho) or a ‘Bird’s nest’ (ēkeha) or rock basin (kāheka) and allowed to evaporate (liu). Then it is taken to another spot and is formed into pa‘akai. Wooden boards (papa lā‘au) are used to pound poi (mashed cooked kalo corms) on. [Malo 2006:95]

In 1903, Nathaniel Emerson translated David Malo’s articles on early Hawaiian life. In his publication, the translations are not literal, but include information that Emerson added to clarify the accounts. In Emerson’s translation,
Figure 13. 1876 map of Kaʻākaukui and Puʻunui ʻIli by C.J. Lyons
Figure 14. 1884 map of Honolulu, Kewalo Section (portion) by Sereno Bishop showing the locations of LCA parcels, fishponds, salt lands, and house lots; note the absence of houses within the project area.
Figure 15. 1887 map of Honolulu (portion) by W.A. Wall (copy at Library of Congress, Geography and Map Division), showing project area location
Salt was one of the necessities and was a condiment used with fish and meat, also as a relish with fresh food. Salt was manufactured in certain places. The women brought sea-water in calabashes, or conducted it in ditches to natural holes, hollows and shallow ponds (*kekaha*) on the sea-coast, where it soon became strong brine from evaporation. Thence it was transferred to another hollow or shallow vat, where crystallization into salt was completed. [Malo 1951:123]

Captain Cook was the first to note the method of making salt in prepared “saltpans.”

Amongst their arts, we must not forget that of making salt, with which we were amply supplied, during our stay at these islands, and which was perfectly good of its kind. Their saltpans are made of earth, lined with clay; being generally six or eight feet square, and about eight inches deep. They are raised upon a bank of stones near the high-water mark, from whence the salt water is conducted to the foot of them, in small trenches, out of which they are filled, and the sun quickly performs the necessary process of evaporation. . . . Besides the quantity we used in salting pork, we filled all our empty casks, amounting to sixteen puncheons, in the Resolution only. [Cook 1784:151]

In the years following the discovery of the Islands by Captain Cook in 1778, British and American fur traders who stopped at Hawai‘i on their way to China often stocked up on food and water and salt which was used to cure the seal and mammal pelts collected from the Northwest Coast. During Kotzebue’s visit in 1816 and 1817, he noted that “Salt and sandalwood were the chief items of export” (in Thrum 1904:50).

The journals of none mention the object of call other than for refreshments, though one, 3 some years later, records the scarcity and high price of salt at the several points touched at, with which to serve them in the curing of furs obtained on the coast. In all probability salt was the first article of export trade of the islands and an object, if not the object, of these pioneer fur-traders’ call. [Thrum 1904:45]

The missionary William Ellis, on a tour of the Hawaiian Islands in 1822 and 1823, also noted salt pans and recorded the final step of crystallization.

The natives of this district (Kawaihae) manufacture large quantities of salt, by evaporating the sea water. We saw a number of their pans, in the disposition of which they display great ingenuity. They have generally one large pond near the sea, into which the water flows by a channel cut through the rocks, or is carried thither by the natives in large calabashes. After remaining there for some time, it is conducted into a number of smaller pans about six or eight inches in depth, which are made with great care, and frequently lined with large evergreen leaves, in order to prevent absorption. Along the narrow banks or partitions between the different pans, we saw a number of large evergreen leaves placed. They were tied up at each end, so as to resemble a narrow dish, and filled with sea water, in which the crystals of salt were abundant. [Ellis 1827:403-404]

In an article on Hawaiian salt works, Thomas Thrum (1924) discussed the large salt works at Ālia Pa‘akai (Salt Lake in Moanalua) and at Pu‘u‘ula on the western loch of Pearl Harbor.
Kamakau (1961:409) reported “The king and Isaac of Pu‘uloa are getting rich by running the salt water into patches and trading salt with other islands.” The salt was sent to Russian settlements in the Pacific Northwest, where it was used to pack salmon (*Hawaiian Gazette*, 29 January 1897). Thrum also mentioned a salt works in Kaka‘ako.

Honolulu had another salt-making section in early days, known as the Kakaako salt works, the property of Kamehameha IV, but leased to and conducted by E.O. Hall, and subsequently E.O. Hall & Son, until comparatively recent years. This enterprise was carried on very much after the ancient method of earth saltpans as described by Cook and Ellis. [Thrum 1924:116]

In the testimony for LCA 1903, Lolopi claimed two ʻālia (salt beds), 15 hoʻoliu (drains), two poho kai (depressions where salt is gathered) and one salt kula (dryland or non-cultivated land). Four separate types of salt features are mentioned, 1) the ponds near the shore that fill with salt water at high tide (ʻālia), 2) the drains (hoʻoliu) where the salt water is transferred to smaller clay-lined or leaf-lined channels, 3) the natural depressions (or modified depressions) in the rocks along the shore where salt formed naturally, and 4) the salt kula, which was waste land, not suitable for agriculture as it was impregnated with salt. Lolopi did not live near his salt lands, but Pahiha, claimant of LCA 1504, did have a house near his fishpond and salt bed. The house was probably a simple grass hut, similar to those shown on an 1838 sketch entitled “Honolulu Salt Pans, Near Kakaako” and the one shown on an 1845 sketch of the “Old Salt Pans” (Figure 16 and Figure 17).

The export of salt declined in the late nineteenth century. Thrum (1924:116) stated that the apex of the trade was in 1870, but by 1883, he noted that “pulu, salt and oil have disappeared entirely” from the list of yearly exports (Thrum 1884:68). By 1916, only one salt works, the Honolulu Salt Company, was still in operation. Salt continued to be manufactured for local use. The Kaka‘ako Salt Works appears on maps as late as 1891 and a page in Victoria Ward’s ledger for 1883 notes a yearly income of $651.50 received from her “Salt Lands” in Kukuluāe‘o (Hustace 2000:50).

In a 1906 article, Rev. Westervelt (1906:43-46) explained the Chinese method of salt evaporation at the Honolulu salt beds. The Chinese worker first used a water pump to draw the seawater from the larger ditch below to the salt-evaporation beds above. The man moved the two handles back and forth to work the pump. The evaporation beds were lined with clay, wet with sea water, and tramped and pounded down. Each pan was about 20 ft sq, covered with about two inches of water, and bound by an earth dyke, so that the area looked like a large grid, as shown in a modern photograph of the salt beds at Hanapēpē, Kauai (Figure 18) and a photograph of the Kewalo salt brine beds (Figure 19). After allowing the sun to evaporate some of the water, the worker stepped into the evaporation pan and scraped the salt into a pile in the center with a simple wooden scraper. He then threw a large basket shaped like a scoop into the brine and used a tin dipper to move the salt to the basket. Two baskets, one on each side of a pole, were then carried on the back of a worker across the thin earth dykes between the salt pans. The baskets were dumped into large drying piles, where the remaining water seeped out into the ground. The salt was then sewn into gunny sacks and sent to the market for sale.
Figure 16. 1838 sketch of “Honolulu Salt Pan, near Kaka‘ako” drawn by a French visitor, Auguste Borget (original sketch at Peabody Essex Museum, Salem, Massachusetts; reprinted in Grant 2000:64-65)

Figure 17. 1845 sketch of “Native Church [Kawaihaʻo Church], Oahu, from the Old Salt Pans,” drawn by John B. Dale, from the U.S. Exploring Expedition led by Lt. Charles Wilkes (J. Welles Henderson Collection, reprinted in Forbes 1992:126); the sketch is probably from the salt pans in the Kaʻākaukukui area
Figure 18. Traditional-type salt evaporation pans in Hanapēpē, Kaua‘i (photograph from Hawai‘i State Historic Preservation Division)

Figure 19. 1902 photograph of Kewalo brine basins, showing rectangular, grid-like pans (original photograph at Bishop Museum; reprinted in Scott 1968:579)
By 1901, most of the fishponds and salt pans makai of the Ward “Old Plantation” area were reported as abandoned. In that year, the Hawaii Legislature (1901:185) proposed to build a ditch to drain away the “foul and filthy water that overflows that district at the present time.”

The district makai of King St. and the Catholic Cemetery, Ewa of Mrs. Ward’s (the Old Plantation), mauka of Clayton St., and Waikiki of the land from King St., leading to the Hoomananaauao Church, consists of six large abandoned fish ponds and a large number of smaller ones, all in filthy condition, fed by springs and flowing into Peck’s ditches. Just makai of these ponds, at the end of Clayton street, next to Mr. Ward’s, is Peck’s place. An artesian well flushing the wash houses flows into two foul ditches, thence to the big pond which is Waikiki of what used to be Cyclomere and next to Mrs. Ward’s line [ditch] extending down to Waimanu St.

The rear portion of Mrs. Ward’s property down to Waimanu St. used to be fish ponds all connecting to the sea by a ditch which is fed by an artesian well. These ponds, with the exception of three, are abandoned. [Hawaii Legislature 1901:185]

2.1.3.3 Kaka’ako’s Role as a Human Quarantine Center and Cemetery Area

During the 1853 smallpox epidemic, patients were isolated at a temporary quarantine camp, a hospital was set up at Kaka’ako (Thrum 1897), and victims of the disease were buried at the Honuakaha Cemetery near the modern junction of Quinn Lane and South Street (Griffin et al. 1987:13; Hammatt and Pfeffer 1993; Pfeffer et al. 1993).

Hansen’s Disease (leprosy) was first reported in 1840, and first definitely identified in 1853. During the next 25 years (1853-1878), there were 160 cases per year (about 4,000) and 80 cases (about 4,000) per year in the following 50 years (1878-1928), steadily decreasing to 60 cases a year in 1931 and 20 cases a year by 1951 (Arnold 1956:317). In 1865, a receiving hospital in Kalihi, west of Honolulu town, was set up to examine suspected lepers. If the diagnosis was confirmed, the patients were forcibly exiled to the Kalaupapa colony on Moloka`i. In cases where it was uncertain if the patient had leprosy or some other type of skin disease, the stay at the hospital could extend into weeks while the doctors waited for definite symptoms of leprosy to develop.

In 1881, a branch hospital and receiving station for cases of Hansen’s Disease was opened in Kaka’ako, in a block now bounded by Ala Moana, Auahi, Coral and Keawe streets, located to the southeast of the current project area (Griffin et al. 1987:55 [see Figure 14]), with 48 patients tended by Dr. George L. Fitch (Hanley and Bushnell 1980:112). This land, at “Fisherman’s Point,” was donated by Princess Ruth Ke‘elikōlani. On an 1881 map of O‘ahu (Figure 20) the project area is indicated to be just makai of the Kaka’ako Salt Works.

One of the main purposes of the Kaka’ako Detention Center was to keep suspected lepers isolated from the general public. Sister Leopoldina, a Franciscan sister, likened the Kaka’ako Hospital in 1885 to a prison, enclosed by

...... a high close board fence and large strong locked gates. . . . A large building [sat] over those gates where the lepers were allowed to talk with their relatives
Figure 20. 1881 Hawaiian Government Survey map of O‘ahu, Hawaiian Islands, by R. Covington, showing project parcel in Ka‘ākaukukui ‘īli in salt pan (grid) area.

Data Recovery Plan for SIHP # 50-80-14-7580, Kamehameha Schools Kaka‘ako Block I

TMKs: [1] 2-1-056:002, 007, and 008
through prison bars. No one was allowed to enter without a permit from the Board of Health. [Hanley and Bushnell 1980:114]

As the complex was on a former salt marsh near the sea, it was subject to flooding at high tide. The salt water killed all vegetation and made it impossible to landscape the complex with grass or plants; the water swept away stone-bordered paths, corroded metal, and destroyed the whitewash on the buildings. Even so, the Board of Health expected the patients to help feed themselves by growing their own vegetables in gardens on the center’s grounds. Overcrowding was also a problem. The hospital, built to house 100 patients, had over 200 residents by 1883. Dr. Fitch was in favor of making the Kaka‘ako station a permanent leperarium, and often delayed sending confirmed lepers to Moloka‘i (Hanley and Bushnell 1980).

In 1883, Walter Murray Gibson, minister in King Kalākaua’s government and head of the Board of Health, sent out a plea for a religious order to care for the sick of Hawai‘i, especially the lepers. The call was answered by the Franciscan Sisters of Syracuse, New York, led by Mother Marianne Cope. Seven sisters arrived in Honolulu and made their first visit to the Kaka‘ako Leper Detention Center in November of 1883. They were appalled by what they saw—tumble-down cottages, filth and flies in the dining area, and the stench of the leper’s unwashed sores. The hospital steward, J.J. Van Geisen, took them on a tour.

‘Now let me show you the most interesting place,’ he announced, leading the group to a narrow building that teetered on pilings over the surf. The structure had been divided into three dingy cubicles, with warped floors and windows ghosted by salt spray. The first of the rooms was the ‘morgue.’ Van Geisen explaining that when a patient’s condition reached a certain point, he was forced into the morgue and remained there until dead. The body was then dragged to the second cubicle, where Fitch performed an autopsy. Finally the remains were moved to the third room, to await a burial team. [Tayman 2006:143]

The sisters built a convent at the hospital in November to live near their patients. The convent was a two-story house with a hall, parlor, and refectory on the ground floor, and five bedrooms upstairs. A small chapel attached to the rear of the structure was dedicated to St. Philomena. The sisters soon took the running of the hospital in hand, cleaning and whitewashing the cottages, separating the males and females into two wards, and setting up new landscaped areas and gardens (Figure 21) (Hanley and Bushnell 1980).

In 1884, Mother Marianne built a home at Kaka‘ako for the non-leprous daughters of the patients at the Kaka‘ako detention center and the exiled lepers at Moloka‘i (Figure 22). This girls’ home was named after Queen Kapi‘olani, who supported Mother Marianne’s plan by raising funds. A two-story dormitory for the girls was built near the sisters’ chapel (Hanley and Bushnell 1980:222).

In 1888, the Board of Health decided to close the Kaka‘ako Branch, moving the receiving station to Kalihi; they determined that “The buildings at Kakaako should be entirely removed” (Hanley and Bushnell 1980:275). The hospital and several other of the larger buildings were dismantled and transported for use at Moloka‘i (Daws 1984:xxiii), but a few buildings remained, and Kaka‘ako continued to be used as a temporary leprosy receiving station. In 1889, the Kapi‘olani School for Girls also was moved to Kalihi (Hanley and Bushnell 1980:326).
Figure 21. 1886 photograph of patients’ Oceanside cottages at the Kaka’ako Leper Detention Center (reprinted in Hanley and Bushnell 1980: photograph section)

Figure 22. 1886 photograph of the Kapi‘olani Home for Girls within the Kaka’ako Leper Detention Center; Mother Marianne Copeland is the second woman from the right (reprinted in Hanley and Bushnell 1980: photograph section)
buildings were torn down and the new immigration station was built on the former grounds of the home. Thrum (1897:101) reports that victims of the cholera epidemic of 1895 were treated at the Kaka'ako Hospital, suggesting the remaining buildings were modified or a new hospital was built during this time.

In 1899, the first case of bubonic plague was identified in Hawai‘i and spread rapidly through the crowded tenements of Chinatown. The government decided the best way to eradicate the disease was through “controlled burning” of the wooden buildings. Infected patients were moved to a quarantine camp at Kaka'ako. Some people, not necessarily patients, whose houses were burned were housed at the barracks of the Kaka'ako Rifle Range, and their belongings were stored in the cellars of Kaumakapili Church. On 20 January, a fire set in Block 15 between Kaumakapili Church and Nu‘uanu Avenue quickly got out of control. No one was killed in the fire, but Chinatown was destroyed. Many people were homeless, and also bereft of all belongings, lost when Kaumakapili Church burned to the ground (Iwamoto 1969:122-124, 130-131).

In 1905, the Kaka'ako area was used for the incineration of the waste from urban Honolulu. Thomas Thrum reported,

 Early in the year was completed the long projected garbage crematory for the disposal, daily, of the city's refuse by a patent and sanitary process. It is located on the shore of Kakaako, adjoining the sewer pumping station; is two stories in height and built of brick. [Thrum 1906:177]

 The dredging of Honolulu harbor and its channel is completed as far as planned for the present, and excavations for the Alakea and Kinau slips finished, the material therefrom being used to fill in a large area of Kakaako and the flats in the vicinity of the sewer pumping station and garbage crematory. The amount of material removed by the Federal dredging was a million and a half cubic yards. [Thrum 1907:148-149]

2.1.3.4 Military Works at Kaka'ako, Kaʻākaukukui, and Kukuluʻaeʻo

During the monarchy, the point at Kaka'ako was the location for a battery. Its three cannons were used to salute visiting naval vessels, which responded with their own cannon salutes. Other saluting batteries were at the top of Punchbowl Crater and at the Honolulu Fort (Dukas 2004:163). The Hawaiian Annual and Almanac for 1887 (Thrum 1887:37) reported $4,500 had been spent to build the battery, which was used for gun salutes up to at least the end of the monarchy in 1893 (Judd 1975:57), as shown on an 1887 photograph (Figure 23) and a 1887 map (see Figure 15).

After the annexation of the Islands by the United States in 1899, the U.S. Congress began to plan for the coastal defenses of their new lands. The major batteries were placed at Pearl Harbor and in Waikīkī, but a small reservation named Fort Armstrong was also set up on the Kaʻākaukukui Reef as a station for the storage of underwater mines.

The fort does not seem to have been very impressive. William Castle in 1917 noted,

 Fort Armstrong is the saluting station for the port of Honolulu. It is built on the Kaakaukukui Reef, one mile from the centre of the city and at the entrance of the...
Figure 23. 1887 photograph of the Kaka‘ako Saluting Battery and flagstaff (original photograph taken by Karl Kortum and archived at the San Francisco Maritime Museum; reprinted in Scott 1968:176)
harbour. Its area is 64 acres, and it has as garrison the 104th Company (mine) of the Coast Artillery Corps. Both officers and men are wretchedly housed in temporary board and batten shacks, although the fort has been in use for three years. [Castle 1917:90]

In 1899, the first case of bubonic plague was identified in Hawai‘i and spread rapidly through the crowded tenements of Chinatown. The government decided the best way to eradicate the disease was through “controlled burning” of the wooden buildings. Infected patients were moved to a quarantine camp at Kaka‘ako. Some people, not necessarily patients, whose houses were burned were housed at the barracks of the Kaka‘ako Rifle Range, and their belongings were stored in the cellars of Kaumakapili Church. On 20 January, a fire set in Block 15 between Kaumakapili Church and Nu‘uanu Avenue quickly got out of control. No one was killed in the fire, but Chinatown was destroyed. Many people were homeless, and also bereft of all belongings, lost when Kaumakapili Church burned to the ground (Iwamoto 1969:122-124, 130-131).

The fort saw some small action during World War I when, in October 1917, the military authorities closed Honolulu Harbor between sunset and sunrise. The steamer Claudine, sailing from Maui when the edict went into effect, sailed into Honolulu Harbor unknowingly after twilight. The coast artillery at Fort Armstrong shot a few shells across her bow, and the steamer quickly reversed her engines and went back out to sea until the following morning, when she could safely and legally come to shore (Thomas 1983:147).

In the attack on the Islands on 7 December 1941, the fort escaped relatively unscathed; only one motor pool structure was hit. Anti-aircraft shells were fired from the fort, but were ineffective; at least one hit the town rather than any aircraft (Richardson 2005:34). In the 1950s, the federal government returned most of Fort Armstrong to the Territory of Hawai‘i, which used the area to expand the shipping piers of the harbor.

2.1.3.5 Honolulu Iron Works

In the 1850s, Hawaiian sugar planters became interested in a type of centrifugal machine that could separate sugar from molasses. In 1851, an engineer named David Weston installed his version of this machine in a Maui sugar mill. With backing from Hawaiian businessmen, Weston returned to the Islands in 1853 and founded the Honolulu Iron Works (Figure 24), which he set up in a building already occupied by a flour mill (Kuykendall 1938:326-327). The flour mill was at first the most successful part of the business, where wheat from Maui and as far away as Chile was ground into flour and then exported to California. However, as the sugar industry became more prominent in the Hawaiian Island economy, the Iron Works began to build the machinery needed to operate the new sugar mills, not only in Hawai‘i but all over the world. At one point, the iron works employed 1,500 workers, many of whom lived in the Kaka‘ako area (Nicol 1998:510).

Business began to decline in the 1950s, and in 1973 the works were closed (Nicol 1998:510). At first the old buildings were converted to retail space, but eventually all were torn down; the last warehouse was demolished in 1982 (Kawasaki 2005:2). The main lot for this complex is now covered by One Waterfront Plaza, northwest of the current project area.
Figure 24. 1901 (ca.) photograph of the Honolulu Iron Works complex; note the empty lots east of the complex; the study parcels would be to the east or right of this complex (original photograph at Bernice Pauahi Bishop Museum; reprinted in Myatt 1991:40-41)
2.1.3.6 Kaka‘ako Land Reclamation

The first efforts to deepen Honolulu Harbor were made in the 1840s. The idea to use this dredged material, composed of sand and crushed coral, to fill in low-lying lands, was quickly adopted. From 1857 to 1870, the “Esplanade” between Fort and Alakea streets was created on 22 acres of filled-in former reef and tideland. By 1874, Sand (Quarantine) Island, site of the first immigration station, had been created over “reclaimed” land on reefs (Hawaii Board of Health 1902).

By the 1880s, filling in of the mud flats, marshes, and salt ponds in the Kaka‘ako area had begun. This filling was pushed by three separate but overlapping improvement justifications. The first directive or justification was for the construction of new roads and improving older roads by raising the grade so improvements would not be washed away by flooding during heavy rains. A report by the Hawaii Board of Health (1908) noted the following:

I beg to call attention to the built-up section of Kewalo, ‘Kaka‘ako,’ where extensive street improvements, filling and grading have been done. This, no doubt, is greatly appreciated and desirable to the property owners of that locality, but from a sanitary point of view is dangerous, inasmuch as no provision has been made to drain the improved section, on which have been erected neat cottages occupied for the greater part by Hawaiian and Portuguese families, now being from one to three feet below the street surface, and which will be entirely flooded during the rainy season. Unless this is remedied this locality will be susceptible to an outbreak [of cholera] such as we experienced in the past. [Hawaii Board of Health 1908:80]

The second, and most frequently used, justification for filling was driven by public health and sanitation, the desire to clean up rivers and ponds that were reservoirs for diseases such as cholera and that acted as breeding places for rats and mosquitoes. Thus, as early as 1902 it is reported that

The Board has paid a great deal of attention to low-lying stagnant ponds in different parts of the city, and has condemned a number of them. The Superintendent of Public Works has given great assistance to seeing that the ponds condemned by the Board are filled. In September a pond on South Street was condemned as deleterious to the public health. [Hawaii Board of Health 1902:80]

The first areas to be filled were those closest to Honolulu town, then areas moving outwards to Kaka‘ako (Griffin et al. 1987:13). The first fill material may have been set down in 1881 for the Kaka‘ako Leper Branch Hospital (between Coral and Keawe streets), which had been built on a salt marsh. Laborers were hired to “haul in wagon loads of rubble and earth to fill up that end of the marsh” (Hanley and Bushnell 1980:113). In 1903, five more lots in Kewalo, on Laniwai, Queen, and Cooke streets, were condemned and ordered filled (Hawaii Board of Health 1903:6).

Although public health and safety were prominently cited, according to Nakamura (1979), the third justification or main desire for filling in Honolulu, Kewalo, and then Waikīkī lands was to provide more room for residential subdivisions, industrial areas, and finally tourist resorts. In the
early part of the twentieth century, Kaka‘ako was becoming a prime spot for large industrial complexes such as iron works, lumber yards, and draying companies, which needed large spaces for their stables, feed lots, and wagon sheds. In 1900, the Honolulu Iron Works, which produced most of the large equipment for the Hawaiian plantation sugar mills, moved from their old location at Queen and Merchant Street near downtown Honolulu to the shore at Kaka‘ako, on land that had been filled from dredged material during the deepening of Honolulu Harbor (Thrum 1901:172). Other businesses soon followed. Thrum (1902) noted,

The Union Feed Co. is another concern whose business has outgrown the limits of its old location, corner of Queen and Edinburgh streets. Like the Iron Works Co. they have secured spacious premises at Kakaako, erecting buildings specially adapted to the needs of their extensive business at the corner of Ala Moana (Ocean Road) and South Street. [Thrum 1902:168]

Private enterprises were not the only new occupants of Kaka‘ako. A sewer pumping station, an immigrant station, and a garbage incinerator were also built on “reclaimed land” located in the vicinity of the current project area, across Ala Moana Boulevard. Thrum (1907) noted,

The dredging of Honolulu harbor and its channel is completed as far as planned for the present . . . the material there from being used to fill in a large area of Kakaako and the flats in the vicinity of the sewer pumping station and garbage crematory. [Thrum 1907:148-149]

For the incinerator, Thrum (1907) noted,

The new station is built on piles on reclaimed land that is being filled in from the coral dredgings that is going on, and is gradually taking on a tropical appearance. . . . Adjoining its premises on the mauka side is the new building designed for the Planters’ Association for their labor bureau. [Thrum 1907:148-149]

The new immigration station had seven large rooms for dormitories surrounded by a breezy, open lanai where immigrant workers would stay while waiting for their clearance to go to their new work places on the sugar plantations. Adjacent to the dormitory was a hospital, which was used to check the new immigrants for any “loathsome or dangerous contagious disease” (Hawaii Governor 1905:77). The hospital was also used during epidemics to isolate contagious patients suffering from such diseases as smallpox, cholera, or plague.

In 1900, a Kewalo area pond surrounded by a bicycle racing track, called the Cyclomere (built in 1897), was filled. The pond was located on the makai side of Kapiʻolani Avenue between Cooke Street and Ward Avenue. In 1904, the area around South Street from King to Queen streets was filled in. The Hawaii Department of Public Works (1904) identified the need for considerable in-filling for the extension of Queen Street was required, from South Street to Ward Avenue.

2.1.3.7 Kewalo Reclamation Project

Although the Board of Health could condemn a property and the Department of Public Works could then fill in the land, the process was rather arbitrary and piecemeal. In 1910, after an epidemic of bubonic plague, the Board of Health condemned a large section of Kewalo,
consisting of 140 land parcels (including areas in Kaʻākaukukui), which had numerous ponds (Hawaii Department of Public Works 1914:196).

In 1914, the entire

... locality bounded by King street, Ward avenue, Ala Moana and South street, comprising a total area of about two hundred acres, had been found by the board of health of the Territory to be deleterious to the public health in consequence of being low and below ‘the established grades of the street nearest thereto’ and at times covered or partly covered by water and improperly drained and incapable by reasonable expenditure of effectual drainage, and that said lands were in an insanitary and dangerous condition. [Hawaii Supreme Court 1915:329].

The superintendent then sent a letter to all of the property owners, informing them that they must fill in the lands to the grade of the street level within sixty days. Only a few of the land owners complied, and filled their land with a variety of materials. Most of the land owners did not comply with this notice, and in 1912 the bid to fill in the land was given to Lord-Young Engineering Company to fill in the land with “sand, coral and material dredged from the harbor or reef and the depositing of the same upon the land by the hydraulic method” (Hawaii Supreme Court 1915:331). The recalcitrant land owners sued to stop the work, and in the suit, the method of hydraulic filling is described as follows:

By this [hydraulic] method the material dredged is carried in suspension or by the influence of water which is forced through large pipes and laid upon the lands and intervening streets, and afterwards is distributed and leveled, the water having drained off through ditches provided for the purpose. The work is done in large sections around which bulkheads have been constructed. A section can be filled in about thirty days, the dredger working about fifteen hours per day. And in about two months after a section has been filled the ground will have dried out so as to be fit for use as before. . . . The character of the material varies from very fine sand to coarse bits of coral . . .

It appears in evidence that though the method employed the finest of the material which is carried upon the land settles when the water which transports it becomes quiet and as the water runs off a sludge or mud remains which forms a strata more or less impervious to water. This strata, however, is covered by the coarser and more porous material. . . . it appears that by mixing in to a depth of a few inches ordinary soil small plants will grow without difficulty. . . . The character of the locality must be considered. It is not adapted to agriculture, but is suited more particularly to such business purposes as it now partly used for, such as stables, laundries, warehouses, mills, etc., and for cottages with small yards for the accommodation of laborers engaged in connection therewith. Upon the whole, we are of the opinion that the material proposed to be used in the fill-in of the lands of the complainants is not of a character as should be held to be improper for any of the reasons urged. [Hawaii Supreme Court 1914:351]

The first land to be filled in was the portion of the Ward Estate Kukulu‘e‘o property west of Ward Avenue, completely filled in by June 1913. In July “25,000 cubic yards of sand and ground-up coral were deposited on the Bishop Estate in the vicinity of Ala Moana and Keawe
street, the reason for shifting operations to this part of the district being that the Hawaiian Sugar Planter’s Association had erected a reinforced concrete building there and wished to have the lot brought to grade” (Hawaii Department of Public Works 1914:198). By August, the rest of the Ward Kukulu‘e‘o lands west of Ward Avenue had been completely filled in, and by February 1914, all of the land from South Street to Ward Street, and from Ala Moana to Queen Street had been filled. This would include the current project area.

The expense of the suit did manage to shut down operations planned for the area from Ward Street to Waikīkī (Thrum 1916:159-160). This land was mainly owned by the Bishop Estate, which leased the land to small farmers growing taro and rice and raising ducks in the ponds. In 1916, the Bishop Estate announced that as soon as their present tenant leases expired, they planned to fill the lands and divide them into residence and business lots (Larrison 1917:148-149). In 1919, a portion of the coastal section of the Bishop Estate lands was secured by the government in order to expand the Kewalo Basin (Thrum 1920:148).

2.1.4 Early Twentieth Century to the Present

2.1.4.1 Urban Expansion in the Kaka’ako Area

The 1884 Bishop map (see Figure 14) shows the nascent traces of the future development in the grid of roads stretching mauka of the project area. Kaka‘ako was considered outside the Honolulu town boundary and was used in the mid- to late nineteenth century as a place for cemeteries, burial grounds, and for the quarantine of contagious patients. Then in the beginning of the twentieth century, the area was used as a place for sewage treatment and garbage burning, finally becoming an area for cheap housing and commercial industries (Griffin et al. 1987:13). Late nineteenth century maps show a corridor of streets extending diagonally from Honolulu Town including Queen Street, planned to connect to the beach road to Waikīkī. The Queen Street alignment appears to follow the route of the traditional trail from Kou (Honolulu) to Waikīkī described by John Papa ‘I‘i. As noted previously, this trail likely ran on a sand berm raised above the surrounding marshlands and coral flats. The three ponds northwest of the project area are still present.

A series of USGS (or wartime U.S. Army) quadrangles show the gradual expansion of the Honolulu urban district to the edge of Kaka‘ako and beyond in the early twentieth century. During the first half of the twentieth century, both rice fields and marshlands were eliminated as Kaka‘ako lands were filled to accommodate the expanding urbanization of Honolulu.

On a 1919 map (Figure 25), early twentieth century residences were clustered between Pohukaina and Queen streets, one to two blocks northeast of the project area. Proposed streets extending to Waikīkī are dotted in, indicating the roads have not been built or improved (paved) by this time. As noted in the previous section, the project area would have been completely filled in by 1914 during road improvement projects and the Kaka‘ako and Kewalo reclamation All of the ponds and low-lying areas around the project area have been filled, and new land for Fort Armstrong has been created from dredged material.
Figure 25. 1919 War Department map (Honolulu Quadrangle) showing location of the project area
On a 1927 topographic map (Figure 26) and aerial photograph (Figure 27), the open areas of Kaka'ako have been filled with material dredged from the Ala Wai Canal, Ala Moana Beach Park, the on-going excavation of Kewalo Basin, and with material from the city incinerator at the Kewalo coastline. The 1927 aerial photograph shows a large cluster of homes within the south corner of the project area with a vegetated area directly to the north. The remainder of the project area consists of large open areas with a few larger structures.

On a 1952 aerial photograph (Figure 28), the large cluster of homes within the south corner of the project area is still present, but the vegetated area to the north has been cleared. Additionally the western half of the project area is no longer clear, and is now covered with a smaller cluster of homes and a few larger structures.

2.1.4.2 Fire Insurance Maps

A series of fire insurance maps illustrates the history of the project area in greater detail. At the University of Hawai‘i at Mānoa, the Dakin Fire Insurance maps for 1891, 1899, and 1906 and the Sanborn Fire Insurance maps for 1914, 1927, 1950, and 1956 are available. The current project area is not shown on any of the Dakin Fire Insurance maps for 1891, 1899, or 1906, suggesting there were no permanent structures in the area in those years. Sanborn Fire Insurance maps for 1914, 1927, 1950, and 1956 for the project area are illustrated in Figure 29 through Figure 32.

1914 Sanborn Fire Insurance Map

The 1914 map indicates the project area was being utilized by the Union Feed Company as a stable (see Figure 29). Union Feed Company operations seemed to be focused within the makai portion of the parcel, and may reflect areas that contained dry land. Large wagon sheds appear to form the perimeter of the stable. Of note are two dwellings just west of the stable, located along the makai edge of the project area.

1927 Sanborn Fire Insurance Map

By 1927, the project area has undergone drastic changes. The Union Feed Company stable has been replaced by a large cluster of dwellings situated within the Diamond Head-makai corner of the project area (see Figure 30). Corrals and associated infrastructure (i.e., hay storage sheds and dwellings) are now present within the central portion of the project area. A boat building with associated dwellings and a kitchen are present within the ‘Ewa-makai corner of the project area. And a contractors’ base yard with associated storage facilities in present within the ‘Ewa-mauka corner of the project area.

1950 and 1956 Sanborn Fire Insurance Maps

By 1950, the dwellings within the Diamond Head-makai corner are still present, as are the corrals and boat building along the makai edge of the project area (Figure 31). Of note are the numerous dwellings now present within the ‘Ewa portion of the project area. A concentration of warehouses and storage facilities is also present within the ‘Ewa-mauka corner of the project area.

By 1956, the large concentration of dwellings within the Diamond Head-makai portion of the project area are now gone. The ‘Ewa portion of the project area remains relatively unchanged, with some of the dwellings shown in the 1950 map now gone.
Figure 26. 1927 Honolulu USGS quadrangle showing the project area location

Data Recovery Plan for SIHP # 50-80-14-7580, Kamehameha Schools Kaka‘ako Block I

TMKs: [1] 2-1-056:002, 007, and 008
Figure 27. 1927 aerial photograph of the Waikiki coast (University of Hawai‘i School of Ocean and Earth Science and Technology [SOEST]) showing the project area location.
Figure 28. 1952 aerial photograph of the Kaka‘ako coast (University of Hawai‘i School of Ocean and Earth Science and Technology [SOEST]) showing the project area location
Figure 29. 1914 Sanborn Fire Insurance Map showing the project area location

Base Map: Sanborn Map Co. Fire Insurance Map, 1914 Honolulu Series
Data Sources: CSH

Legend

- Project Area

Scale

0 50 100 Feet

0 10 20 Meters

Cultural Surveys Hawai'i, Inc.
Figure 30. 1927 Sanborn Fire Insurance Map showing the project area location

Base Map: Sanborn Map Co. Fire Insurance Map, 1927 Honolulu Series
Data Sources: CSH

Legend
- Project Area
Figure 31. 1950 Sanborn Fire Insurance Map showing the project area location
Figure 32. 1956 Sanborn Fire Insurance Map showing the project area location

Data Recovery Plan for SIHP # 50-80-14-7580, Kamehameha Schools Kaka’ako Block I

TMKs: [1] 2-1-056:002, 007, and 008
2.2 Previous Archaeological Research

Most traditional Hawaiian surface structures in the project vicinity had been demolished by the time of the first scientific archaeological surveys in the early twentieth century. In his report on the survey of O‘ahu sites conducted in the early 1930s, McAllister (1933:80) says of Honolulu “Information regarding former sites within the present limits of Honolulu must come entirely from literary sources.”

Archaeological investigations have been conducted in parcels and road alignments near or adjacent to the project area. Figure 33 and Figure 34 show the location of these archaeological studies and identified sites (with known locations), including burials. Previous archaeological projects are listed in Table 1 and findings of these investigations are summarized below.

2.2.1.1 Honuakaha Smallpox Cemetery

Pfeffer et al. (1993) reported on archaeological monitoring of construction activities in the Kaka‘ako ID-1 project area, including along South Street and Quinn Lane. Historic research had shown that Honuakaha Cemetery, created solely for the 1853-1854 smallpox epidemic, was located makai of Queen Street on the west side of South Street. This cemetery is now covered by urban development, including the Old Kaka‘ako Fire Station, several other buildings and a portion of the American Brewery lot. The cemetery may contain more than 1,000 burials. It appears that the cemetery was not utilized following the epidemic.

Thirty-one burials in the Honuakaha Cemetery (SIHP # 50-80-14-3712) were encountered and recorded during the 1986-1988 monitoring (Pfeffer et al. 1993). One of the “burials” consisted of a wooden coffin with no human skeletal remains. Of the remaining 30, 28 were disinterred. Two burials, which were determined to be outside the project area, were left in place. For the 28 disinterments, 18 were determined to be historic, as they were interred in an extended position and contained historic artifacts, including in 12 cases, the wooden remains of a coffin. Two burials were interpreted as possible pre-Contact burials as they were interred in a sand layer and did not have any evidence of a wooden coffin or any historic artifacts. The remaining eight burials were too disturbed to determine date of interment. In March and April of 1993, during sewer line excavation by Mouse Construction, three burials were inadvertently discovered at 614 South Street in the central portion of the lot (TMK: [1] 2-1-031:020) on the southwest corner of South Street and Quinn Lane. These burials were situated in the Honuakaha Cemetery (SIHP # 50-80-14-3712). Subsequent monitoring of the site identified six additional burials in the same location, totaling nine smallpox cemetery burials in this area (Avery and Kennedy 1993).

2.2.1.2 State Office Building

In 1982, six partial sets of human skeletal remains were recovered during excavation for construction of the State Office Building No. 2 at the southeast corner of Punchbowl and Halekauwila streets (TMK: [1] 2-1-031:023). The remains were in poor to very poor condition and the osteological analyses yielded little information. Two of the burials showed evidence of incisor evulsion (intentional removal) which was practiced by Hawaiians into the early post-Contact period (Ota and Kam 1982). All other burials were located in both pre-Contact deposits and natural sand deposits, although some historic disturbance may have taken place. This burial area was later designated SIHP # 50-80-14-2963 (Clark 1987).
Figure 33. Previous archaeological studies in the vicinity of the project area
Figure 34. Historic properties identified in the vicinity of the project area
Table 1. Previous Archaeological Work in Kaka‘ako Near the Project Area (All Sites Begin with 50-80-14-)

<table>
<thead>
<tr>
<th>Author</th>
<th>Site(s): SIHP #</th>
<th>Report Description and Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ota and Kam 1982</td>
<td>2963</td>
<td>Makai Parking Garage; six partial burial sets (2963) found; probable pre-Contact to 1850 date</td>
</tr>
<tr>
<td>Yent 1985</td>
<td>2918</td>
<td>Ka‘ākaukukui Cemetery (2918) at the Honolulu Iron Works project area; six burials (2918) recorded</td>
</tr>
<tr>
<td>Athens 1986</td>
<td>1973</td>
<td>Monitoring of Judiciary parking lot; historic deposits (1973) with artifacts dating late nineteenth-early twentieth century</td>
</tr>
<tr>
<td>Clark 1987</td>
<td>2963</td>
<td>Monitoring at Makai Parking Garage; seven burials (2963) found; probably dating to pre-1850</td>
</tr>
<tr>
<td>Leidemann 1988</td>
<td>1973</td>
<td>Monitoring at Federal parking lot; historic deposits (1973) found</td>
</tr>
<tr>
<td>Bordner 1990</td>
<td>9991</td>
<td>Test trenches excavated in the Kawaiaha‘o Church grounds (9991); some historic artifacts recovered</td>
</tr>
<tr>
<td>Douglas 1991a</td>
<td>4380</td>
<td>Coral and Queen Street area; eight burials (4380) recorded and five disinterred</td>
</tr>
<tr>
<td>Douglas 1991b</td>
<td>4380</td>
<td>Coral and Queen Street area; one burial recorded (4380)</td>
</tr>
<tr>
<td>Avery and Kennedy 1993</td>
<td>3712</td>
<td>Monitoring of South Street Building Complex; six burials associated with 1853-1854 Honuakaha Smallpox Cemetery (3712) found</td>
</tr>
<tr>
<td>Pfeffer et al. 1993</td>
<td>3712/4531</td>
<td>Monitoring for Kaka‘ako ID-1; 31 historic burials at the South Street/Quinn Lane junction; 116 historic burials from Kawaiaha‘o Cemetery (4534) (used from 1825-1920) at Queen Street found; isolated burials found at Site 4532 (one individual) and Site 4533 (one individual)</td>
</tr>
<tr>
<td>Pearson 1995</td>
<td>9991</td>
<td>Test pits excavated near the Mission Houses (9991); nineteenth and twentieth century artifacts recovered</td>
</tr>
<tr>
<td>Hammatt and Chiogioji 1998</td>
<td>1388</td>
<td>Archaeological assessment of area that includes Mother Waldron playground (1388) and Pohukaina Elementary School; no field work</td>
</tr>
<tr>
<td>Author</td>
<td>Site(s): SIHP # 50-80-14-7580</td>
<td>Report Description and Findings</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Winieski and Hammatt 2000</td>
<td>4380 5820</td>
<td>Monitoring at Kaka’ako ID-3 and other parcels; nine burials found at the Pohulani Housing area (4380) and 11 human burials (5820) found at Mother Waldron Park; at least two interred in post-Contact period</td>
</tr>
<tr>
<td>Winieski and Hammatt 2001</td>
<td>5942</td>
<td>Monitoring for the Nimitz Highway Reconstructed Sewer Project; historic artifacts and features observed (including 5942)</td>
</tr>
<tr>
<td>McElroy 2008</td>
<td>None</td>
<td>Test excavations showed study area consisted of former reef flats that had been filled in during the early 1900s</td>
</tr>
<tr>
<td>Tulchin et al. 2009</td>
<td>None</td>
<td>Archaeological inventory survey of Halekauwila Place; 18 test trenches excavated; no pre-Contact material recorded; numerous historic artifacts found dating to the late nineteenth-early twentieth century</td>
</tr>
<tr>
<td>Pammer and Hammatt 2010</td>
<td>None</td>
<td>Archaeological inventory survey (former Comp USA parcel for Kamehameha Schools); 19 test trenches indicated study area consisted of former reef flats that had been filled in during the early 1900s</td>
</tr>
<tr>
<td>Pammer et al. 2011</td>
<td>7124 7189 7190 7197</td>
<td>Archaeological inventory survey of Kamehameha Schools Block 2 parking lot, including work from CSH’s archaeological inventory survey plan (O’Hare et al. 2009) during which five trenches were excavated; 83 trenches in all excavated; identification of four subsurface historic deposits: two historic-era layers (7124 and 7189), salt-pan deposits (7190) and a late pre-Contact/early historic cultural layer (7197)</td>
</tr>
<tr>
<td>Medina and Hammatt 2013</td>
<td>7413 Feature B</td>
<td>Archaeological monitoring of 680 Ala Moana building located within Kamehameha Schools Kaka’ako Block F; stratigraphy consisted predominantly of imported fill associated with historic land reclamation; Jaucas sands observed in portions of study area; presence of buried concrete slabs that correspond with historic building footprints based on historic fire insurance maps spanning from the 1920s to the 1950s (7413 Feature B)</td>
</tr>
<tr>
<td>Author</td>
<td>Site(s): SIHP # 50-80-14-</td>
<td>Report Description and Findings</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Tulchin and Hammatt</td>
<td>7412, 7413</td>
<td>Archaeological inventory survey (Kamehameha Schools Kaka‘ako Block F); 20 test trenches excavated resulting in the identification of 7412, a discontinuous subsurface cultural layer containing post-Contact Western-introduced cultural material, including crushed red brick, cut faunal bone, glass fragments, slag, and metal fragments; and (2) 7413, surface and subsurface features predominantly associated with the property’s development and utilization as a Hawaiian Sugar Planters Immigration Station (i.e., a reinforced concrete building, buried concrete structural remnants, and subsurface trash layers)</td>
</tr>
<tr>
<td>Hammatt 2013</td>
<td>2918, 2963, 5820, 7124, 7189, 7190</td>
<td>Archaeological inventory survey for the City Center portion of the Honolulu High-Capacity Transit Corridor Project; identified six previously identified historic properties in the Kaka‘ako area from Punchbowl Street to Ward Avenue: (1) 2819, subsurface cultural deposit, human burials, and a pit feature containing structural remains from a former trolley or rail line; (2) 2963, subsurface cultural deposit, subsurface pond sediments, human burials, and animal burials; (3) 5820, subsurface cultural deposit and human burials; (4) 7124, subsurface infrastructure remnants; (5) 7189, subsurface burnt trash deposit; and (6) 7190, subsurface salt pan remnants</td>
</tr>
<tr>
<td>Tulchin et al. 2014a</td>
<td>7512, 7513</td>
<td>Archaeological inventory survey (Kamehameha Schools Kaka‘ako Block B); 39 test trenches excavated resulting in the identification of two subsurface historic properties: 1.) SIHP # 50-80-14-7512, post-Contact structural remnants associated with early- to mid-twentieth century development; and 2.) SIHP # 50-80-14-7513, post-Contact trash layer associated with early twentieth century land reclamation.</td>
</tr>
<tr>
<td>Tulchin et al. 2014b</td>
<td>7578, 7579, 7580, 7581, 7582, 7583</td>
<td>Archaeological inventory survey (Kamehameha Schools Kaka‘ako Block I); Six historic properties were identified during subsurface testing, including an early to mid-twentieth century cultural layer (SIHP # -7578); a nineteenth century cultural layer (SIHP #-7579); a pre- to post-Contact cultural layer with a historic burial cluster (SIHP # -7580); a pre-Contact traditional Hawaiian bundle burial (SIHP # -7581); and two sets of disarticulated human skeletal remains within non-burial contexts (SIHP #s -7582 and -7583)</td>
</tr>
</tbody>
</table>
2.2.1.3 Makai Parking Garage

In 1987, the Bishop Museum (Clark 1987) monitored construction of a parking garage on the southeast corner of Punchbowl and Halekauwila streets in the same TMK parcel as the earlier Ota and Kam (1982) study area. Archaeological features revealed both pre-Contact and post-Contact utilization of the site. Seven human burials were unearthed, of which four were complete burials with well-defined burial pits. Two burials were in a flexed position, one was a bundle burial, and one was too disturbed to determine burial position. Charcoal from one of the burials (Feature 28) was dated to AD 1270-1410. Feature 28 also showed post-mortem breakage of the limb bones. Only the femoral heads were still present in the burial pit; the shafts had been broken off and removed (Clark 1987:75-76). Osteological analyses of the burials and analysis of five grave goods indicated that the individuals were of Hawaiian ancestry, probably from the commoner class rather than the chiefly (ali‘i) class. The burial area was designated as part of SIHP # 50-80-14-2963, which was first identified by Ota and Kam (1982). Artifacts recovered at the site included basalt tools—including an adze, a hammerstone, and a poi pounder top—and a coral abrader as well as glass bottles, ceramic fragments and metal objects. Clark concluded that the “nineteenth century use of the site area included primarily burying of trash and burial of animals” (Clark 1987:114).

2.2.1.4 Judiciary Parking Garage

In 1985, monitoring was conducted for the proposed Judiciary Parking Garage at the northwest corner of Pohukaina and South streets (Athens 1986). In the nineteenth century, this project area would have been in the ‘ili of ‘Auwaiolimu, south of three fishponds. No undisturbed sand layers were noted in the excavations and much of the area appeared to have been previously disturbed. It is likely that the area was underwater or was intertidal in pre-Contact times. No pre-Contact cultural deposits or traditional artifacts were recorded, but historic artifacts were common in the several fill layers exposed in the construction trenches. Bottles dating from between 1880 and 1915 were identified. The historic deposit was not given a site number at the time of Athens’ reporting, although it appears its designation as SIHP # 50-80-14-3984 was assigned by SHPD at a later time. However, CSH believes the appropriate site number for this historic deposit is SIHP # 50-80-14-1973.

This confusion in site number designations between SIHP # 50-80-14-3984 and -1973 is likely the result of several subsequent studies that deferred in their designation of the location of Athen’s 1986 project area. In 1985–1986, monitoring for the Federal Judiciary Building parking complex was conducted by the Bishop Museum (Clark 1987). The project area was described as being on the northwest corner of Pohukaina and South streets by Leidemann (1988:1), who conducted the laboratory analysis of the recovered artifacts, which would make this project area the same as Athens’s (1986) study area. However, on Leidemann’s Figure 1 (Leidemann 1988:2), the project area is drawn on the northwest corner of Reed Lane and South Street, which would make this project area immediately north of the Athen’s study area. Leidemann makes no mention of the Athen’s study in her report. Clark (1987:22) states that the project areas are the same. As in the Athen’s study, no undisturbed sand deposits were recorded and no traditional artifacts were found. The results of the analysis of the artifacts determined that the most likely time frame for the manufacture and disposal of the historic artifacts was between 1880 and 1930. Thus, this historic deposit was designated SIHP # 50-80-14-1973.
2.2.1.5 Honolulu Iron Works

In 1985, six sets of human skeletal remains were documented at the Honolulu Iron Works construction site at the corner of Pohukaina and Punchbowl streets (Yent 1985). The burial pits were observed within a sand deposit approximately 80 cm beneath the existing surface. The burials were designated SIHP # 50-80-14-2918 and were determined to be associated with Ka‘ākaukukui Cemetery, which was utilized from the 1700s to the early 1800s (McElroy et al. 2008).

2.2.1.6 Nimitz Highway Reconstructed Sewer Project

In 2001, CSH conducted archaeological monitoring for the Nimitz Highway Reconstructed Sewer Project (Winieski and Hammatt 2001). The route of the sewer construction began on River Street, at the intersection of River and Hotel streets, ran to Nimitz Highway, then to Bethel Street, and then along Bethel Street to the intersection of Nimitz Highway and ‘Ewa end of Queen Street. The route then extended along Queen Street to South Street, along South Street to Ala Moana Boulevard, and terminated at the Ala Moana Wastewater Pump Station. Only one historic property was encountered, a remnant of a light-gauge rail associated with the historic Honolulu Rapid Transit trolley system (SIHP # 50-80-14-5942) at the intersection of Queen Street and Nimitz Highway.

2.2.2 South Street to Cooke Street

2.2.2.1 Kaka‘ako Improvement District 3 and Pohulani Elderly Housing

In 1990, during construction of an elderly housing project southwest of the intersection of Coral and Queen Streets, human skeletal remains were uncovered and reported to the SHPD (Douglas 1991a). Eight burials were identified on the east side of the property, of which five were removed (Winieski and Hammatt 2000). A glass bead was found with one burial, indicating a post-Contact date. One burial also exhibited an antemortem loss of the lower incisors, which suggests deliberate tooth evulsion, a procedure known to have been practiced by Hawaiians into the early post-Contact period (Ota and Kam 1982). This burial area was later designated SIHP # 50-80-14-4380. The project area is within the boundary of LCA 2045 to Kauwahi, who received the parcel during the time of Kamehameha I, indicating this was a Hawaiian habitation area as early as the beginning of the nineteenth century.

In 1991, during excavation of a waterline trench between Coral and Queen Streets across Mother Waldron Park (SIHP # 50-80-14-1388), human skeletal remains were discovered and disinterred (Douglas 1991b). The burial was located in the northwest corner of the park, just east (Diamond Head) of the intersection of Coral Street and the westward extent of Halekauwila Street. Note that during the project, the eastern extent of Halekauwila Street was realigned, and the section of Coral Street between Halekauwila and Pohukaina Streets was eliminated. The result of this is that the location of the burial would now be on the northeast mauka side of Halekauwila Street, and no longer within the park (Hammat and Winieski 2000). The remains were determined to be of Hawaiian ancestry, with a possibly associated pig burial. These burials were designated as part of SIHP # 50-80-14-4380.

Between November 1990 and September 1992, CSH (Winieski and Hammatt 2000) monitored construction within the Kaka‘ako ID-3, the Pohulani Elderly Rental Housing project area, and the Kauhale Kaka‘ako project area (TMKs: [1] 2-1-030, 031, 032, 044, 046, 047, 048,
Kakaʻako Improvement District 3 is bounded by Kapiʻolani Boulevard and King Street (north), the northern end of Cooke Street (east), Halekauwila Street (south) and South Street (west). It also includes extensions of Keawe and Cooke Streets to the south.

The monitoring of subsurface excavations revealed that although the area had been previously disturbed a cultural layer and naturally-deposited Jaucus sand and volcanic cinder deposits are still intact below the fill layers. The cultural layer contained historic artifacts mixed with sparse traditional Hawaiian cultural materials. Twenty human burials were discovered during these projects (Ota and Kam 1982, Douglas 1991a, Douglas 1991b and Winieski and Hammatt 2000): nine at the Pohulani Elderly Rental Housing project (SIHP # 50-80-14-4380) and 11 within or near Mother Waldron Park (SIHP # 50-80-14-5820). Five burials were in an extended position, seven were flexed, and eight could not be determined. One burial was in a coffin and one contained a glass trade bead, indicating they were of post-Contact age. Seventeen of these burials were disinterred and subsequently reinterred in the northeast corner of Mother Waldron Park. Three were left in place beneath the Pohulani Elderly Rental Housing building. These burials all clustered around the location of LCA 982 to Kukao and the Puʻunui parcel to Queen Emma, an area characterized by a cluster of Hawaiian houselots shown on several late nineteenth century maps (Winieski and Hammatt 2000).

In 1998, an archaeological assessment for a 6.8-acre land parcel was conducted by CSH (Hammatt and Chiogioji 1998). The parcel is bounded by Halekauwila Street (north), Pohukaina Street (south), Keawe Street (west), and Cooke Street (east). The parcel is the site of a municipal parking lot, a state government building, Mother Waldron Playground, and a lawn area. It is also the former site of the Pohukaina Elementary School. The Mother Waldron Park area was designated SIHP # 50-80-14-1388 as part of a thematic group of Honolulu City and County Art Deco Parks. A reinterment site for the Hawaiian burials discovered during construction within Kaka‘ako ID-3 (Winieski and Hammatt 2000) was established at the corner of Cooke and Halekauwila Streets. SHPD also designated an interment site at the corner of Cooke and Pohukaina Streets, which “will be reserved for future interments” (SHPD memo of July 2, 1992, cited in Hammatt and Chiogioji 1998:29).

2.2.2.2 Halekauwila Street Properties – Pohukaina School

In 2009, preliminary subsurface backhoe testing was conducted at two parcels owned by Kamehameha Schools between Halekauwila and Auahi Streets in the western mauka section of the Kaka‘ako Development District (KS Kaka‘ako Blocks 2 and B) (O’Hare et al. 2009). Thirteen trenches were excavated in open/parking areas of the parcels, 5 in KS Block 2 and 8 in KS Block B. A sandy clay/clay loam layer (Stratum II), the former ground surface during the pre-Contact/early post-Contact periods, was recorded in six of the test trenches, but not assigned a site number.

In 2009, CSH excavated 16 trenches within the Halekauwila Place property, once the grounds of Pohukaina School (Tulchin et al. 2009). Subsurface testing revealed several historic and modern fill layers overlying natural sediments. The natural sandy clay sediments were typical of a wet, marsh-type environment. Fill layers overlying the natural sediments included a layer of ash and burnt garbage, interpreted as fill material generated by the city’s municipal garbage incinerator [this deposit is identified elsewhere in Kaka‘ako as SIHP# 50-80-14-7189; see Pammer et al. 2011] and layers of sandy clay, interpreted as fill material generated by the
dredging of Honolulu Harbor and other coastal areas in the vicinity. The presence of the dredge fill material and incinerator fill material is consistent with background research of Kaka'ako land reclamation projects dating to the late 1800s and early 1900s. The upper terrigenous fill layers included construction debris and abandoned utilities, evidence of the former Pohukaina School. Numerous historic artifacts, mainly glass bottles and ceramics, were recovered from the fill layers; most were dated to the late nineteenth to early twentieth century. No pre-Contact cultural layers, artifacts or burials were found.

2.2.2.3 Block 2 Parking Lot

In 2010, CSH conducted an archaeological inventory survey of Kamehameha Schools Block 2 Parking Lot (Pammer et al. 2011). This AIS work included excavation of 72 trenches. CSH identified four subsurface historic properties: two historic-era layers (SIHP # 50-80-14-7124 and -7189), salt-pan deposits (SIHP# -7190), and a late pre-Contact/early historic cultural layer (SIHP# -7197). No human skeletal remains or burials were identified (Pammer et al. 2011).

2.2.2.4 Former Comp USA Parcel

In 2010, CSH conducted an archaeological inventory survey (19 trenches) in the former Comp USA parcel property, located immediately southwest of the current project area (Pammer and Hammatt 2010). No historic properties were identified. Observed stratigraphy consisted of varying fill layers deposited atop a thin layer of marine clay atop the coral shelf. Test excavations indicated the subject parcel formerly consisted of tidal flats periodically inundated with seawater prior to being filled in during activities that occurred in the area in the late 1800s and early 1900s.

2.2.2.5 Kamehameha Schools Block F

In 2012, archaeological monitoring associated with the 680 Ala Moana Renovation Project was conducted just south of the current project area (Medina and Hammatt 2013). Ground disturbance associated with this project involved open trenching for utility installations and a grease interceptor. Observed stratigraphy consisted predominantly of imported fill associated with historic land reclamation activities. Jaucas sands were observed beneath approximately 1.5 m of fill in several portions of the study area. Two features (Features B and C) associated with a previously identified historic property (SIHP # 50-80-14-7413) were identified. Feature B consists of buried concrete slabs that corresponded to historic building footprints based on historic fire insurance maps spanning from the 1920s to the 1950s. Feature C consists of subsurface trash layers associated with land reclamation.

In 2013, CSH completed an archaeological inventory survey of Kamehameha Schools Kaka'ako Block F, located immediately south of the current project area (Tulchin and Hammatt 2013). This AIS work included the excavation of 20 trenches. Two subsurface historic properties were identified: (1) SIHP # -7412, a discontinuous subsurface cultural layer containing post-Contact Western-introduced cultural material, including crushed red brick, cut faunal bone, glass fragments, slag, and metal fragments; and (2) SIHP # -7413, surface and subsurface features predominantly associated with the property’s development and utilization as a Hawaiian Sugar Planters Immigration Station (i.e., a reinforced concrete building, buried concrete structural remnants, and subsurface trash layers.).
2.2.2.6 Kamehameha Schools Block B

In 2014, CSH completed an archaeological inventory survey for Kamehameha Schools Kaka’ako Block B (Tulchin et al. 2014a). This AIS work included the excavation of 39 trenches. Two subsurface historic properties were identified: (1) SIHP # 50-80-14-7512, post-Contact structural remnants (i.e., buried concrete foundations) associated with early- to mid-twentieth century development; and (2) SIHP # 50-80-14-7513, post-Contact trash layer associated with early twentieth century land reclamation.

The trash layer (SIHP # 50-80-14-7513) was observed deposited either atop naturally deposited sediments or atop the coral shelf (i.e., limestone bedrock), and is commonly capped by crushed coral fill utilized historically (circa late nineteenth to early twentieth century) for land reclamation in the Kaka’ako area. It contained late nineteenth to early twentieth century artifacts including glass and ceramic bottles, ceramics, and melted metal fragments. SIHP # -7513 (post-Contact trash layer) was determined to be associated with trash disposal activities conducted both within and outside of the project area during the early twentieth century. The presence of melted metal refuse within the trash layer suggests that one source of the trash may have been nearby iron works operations (Honolulu Iron Works and the Catton, Neill and Company Iron Works) while the remainder was likely from the municipal collection of domestic refuse from residences and various businesses throughout Honolulu.

2.2.2.7 Kamehameha Schools Block I

In 2014, CSH completed an archaeological inventory survey of the current project area (Tulchin et al. 2014b). Six historic properties were identified during subsurface testing, including an early to mid-twentieth century cultural layer (SIHP # -7578); a nineteenth century cultural layer (SIHP #-7579); a pre- to post-Contact cultural layer with a historic burial cluster (SIHP # -7580); a pre-Contact traditional Hawaiian bundle burial (SIHP # -7581); and two sets of disarticulated human skeletal remains within non-burial contexts (SIHP #s -7582 and -7583)

2.2.2.8 Ilalo Street

In 2008, Garcia and Associates completed an archaeological assessment of a four acre parcel bounded by Ala Moana Boulevard, Cooke Street, Ilalo Street, and Keawe Street (McElroy et al. 2008). Stratigraphic information from test excavations indicated the study area consisted of former reef flats that had been filled in during the early 1900s. Observed sediments consisted of modern fill deposits over submerged, gleyed, clayey silt. No significant cultural resources were identified.

2.2.3 Honolulu High-Capacity Transit Corridor Project (Punchbowl Street to Ward Avenue)

In 2013, CSH completed an archaeological inventory survey for the City Center portion of the Honolulu High Capacity Transit Corridor Project (HHCTCP) (Hammatt 2013), a study area extending from Middle Street to Ala Moana Center. Subsurface investigations identified six previously identified historic properties in the Kaka’ako area from Punchbowl Street to Ward Avenue: SIHP #s 2819, 2963, 5820, 7124, 7189, and 7190.

SIHP # -2819 is a previously identified subsurface cultural deposit consisting of a culturally-enriched sandy loam A-horizon, exhibiting both pre- and post-Contact land usage. This historic property was first identified in 1985 by Martha Yent of State Parks as consisting of six burials.
located at the Honolulu Ironworks construction site (Yent 1985). Hammatt (2013) expanded the boundaries of the site and identified 30 additional features. Twenty-six features were associated with the culturally enriched A-horizon and consisted of one human burial pit, one dog burial pit, three postmolds, and 21 indeterminate pits. The other four features associated with the cultured layer, consisted of two indeterminate pits, an infilled pit containing historic trolley and other structural remains, and a postmold containing portion of a preserved post.

SIHP # -2963 is a subsurface cultural deposit consisting of a buried, culturally-enriched A-horizon with 39 associated features, pond sediments, and eight other archaeological features associated with either fill layers or natural strata. Collectively, the 39 features consist of 16 pits, six trash pits, five animal burials, four human burials, one postmold, four possible postmolds, two isolated animal bone areas and one burned soil area. Twenty-seven of the features were previously identified by Clark (1987) and 12 were newly-identified by Hammatt (2013). Pond sediments were identified by both Clark (1987) and Hammatt (2013). The eight features identified by Clark (1987) in deposits above or below the A-horizon and consist of a large pit, a cement building foundation, a red brick layer or possible building foundation within parking lot fill; a buried land surface within marine sand; and three human burials with no associated burial pits for which the strata was not determined. A total of 13 human burials designated as part of SIHP # -2963, of which six were identified by Ota and Kam (1982) and seven were identified by Clark (1987).

SIHP # -5820 consists of two buried, culturally-enriched layers. The lower cultural layer is an in situ culturally-enriched A-horizon. The upper cultural layer consisted of re-deposited culturally-enriched fill, which may be a re-worked former A-horizon. It was separated from the lower cultural layer by an approximately 20 to 50 cm thick fill deposit. Hammatt (2013) identified 31 archaeological features including a traditional Hawaiian burial within the Jaucus sand that predated the lower buried A-horizon. Winieski and Hammatt (2000) identified 11 burials and of the 31 identified features, 19 were associated with the lower, culturally-enriched A-horizon and include one imu pit and 18 indeterminate pits. Eight features were identified within the upper cultural layer and consisted of one pit containing two dog burials, one possible postmold, and six indeterminate pits. Three additional features that were truncated by fill material post-dating the buried A-horizon were considered to be part of SIHP # -5820 based on proximity. They include one pit feature containing a horse burial, as well as disarticulated and scattered human remains; and two indeterminate pits.

SIHP # -7124 consists of buried in situ and displaced historic infrastructure remnants, demolition debris, and refuse-enriched fill deposits that were initially identified by Pammer et al. (2011). The limits of SIHP # -7124 was expanded by Hammatt (2013).

SIHP # -7189 is a subsurface burnt trash deposit that contains glass bottles, ceramics, metal, and cut faunal bone. The site was originally identified by Pammer et al. (2011) and its boundaries were expanded by Hammatt (2013). Historic artifacts collected from SIHP # -7189 date from the late 1800s to early 1900s are interpreted as being associated with open-air trash burning. The subsurface burnt trash layer was determined to have been deposited in the early twentieth century (ca. 1920s to 1930s) when low-lying areas in Kaka‘ako were infilled to advance urban development (Hammatt 2013).
SIHP # -7190 consists of subsurface salt pan remnants originally identified by Pammer et al. (2011), the limits of which were expanded by Hammatt (2013). The salt pan remnants include alternating layers of clay and organic peat and one sandy clay berm. SIHP # -7190 was identified at depths ranging from 1.3 m to 1.65 m below the surface during the Pammer et al. (2011) study and between 0.78 m and 1.37 m during the Hammatt (2013) study. Multiple fill strata were observed overlying the salt pan remnants including burnt trash fill (SIHP # -7189) and as well as hydraulic fill strata associated with historic land reclamation and urban development.
Section 3 Archaeological Inventory Survey Results

3.1 Inventory Survey Summary

The pedestrian inspection of the project area’s surface confirmed there were no surface archaeological historic properties present. However, an architectural inventory survey of the project area has established that most of the standing architecture within the project area is over 50 years old (Mason Architects, Inc. 2009). The architectural inventory survey stated that the historic buildings within the current project area “[l]acks significance associated with architectural distinction. No known association with a significant person or event. Lacks integrity due to significant alteration. Evaluated ineligible both individually or as part of a district for nomination to the National Register of Historic Places” (Mason Architects, Inc. 2009).

The subsurface testing program initially consisted of 46 machine-assisted test excavations, each measuring 6 m long by 0.8 m wide, for a total surface excavation of approximately 221 sq m (Figure 35). However, upon identifying burial finds in Test Excavations 25 and 40, an additional 195 sq m was excavated in order to better delineate the horizontal extent of subsurface cultural deposits. This expansion of subsurface testing consisted of the excavation of 15 additional test excavations of varying size, increasing the total surface area of excavation to 416 sq m or approximately 3.0% of the total project area.

Six historic properties were identified during subsurface testing, including an early to mid-twentieth century cultural layer (SIHP # -7578); an early twentieth century cultural layer (SIHP # -7579); a pre- to post-Contact cultural layer with a historic burial cluster (SIHP # -7580); a pre-Contact traditional Hawaiian bundle burial (SIHP # -7581); and two sets of disarticulated human skeletal remains within non-burial contexts (SIHP #s -7582 and -7583) (see Figure 35 and Table 2).

Observed stratigraphy from open trenching indicates the project area had been subjected to intensive land reclamation via in-filling of low-lying areas. Fill material associated with land reclamation consisted primarily of crushed coral with smaller amounts of dredged marine clay. This fill material is consistent with material known to have been utilized during large-scale land reclamation projects within the Kaka'ako area (ca. late nineteenth century to early twentieth century), with the sand and ground-up coral (i.e., crushed coral) originating from dredging activities associated with the expansion of Honolulu Harbor and other various marine development (Hawaii Department of Public Works 1914; Hawaii Supreme Court 1915). Historic accounts indicate the entire project area would have been completely filled by 1914.

Observation of naturally deposited sediments capped beneath historic land reclamation fill prompted the designation of three stratigraphic zones within the project area (Figure 36). Each of the three stratigraphic zones coincides with discrete land forms and/or environmental zones that would have been present prior to historic in-filling and other various land alterations associated with urbanization (i.e., stream channeling, etc.).

Stratigraphic Zone 1 consists of the Diamond Head-makai portion of the project area (see Figure 36). The stratigraphic sequence within this zone consists of imported fill sediments (both modern and historic) atop a buried A horizon formed atop naturally deposited Jaucas sand. Underlying the Jaucas sand are naturally deposited marine clays developed atop the coral shelf...
Figure 35. Historic properties identified within the project area
Table 2. Historic Properties Identified within the Project Area

<table>
<thead>
<tr>
<th>SIHP #</th>
<th>Site Type</th>
<th>Function</th>
<th>Age</th>
<th>Significance Criteria</th>
<th>Recommended Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-80-14-7578</td>
<td>Subsurface cultural layer</td>
<td>Habitation</td>
<td>Post-Contact (early to mid-twentieth century)</td>
<td>“d”</td>
<td>Archaeological monitoring</td>
</tr>
<tr>
<td>50-80-14-7579</td>
<td>Subsurface cultural layer</td>
<td>Habitation</td>
<td>Post-Contact (early twentieth century)</td>
<td>“d”</td>
<td>Archaeological monitoring</td>
</tr>
<tr>
<td>50-80-14-7580</td>
<td>Subsurface cultural layer</td>
<td>Habitation/burial</td>
<td>Pre-Contact to post-Contact</td>
<td>“d” and “e”</td>
<td>Archaeological data recovery, burial treatment, preservation, and archaeological monitoring</td>
</tr>
<tr>
<td>50-80-14-7581</td>
<td>Traditional Hawaiian bundle burial</td>
<td>Burial</td>
<td>Pre-Contact</td>
<td>“d” and “e”</td>
<td>Burial treatment</td>
</tr>
<tr>
<td>50-80-14-7582</td>
<td>Disarticulated human skeletal remains</td>
<td>Isolated find location</td>
<td>Indeterminate</td>
<td>“d” and “e”</td>
<td>Burial treatment</td>
</tr>
<tr>
<td>50-80-14-7583</td>
<td>Disarticulated human skeletal remains</td>
<td>Isolated find location</td>
<td>Indeterminate</td>
<td>“d” and “e”</td>
<td>Burial treatment</td>
</tr>
</tbody>
</table>
Figure 36. Stratigraphic zones present within the project area
Stratigraphic Zone 1 represents a coastal sand dune that would have been an elevated land surface rising above the shoreline and surrounding semi-marine environment (tidal flats, coastal lagoons, etc.) prior to historic land reclamation. The likelihood of encountering archaeologically sensitive cultural deposits (i.e., traditional Hawaiian cultural layers and burials, both traditional and historic) within this stratigraphic zone is high.

Stratigraphic Zone 2 runs along the mauka edge of Stratigraphic Zone 1 and fans out at the 'Ewa-makai corner of the project area (see Figure 36). The stratigraphic sequence within this zone consists of imported fill sediments (both modern and historic) atop naturally deposited sandy clay that has formed atop the coral shelf (i.e., limestone bedrock). Stratigraphic Zone 2 represents tidal flats that formed behind the sand dune (Stratigraphic Zone 1) and extended west ('Ewa) along the coast. This stratigraphic zone represents a semi-marine environment (i.e., tidal flats) that existed prior to historic land reclamation. The likelihood of encountering archaeologically sensitive cultural deposits (i.e., traditional Hawaiian cultural layers and burials, both traditional and historic) within this stratigraphic zone is low; however there is still potential for encountering post-Contact cultural layers and structural remnants (i.e., building foundations, wastewater infrastructure, etc.).

Stratigraphic Zone 3 consists of the mauka third of the project area (see Figure 36). The stratigraphic sequence within this zone consists of imported fill sediments (both modern and historic) atop naturally deposited marine clay that has formed atop the coral shelf (i.e., limestone bedrock). The naturally deposited sediments observed in this zone consist of anaerobic soils developed while completely waterlogged and suggest that Stratigraphic Zone 3 represents a coastal lagoon environment formed behind the sand dune (Stratigraphic Zone 1). Prior to historic land reclamation, this zone would have been completely inundated with shallow slow moving water. The likelihood of encountering archaeologically sensitive cultural deposits (i.e., traditional Hawaiian cultural layers and burials, both traditional and historic) within this stratigraphic zone is low; however there is still potential for encountering post-Contact cultural layers and structural remnants (i.e., building foundations, wastewater infrastructure, etc.).

Of particular interest is SIHP # -7580, a pre-Contact to post-Contact subsurface cultural layer. This cultural layer consists of a buried A horizon (i.e., former land surface) developed atop naturally deposited marine sand that consisted of an elevated sand dune amidst a semi-marine environment prior to historic land reclamation of the greater Kaka'ako area. The buried A horizon contains numerous subsurface pit features (fire pits, post molds, cooking features, etc.), contains a historic burial cluster, and is enriched with midden (indicative of a traditional Hawaiian diet) and artifacts (both traditional and historic).

Analysis of the artifact assemblage and charcoal (i.e., radiocarbon analysis) collected from SIHP # -7580 indicates the cultural layer was potentially utilized continuously from the pre-Contact period into the post-Contact period. Collected artifacts include traditional Hawaiian items such as an adze and basalt sinker, as well as western introduced material including chert flakes, potentially used as gun flint or for strike-a-lights, and an engraved mother-of-pearl English game counter originally manufactured in China pre-1840. Additionally, radiocarbon analysis of charcoal indicates occupation associated with the cultural layer spanned from the late fifteenth century into the nineteenth century. (Note that while radiocarbon dates indicate date
ranges into the 1900s, archaeological evidence and historic research has indicated the cultural layer was likely capped by fill events beginning in the mid to late-1800s.)

The archaeological record at this particular location provides evidence of multiple periods of occupation by different groups of individuals influenced by vastly different cultural sensibilities. The initial occupation consisted of pre-Contact indigenous Hawaiians who were utilizing the coastal sand dune within the project area as a living surface and as an area for exploiting ocean resources. This occupation extended into the early post-Contact period, when indigenous Hawaiians were exposed to western influences. During this transitional occupation phase indigenous Hawaiians began to adopt western technologies (e.g., utilization of guns and/or strike-a-lights) and cultural practices (e.g., extended burials within coffins). A dramatic shift then occurs following historic land reclamation (ca. late nineteenth to early twentieth century). At this time, the potential living surface within the project area is vastly expanded, via in-filling of lowland areas, and the indigenous Hawaiian population appears to have been supplanted by a mixture of European and Asian immigrants (based on the observed artifact assemblage collected from the project area). Traditional Hawaiian land use within the project area is no longer existent, a result of the western influenced urban expansion of Honolulu into Kaka'ako—where the project area is located—which became dominated by dense clusters of residential dwellings and buildings associated with light industrial activity.

In summary, archaeological investigations within the project area have revealed the presence of rich archaeological deposits spanning from the pre-Contact period into the post-Contact period. These deposits include subsurface cultural layers, human burials (both pre-Contact and post-Contact), and buried structural remnants (i.e., building foundations). These archaeological deposits are associated with traditional Hawaiian habitation, as well as historic land use (i.e., nineteenth/early twentieth century stables and twentieth century residences).
3.2 Historic Property Descriptions

The following site description has been taken directly from the project’s archaeological inventory survey report (Tulchin and Hammatt 2014) which is currently under review by SHPD.

3.2.1 SIHP # 50-80-14-7580

<table>
<thead>
<tr>
<th>TEMPORARY #</th>
<th>CSH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMAL TYPE:</td>
<td>Subsurface cultural layer and human burials</td>
</tr>
<tr>
<td>FUNCTION:</td>
<td>Habitation</td>
</tr>
<tr>
<td># OF FEATURES:</td>
<td>27 pit features, 17 subfeatures, and 8 burial finds</td>
</tr>
<tr>
<td>AGE:</td>
<td>Pre-Contact to post-Contact</td>
</tr>
<tr>
<td>DIMENSIONS:</td>
<td>Indeterminate</td>
</tr>
</tbody>
</table>

DESCRIPTION: SIHP # -7580 is a subsurface cultural layer observed in the project area within test excavations 5, 8, 9, 11, 12, 20, 32, 35–40, 40A–40H, and 43–47 (Figure 37). It is defined as an area that shows subsurface remnants of pre-Contact and early post-Contact activity. Generally, this is evidenced by an A horizon developed on naturally deposited Jaucas sand, enriched primarily with traditional Hawaiian cultural material. This A horizon was subsequently buried by historic fill events that brought the surface to its current elevation. During these fill events, the upper boundary of the A horizon was truncated during grading that preceded filling.

The cultural layer was documented from 60 to 125 cm below the existing ground surface and consisted of a very dark brown silty sand containing marine shell midden, charcoal, and fire-cracked rock (basalt) evenly dispersed throughout the stratum. The fire-cracked rock consisted of semi-porous, angular, thermally altered basalt. Traditional Hawaiian artifacts were also present within the cultural layer. These included a basalt core (Acc. # 41), an adze fragment (Acc. # 2), a bone awl (Acc. # 39), an aku lure preform (Acc. # 79), and a marine shell gourd stopper (Acc. # 40). Of note was the presence of a basalt sinker (Acc. # 29) which was collected from naturally deposited marine sand underlying the cultural layer.

While observed cultural material was predominantly of pre-Contact to early post-Contact traditional Hawaiian origin, some nontraditional western introduced materials were also collected from the cultural layer. These cultural materials were typically encountered within the top 10 cm of the cultural layer or were encountered within subsurface pit features. These included chert flakes (Acc. # 27), a square head nail (Acc. # 38), an English game chip (Acc. # 80), as well as glass and ceramic fragments.

3.2.1.1 Subsurface pit features

Twenty-seven features and 17 subfeatures associated with SIHP # -7580 were recorded. All of these features and subfeatures consisted of subsurface pit features. Alphabetic feature designations were given to fire pits and other features of particular interest (Table 3). Numeric subfeature designations were assigned to post molds and to ephemeral pit features of...
Figure 37. Distribution of SIHP # -7580 throughout the project area
Table 3. SIHP # 50-80-14-7580 Feature Table

<table>
<thead>
<tr>
<th>Feature</th>
<th>Horizontal Extent</th>
<th>Vertical Extent (cmbs)</th>
<th>Pit Fill</th>
<th>Description</th>
<th>Cultural Material</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>45 cm diameter</td>
<td>130-160</td>
<td>Pit fill consists of Stratum Vb sediment.</td>
<td>Feature consists of a circular concentration of fishbone and charcoal observed within northeast sidewall of TE 8. No pit outline observed. Feature was observed to be isolated within Stratum Vb. The entire feature was sampled and screened (approx. 3 gallons).</td>
<td>Fishbone and charcoal (collected)</td>
<td>Refuse pit</td>
</tr>
<tr>
<td>B</td>
<td>120 cm long x 55+ cm wide</td>
<td>110-140</td>
<td>Mixture of Strata IV and V</td>
<td>Amorphous pit feature observed within the north sidewall and in plan view. Feature originates from Stratum IV and intrudes into Stratum Vb. Base of feature was lined with charred basalt cobbles.</td>
<td>Fire-cracked rock (basalt), marine shell midden, charcoal, and faunal bone (pig)</td>
<td>Fire pit</td>
</tr>
<tr>
<td>C</td>
<td>60 cm long by 35 cm wide</td>
<td>100-130</td>
<td>Mixture of Strata III and IVa</td>
<td>Oblong-shaped pit feature observed in TE 32 plan view. Feature originates from Stratum III and intrudes into Stratum IVs.</td>
<td>Basalt fire-cracked rock, a pig tooth, and charcoal</td>
<td>Food preparation</td>
</tr>
<tr>
<td>D</td>
<td>60 cm diameter</td>
<td>100-130</td>
<td>Mixture of Strata III and IVa</td>
<td>Circular pit feature observed in TE 32 plan view. Feature originates from Stratum III and intrudes into Stratum IVs.</td>
<td>Glass fragments (not collected)</td>
<td>Indeterminate (post-Contact origin)</td>
</tr>
<tr>
<td>E</td>
<td>80 cm long by 70 cm wide</td>
<td>80-110</td>
<td>Stratum II</td>
<td>Amorphous-shaped pit feature observed in the northeast sidewall of TE 38 and in plan view. Feature originated in Stratum II and intrudes into Stratum III.</td>
<td>Basalt fire-cracked rock, assorted marine shell midden, and charcoal</td>
<td>Fire pit</td>
</tr>
<tr>
<td>F</td>
<td>45 cm diameter</td>
<td>85-115</td>
<td>Mixture of Strata III and IVa</td>
<td>Circular pit feature observed in TE 39 plan view. The feature originates from Stratum III and intrudes into Stratum IVa.</td>
<td>Marine shell midden, charcoal, and metal fragments</td>
<td>Post-Contact trash pit</td>
</tr>
<tr>
<td>G</td>
<td>210 cm long by 50 cm wide</td>
<td>70-105</td>
<td>Mixture of Strata IV and Va</td>
<td>Bowl-shaped pit feature observed in TE 40A plan view and in west sidewall. The feature originates from Stratum IV and intrudes into the underlying Jacas sand (Str. Va). The central portion of this feature has been bisected by SIHP # -7578, Feature L.</td>
<td>Fire-cracked rock (basalt), charcoal and marine shell midden, fish bone</td>
<td>Food preparation</td>
</tr>
<tr>
<td>Feature</td>
<td>Horizontal Extent</td>
<td>Vertical Extent (cmbs)</td>
<td>Pit Fill</td>
<td>Description</td>
<td>Cultural Material</td>
<td>Function</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>H</td>
<td>50 cm across in profile</td>
<td>80-100</td>
<td>Stratum IV sediment</td>
<td>Bowl-shaped pit feature observed in west sidewall profile of TE 40C. Feature originates from Stratum IV and intrudes into Stratum Va. A 3-gallon sample was screened.</td>
<td>Sparse marine shell midden, kukui nut shell, dog tooth, fire-cracked rock (basalt), and charcoal (charcoal collected)</td>
<td>Food preparation</td>
</tr>
<tr>
<td>I</td>
<td>180 cm long by 90 cm wide</td>
<td>90-115</td>
<td>Stratum IV sediment</td>
<td>Amorphous-shaped pit feature observed in plan view of TE 40D. Feature originates from Stratum IV and intrudes into Stratum Va. A 10-gallon sample was collected and screened.</td>
<td>Marine shell midden, fire-cracked rock (basalt), burnt coral cobbles, and sparse charcoal; charcoal and marine shell midden collected</td>
<td>Food preparation</td>
</tr>
<tr>
<td>J</td>
<td>35 cm diameter</td>
<td>80-100</td>
<td>Stratum IV sediment</td>
<td>Circular pit feature observed in plan view. Feature originates from Stratum IV and intrudes into Stratum Va. A 4-gallon sample was collected and screened.</td>
<td>Sparse marine shell midden, fire-cracked rock (basalt), and charcoal (not collected)</td>
<td>Fire pit</td>
</tr>
<tr>
<td>K</td>
<td>400 cm long by 380 cm wide</td>
<td>80-120</td>
<td>Stratum IV sediment</td>
<td>Amorphous-shaped pit feature observed in plan view and west sidewall of TE 40D. Feature originates from Stratum IV and intrudes into Stratum Va. Sixteen gallons of sediment were collected and screened. Base of feature was lined with charred coral cobbles and pebbles.</td>
<td>Large concentrations of charcoal and marine shell midden; a gourd stopper (shell) and calcium carbonate crystalline cobbles manuport also observed; all cultural material collected from sample area</td>
<td>Food preparation</td>
</tr>
<tr>
<td>L</td>
<td>155 cm long by 140 cm wide</td>
<td>80-100</td>
<td>Stratum IV sediment</td>
<td>Amorphous-shaped pit feature observed in plan view of TE 40D. Feature originates from Stratum IV and intrudes into Stratum Va. An 8-gallon sediment sample was collected and screened.</td>
<td>Sparse marine shell midden, charcoal, and fire-cracked rock (basalt) (not collected)</td>
<td>Fire pit</td>
</tr>
<tr>
<td>Feature</td>
<td>Horizontal Extent</td>
<td>Vertical Extent (cmbs)</td>
<td>Pit Fill</td>
<td>Description</td>
<td>Cultural Material</td>
<td>Function</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>-------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>M</td>
<td>80 cm long by x 30 cm wide</td>
<td>75-110</td>
<td>Stratum IV sediment</td>
<td>Semi-circular-shaped pit feature in plan view and bowl shaped in east sidewall of TE 40D. Feature originates from Stratum IV and intrudes into Stratum Va.</td>
<td>Sparse charcoal and fire-cracked rock (basalt) (not collected)</td>
<td>Fire pit</td>
</tr>
<tr>
<td>N</td>
<td>170 cm long by 50 cm wide</td>
<td>90-110</td>
<td>Stratum IV sediment</td>
<td>Amorphous-shaped pit feature in plan view of TE 40D. Feature originates from Stratum IV and intrudes into Stratum Va.</td>
<td>Sparse marine shell midden and fire-cracked rock (basalt) (not collected)</td>
<td>Fire pit</td>
</tr>
<tr>
<td>O</td>
<td>320cm by 260 cm</td>
<td>80-95</td>
<td>Pit fill consists primarily of Strata IV and Va sediments.</td>
<td>Observed in plan view of TE 40E. Two linear features connected by three post molds, forming a 90-degree angle. An outline of a semi-circle extends from the northern edge of the feature. The pit feature originates in Stratum IV and intrudes into Stratum Va.</td>
<td>Charcoal observed in post molds</td>
<td>Indeterminate (possible outline of a surface structure)</td>
</tr>
<tr>
<td>P</td>
<td>40 cm diameter</td>
<td>75-90</td>
<td>Pit fill consists of Str. IV sediment</td>
<td>The feature is bowl shaped in north sidewall and circular in plan view of TE 40E. The pit feature originates in Stratum IV and intrudes into Stratum Va.</td>
<td>Marine shell midden, charcoal, and basalt fire-cracked rock</td>
<td>Food preparation</td>
</tr>
<tr>
<td>Q</td>
<td>110 cm by 100 cm</td>
<td>70-90</td>
<td>Stratum IV sediment</td>
<td>Amorphous pit feature observed in plan view and west sidewall of TE 40F. Feature originates within Stratum IV and intrudes into Stratum Va. A 5-gallon sample was collected and screened from the feature.</td>
<td>Marine shell midden, kukui nut shell, charcoal, and fire-cracked rock (basalt)</td>
<td>Food preparation</td>
</tr>
<tr>
<td>R</td>
<td>120 cm diameter</td>
<td>70-100</td>
<td>Stratum IV sediment</td>
<td>Circular pit feature observed in plan view and profile of TE 40F. Feature originates within Stratum IV and intrudes into Stratum Va. Ten gallons screened.</td>
<td>Charcoal, marine shell midden, and fire-cracked rock (basalt)</td>
<td>Fire pit</td>
</tr>
<tr>
<td>Feature</td>
<td>Horizontal Extent</td>
<td>Vertical Extent (cmb)</td>
<td>Pit Fill</td>
<td>Description</td>
<td>Cultural Material</td>
<td>Function</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>S</td>
<td>55 cm diameter</td>
<td>75-105</td>
<td>Mixture of Strata IV and Va</td>
<td>Circular pit feature observed in plan view of TE 40F. Feature originates within Stratum IV and intrudes into Stratum Va. Linear f5 gallons screened.</td>
<td>A basalt flake, dog tooth, marine shell midden, and charcoal</td>
<td>Food preparation</td>
</tr>
<tr>
<td>T</td>
<td>160(L) x 10(W)</td>
<td>75-85</td>
<td>Mixture of Strata IV and Va</td>
<td>Linear pit feature observed in plan view of TE 40F. Feature originates within Stratum IV and intrudes into Stratum Va.</td>
<td>No cultural material was observed.</td>
<td>Indeterminate (possible outline of a surface structure)</td>
</tr>
<tr>
<td>U</td>
<td>120 cm by 110 cm</td>
<td>75-90</td>
<td>Stratum IV sediment</td>
<td>Amorphous pit feature observed in plan view of TE 40F. Ten gallons were screened.</td>
<td>Glass fragments, sparse charcoal, fire-cracked rock (basalt), slag, and marine shell midden (not collected)</td>
<td>Historic fire pit</td>
</tr>
<tr>
<td>V</td>
<td>60 cm diameter</td>
<td>80-100</td>
<td>Stratum IV sediment</td>
<td>Circular pit feature observed in plan view of TE 40G. Feature originates from Stratum IV and intrudes into Stratum Va. A 5-gallon sample was collected and screened.</td>
<td>Marine shell midden, fish bone, and charcoal; all cultural material collected</td>
<td>Food preparation</td>
</tr>
<tr>
<td>W</td>
<td>50 cm long by 40 cm wide</td>
<td>80-105</td>
<td>Stratum IV sediment</td>
<td>Oblong pit feature observed in plan view of TE 40G. Feature originates from Stratum IV and intrudes into Stratum Va. A 5-gallon sample was collected and screened.</td>
<td>Marine shell midden, fish bone, and charcoal; all cultural material collected</td>
<td>Food preparation</td>
</tr>
<tr>
<td>X</td>
<td>120 cm long by 70 cm wide</td>
<td>80-100</td>
<td>Stratum IV sediment</td>
<td>Oblong pit feature observed in plan view and east profile of TE 40G. Feature originates from Stratum IV and intrudes into Stratum Va. A 10-gallon sample was collected and screened.</td>
<td>Sparse charcoal, shell midden, and fire-cracked rock (basalt) observed but not collected</td>
<td>Fire pit</td>
</tr>
<tr>
<td>Y</td>
<td>270 cm long by 120 cm wide</td>
<td>80-115</td>
<td>Stratum IV sediment</td>
<td>Circular pit feature observed in plan view and west profile of TE 40G. Feature originates from Stratum IV and intrudes into Stratum Va. A 20-gallon sample was collected and screened.</td>
<td>Charcoal, metal, glass fragments, fire-cracked rock (basalt), and sparse marine shell observed but not collected</td>
<td>Fire pit</td>
</tr>
<tr>
<td>Feature</td>
<td>Horizontal Extent</td>
<td>Vertical Extent (cmbs)</td>
<td>Pit Fill</td>
<td>Description</td>
<td>Cultural Material</td>
<td>Function</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Z</td>
<td>90 cm diameter</td>
<td>80-125</td>
<td>Stratum IV sediment</td>
<td>Circular pit feature observed in plan view and east sidewall of TE 40G. Feature originates from Stratum IV and intrudes into Stratum Va. Five gallons of sediment were collected and screened.</td>
<td>Sparse charcoal, shell midden, and fire-cracked rock (basalt) observed but not collected</td>
<td>Fire pit</td>
</tr>
<tr>
<td>AA</td>
<td>85 cm diameter</td>
<td>85-115</td>
<td>Stratum IV sediment</td>
<td>Circular pit feature observed in plan view and north sidewall of TE 47. Feature originates from Stratum IV and intrudes into Stratum Va. Ten gallons of sediment were collected and screened.</td>
<td>Moderate charcoal, fire-cracked rock (basalt), and sparse marine shell observed, but not collected</td>
<td>Fire pit</td>
</tr>
</tbody>
</table>
Table 4. SIHP # 50-80-14-7580 Subfeature Table

<table>
<thead>
<tr>
<th>Subfeature</th>
<th>Horizontal Extent</th>
<th>Vertical Extent (cmbs)</th>
<th>Pit Fill</th>
<th>Description</th>
<th>Cultural Material</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 cm diameter</td>
<td>120-160</td>
<td>Mixture of Strata IV and V</td>
<td>Circular pit feature observed in excavation plan view. Feature originates in Stratum IV and intrudes into Stratum V.</td>
<td>None observed</td>
<td>Post mold</td>
</tr>
<tr>
<td>2</td>
<td>20 cm diameter</td>
<td>120-140</td>
<td>Mixture of Strata IV and V</td>
<td>Circular pit feature observed in excavation plan view. Feature originates in Stratum IV and intrudes into Stratum V.</td>
<td>None observed</td>
<td>Post mold</td>
</tr>
<tr>
<td>3</td>
<td>20 cm diameter</td>
<td>120-130</td>
<td>Mixture of Strata IV and V</td>
<td>Circular pit feature observed in excavation plan view. Feature originates in Stratum IV and intrudes into Stratum V.</td>
<td>None observed</td>
<td>Post mold</td>
</tr>
<tr>
<td>4</td>
<td>25 cm diameter</td>
<td>115-150</td>
<td>Mixture of Strata IV and V</td>
<td>Circular pit feature observed in excavation plan view. Feature originates in Stratum IV and intrudes into Stratum V.</td>
<td>None observed</td>
<td>Post mold</td>
</tr>
<tr>
<td>5</td>
<td>55 cm diameter</td>
<td>80-110</td>
<td>Stratum II</td>
<td>Circular shaped pit feature observed in TE 38 plan view. Feature originated in Stratum II and intrudes into Stratum III.</td>
<td>Sparse marine shell midden and charcoal</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>6</td>
<td>50 cm long</td>
<td>80-100</td>
<td>Stratum II</td>
<td>Rectangular pit feature observed in the northeast sidewall of TE 38 and in plan view. Feature originated in Stratum II and intrudes into Stratum III.</td>
<td>Sparse marine shell midden and charcoal</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>7</td>
<td>20 cm diameter</td>
<td>85-110</td>
<td>Mixture of Strata III and IVa</td>
<td>Circular pit feature observed in TE 39 plan view. The feature originates from Stratum III and intrudes into Stratum IVa.</td>
<td>Sparse marine shell midden</td>
<td>Indeterminate (possible natural undulation of the cultural layer)</td>
</tr>
<tr>
<td>8</td>
<td>160 cm long by 15 cm wide</td>
<td>90-115</td>
<td>Stratum IV sediment</td>
<td>Linear pit feature observed in plan view and SE profile of TE 40B. Feature originates from Stratum IV and intrudes into Stratum Va. The entire feature was sampled and screened (approx. 3 gallons).</td>
<td>Sparse marine shell midden and charcoal (not collected)</td>
<td>Indeterminate (possible natural undulation of the cultural layer)</td>
</tr>
<tr>
<td>Subfeature</td>
<td>Horizontal Extent</td>
<td>Vertical Extent (cmbs)</td>
<td>Pit Fill</td>
<td>Description</td>
<td>Cultural Material</td>
<td>Function</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>15 cm diameter</td>
<td>85-100</td>
<td>Stratum IV sediment</td>
<td>Circular pit feature observed within the plan view of TE 40B. Feature originates from base of Str. IV and intrudes into Str. Va. The entire feature was sampled.</td>
<td>None observed</td>
<td>Indeterminate (possible natural undulation of the cultural layer)</td>
</tr>
<tr>
<td>10</td>
<td>240 cm long by 160 cm wide</td>
<td>80-115</td>
<td>Stratum IV sediment</td>
<td>Amorphous-shaped feature in plan view, and bowl-shaped in SE and NW profile walls of TE 40B. Feature originates from Stratum IV and intrudes into Stratum Va. A 19-gallon sample was screened.</td>
<td>Sparse charcoal, marine shell midden, and fire-cracked rock (basalt) (not collected)</td>
<td>Indeterminate (possible natural undulation of the cultural layer)</td>
</tr>
<tr>
<td>11</td>
<td>35 cm long</td>
<td>90-115</td>
<td>Stratum IV sediment</td>
<td>Square-shaped feature in NW profile of TE 40B. Feature originates from Stratum IV and intrudes into Stratum Va. A 4-gallon sample was screened.</td>
<td>Charcoal and marine shell midden (collected), fire-cracked rock (basalt) (not collected)</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>12</td>
<td>80 cm diameter</td>
<td>105-120</td>
<td>Stratum IV sediment</td>
<td>Circular-shaped pit feature observed in east profile of TE 40C and in plan view. Feature originates at base of Str. IV and intrudes into Str. Va. A 5-gallon sample was screened.</td>
<td>Sparse marine shell midden, and charcoal flecking (not collected)</td>
<td>Indeterminate (possible natural undulation of the cultural layer)</td>
</tr>
<tr>
<td>13</td>
<td>45 cm diameter</td>
<td>85-95</td>
<td>Stratum IV sediment</td>
<td>Circular-shaped pit feature observed in plan view of TE 40D. Feature originates from Stratum IV and intrudes into Stratum Va. A 3-gallon sediment sample was collected and screened.</td>
<td>None observed</td>
<td>Post mold</td>
</tr>
<tr>
<td>14</td>
<td>20 cm diameter</td>
<td>90-100</td>
<td>Stratum IV sediment</td>
<td>Circular pit feature observed in plan view of TE 40D. Feature originates from Stratum IV and intrudes into Stratum Va. A 1-gallon sediment sample was collected and screened.</td>
<td>None observed</td>
<td>Post mold</td>
</tr>
</tbody>
</table>
Cultural Material and Function

<table>
<thead>
<tr>
<th>Subfeature</th>
<th>Horizontal Extent</th>
<th>Vertical Extent (cmbs)</th>
<th>Pit Fill</th>
<th>Description</th>
<th>Cultural Material</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>20 cm diameter</td>
<td>80-90</td>
<td>Stratum IV sediment</td>
<td>Circular pit feature observed in plan view of TE 40D. Feature originates from base of Str. IV and intrudes into Stratum Va. Entire feature was screened (approx. 1 gallon).</td>
<td>None observed</td>
<td>Post mold</td>
</tr>
<tr>
<td>16</td>
<td>10 cm by 10 cm</td>
<td>80-90</td>
<td>Stratum IV sediment</td>
<td>Square-shaped pit feature observed in plan view. Feature originates at base of Str. IV and intrudes into Str. Va. Entire feature was screened (approx. 1.5 gallons).</td>
<td>None observed</td>
<td>Post mold</td>
</tr>
<tr>
<td>17</td>
<td>20 cm wide by 60 cm deep in profile</td>
<td>85-145</td>
<td>Strata IV and V sediment</td>
<td>Narrow linear pit feature observed in east profile of TE 40G. Feature originates from Stratum IV and intrudes into Stratum Vb.</td>
<td>None observed</td>
<td>Post mold</td>
</tr>
</tbody>
</table>
indeterminate function that may represent natural undulations of the cultural layer (Table 4 and Figure 38).

Approximately 78% (21) of the identified pit features within the “feature” category consisted of traditional Hawaiian fire pits, with 48% (10) of these determined to have been utilized for food production. The size and shape of these fire pits vary considerably with the largest (Feature K) measuring 400 cm long by 380 cm wide and 40 cm deep, and the smallest (Feature J) having a 35 cm diameter and 20 cm depth.

The remaining pit features within the “feature” category consist of a traditional Hawaiian refuse pit (Feature A), a historic fire pit (Feature U), and four pit features of indeterminate function. Two of these indeterminate features (Features D and F) contained either glass or metal fragments, and are thus of post-Contact origin. The remaining two indeterminate features (Features O and T) consist of linear outlines imprinted into the sterile marine sand, and may correspond to the outlines of surface structures once erected atop the now buried A horizon cultural layer (SIHP # -7580).

Approximately 53% (9) of the identified subfeatures consisted of post molds. All of the post molds originated at the SIHP # -7580 cultural layer and were excavated into the underlying naturally deposited sediments. The average diameter of the post molds was 20 cm. None of the post molds assigned as subfeatures contained cultural material.

Approximately 47% (8) of the identified subfeatures were of indeterminate function. These pit features did not have any definitive shape, and contained sparse cultural material that was consistent with the general distribution of cultural material throughout the cultural layer (SIHP # -7580). Thus an exact function could not be assigned to these subfeatures. It is possible these subfeatures represent natural undulations within the cultural layer.

Pit features associated with SIHP # -7580 of particular interest include Features A, K, and O.

SIHP # -7580, Feature A consists of a fishbone and charcoal concentration observed within naturally deposited marine clay. This feature is of interest because it was present below the cultural layer and thus appears to have been created prior to the formation of the cultural layer

The feature was observed within the northwest sidewall of TE 8. The feature was circular in shape, with a 45 cm diameter in profile and present from 130 to 160 cm below the existing surface. No pit outline was observed, further suggesting the feature may be of some antiquity. The fishbone and charcoal was collected from the feature for analysis (see Section 5 Results of Laboratory Analysis below). While not stratigraphically associated with the SIHP # -7580 cultural layer, the cultural material present within the feature warranted its inclusion as a feature component of SIHP # -7580.

SIHP # -7580, Feature K consists of a large fire pit utilized for food production. It was observed within TE 40D and TE 40F (Figure 39). The pit feature originated at the cultural layer and was excavated into the underlying marine sand. The feature had a horizontal extent of 400 cm long by 380 cm wide, and was 80 to 120 cm below the existing surface. The base of the feature was lined with charred coral cobbles and pebbles, with concentrations of large chunks of charcoal atop them. A large quantity of marine shell midden and charcoal was observed during sampling of the feature. Also present was fire-cracked rock (basalt), burnt coral cobbles, a gourd stopper (shell) (Acc. # 40), and a calcium carbonate crystalline cobble manuport (Acc. # 63) (see Data Recovery Plan for SIHP # 50-80-14-7580, Kamehameha Schools Kaka'ako Block I 79

TMKs: [1] 2-1-056:002, 007 and 008
Figure 38. Representative photographs of SIHP # -7580, Features (top) and Subfeatures (bottom)
Figure 39. SIHP # -7580, Feature K photo collage

Data Recovery Plan for SIHP # 50-80-14-7580, Kamehameha Schools Kaka'ako Block I

TMKs: [1] 2-1-056:002, 007 and 008
Section 5 Results of Laboratory Analysis below). This feature is of interest due to its large size, high volume of midden, presence of artifacts, and construction style (base of the feature is lined with coral cobbles and pebbles). All of these factors are suggestive of a feature that may have been utilized as a reusable *imu* and/or was a component of a cooking house. Both of which indicate a potential of more formal permanent habitation at this site as opposed to more transient habitation associated with a small fishing camp.

SIHP #7580, Feature O was observed in TE 40E. It consisted of two linear features connected by four post molds, forming a 90-degree angle (Figure 40). An outline of a semi-circle extends from the northern edge of the feature. The entire feature, the 90-degree angle and semi-circle, measure approximately 320 cm by 260 cm, and were observed from 80 to 95 cm below the existing surface. The four post molds associated with this feature have an average diameter of 20 cm, and were observed from 80 to 110 cm below the existing surface. No cultural material was present within SIHP #7580 Feature O with the exception of charcoal collected at the base of the northernmost post mold. The size and shape of this feature, along with the presence of multiple associated post molds suggests SIHP #7580, Feature O may be the outline of a surface structure. The function of this structure remains unknown.

3.2.1.2 Burials

SIHP #7580 includes eight human burials (Burial Find #s 1–8). These burials consist of a cluster of early post-Contact coffin burials located within the southern corner of the project area (Figure 41 and Figure 42). The burial pits of these burials originate within the SIHP #7580 cultural layer and extend into the underlying marine sand and clay.

Table 5 provides a summary of each of the burial finds. Detailed discussions and maps for each burial find are provided within Section 4.2.2 Test Excavation Documentation above.
Figure 40. SIHP # -7580, Feature O, plan view photos from TE 40E

Feature O, view to east

Feature O, view to south

Figure 40. SIHP # -7580, Feature O, plan view photos from TE 40E

Data Recovery Plan for SIHP # 50-80-14-7580, Kamehameha Schools Kaka'ako Block I

TMKs: [1] 2-1-056:002, 007 and 008
Figure 41. Locations of burial finds within the project area
Figure 42. Location of SIHP # -7580 Burial Find #s 1–8
Table 5. SIHP # 50-80-14-7580 Burial Finds

<table>
<thead>
<tr>
<th>Burial Find #</th>
<th>Test Excavation</th>
<th>Depth</th>
<th>Stratigraphic Provenience</th>
<th>Burial Style</th>
<th>Interpreted Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>Burial pit from 70-160 cmbs</td>
<td>Burial pit originates within SIHP # -7580 cultural layer and extends into underlying marine sand.</td>
<td>Intact coffin burial, adult; rectangular burial pit with tight corners; extended supine position; feet oriented makai (SW); skeletal remains observed atop coral shelf</td>
<td>Post-Contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burial at 135 cmbs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40C</td>
<td>Burial pit at 80 cmbs</td>
<td>Burial pit originates within SIHP # -7580 cultural layer and extends into underlying marine sand.</td>
<td>Intact coffin burial, juvenile; rectangular burial pit; extended supine position; feet oriented makai (SW); skeletal remains observed within Jaucas sand</td>
<td>Post-Contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burial at 120 cmbs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40C</td>
<td>Burial pit at 80 cmbs</td>
<td>Burial pit originates within SIHP # -7580 cultural layer and extends into underlying marine sand.</td>
<td>Intact coffin burial, adult; rectangular burial pit; extended supine position; head oriented makai (SW); coffin outline and decomposing metal hardware observed; skeletal remains observed within Jaucas sand</td>
<td>Post-Contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burial at 120 cmbs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>40C</td>
<td>Burial at 110 cmbs</td>
<td>Burial is directly below an early twentieth century sewer line and extends into an unexcavated sidewall. Burial pit is difficult to discern.</td>
<td>Partial skull, fragmented by utility disturbance; based on stratigraphic provenience with Burial Finds 3 and 4, it is believed Burial Find 5 is also a coffin burial that remains relatively intact beneath an abandoned utility line</td>
<td>Post-Contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40D</td>
<td>Burial pit from 65-150 cmbs</td>
<td>Burial pit originates within SIHP # -7580 cultural layer and extends into underlying marine sand and clay.</td>
<td>Intact coffin burial, adult; rectangular burial pit with tight corners; extended supine position; head oriented mauka (NE); deteriorating coffin wood observed; bone button observed in pit fill; skeletal remains observed within marine clay</td>
<td>Post-Contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burial at 140 cmbs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIS for Kamehameha Schools Kaka‘ako Block I, Honolulu, O‘ahu

TMKs: [1] 2-1-056:002, 007 and 008
<table>
<thead>
<tr>
<th>Burial Find #</th>
<th>Test Excavation</th>
<th>Depth</th>
<th>Stratigraphic Provenience</th>
<th>Burial Style</th>
<th>Interpreted Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>40D</td>
<td>Burial pit from 75-140 cmbs Burial at 120 cmbs</td>
<td>Burial pit originates within SIHP # -7580 cultural layer and extends into underlying marine sand and clay.</td>
<td>Intact coffin burial, adult; top of burial pit delineated with a rectangular mound constructed of coral boulders and cobbles; large square-cut coral block inset into the ground and marks/delineates the top SW edge of burial; rectangular burial pit with tight corners; extended supine position; head oriented makai (SW); coffin outline observed; skeletal remains observed within marine clay</td>
<td>Post-Contact</td>
</tr>
<tr>
<td>7</td>
<td>40F</td>
<td>Burial pit from 70-150 cmbs Burial at 150 cmbs</td>
<td>Burial pit originates within SIHP # -7580 cultural layer and extends into underlying marine sand and clay.</td>
<td>Intact coffin burial, adult; rectangular burial pit, 210 cm (L) x 60 cm (W); extended supine position; feet oriented mauka (NE); coffin outline and metal nails observed; skeletal remains observed within marine clay</td>
<td>Post-Contact</td>
</tr>
<tr>
<td>8</td>
<td>40F</td>
<td>Burial pit from 80-140 cmbs Burial at 140 cmbs</td>
<td>Burial pit originates within SIHP # -7580 cultural layer and extends into underlying marine sand and clay.</td>
<td>Intact coffin burial, adult; rectangular burial pit, 200 cm (L) x 55 cm (W); extended supine position; feet oriented mauka (NE); coffin outline observed; skeletal remains observed within marine clay</td>
<td>Post-Contact</td>
</tr>
</tbody>
</table>
Section 4 Community Consultation

4.1 Requirement for Consultation

SIHP # 50-80-14-7580 is significant as a traditional cultural resource (HAR §13-284-6 Criterion “e”) and therefore is required to meet the SHPD/DLNR requirement for consultation with ethnic organizations or individuals during the preservation plan development.

Hawai‘i Administrative Rules 13-277-3 (4) governing Preservation Plans specifies:

The agency or person shall consult with ethnic organizations and individuals for whom the historic properties are of significance. The comments on preservation treatment expressed by these individuals or organizations shall be considered when preparing the preservation plan. The plan shall include a list of individuals and organizations consulted and shall summarize their input.

4.2 Consultation Efforts

4.2.1 KS Cultural Stakeholders Meeting

Cultural consultation for this data recovery plan occurred during an August 27, 2014 meeting. In attendance were representatives from KS, MK, CSH, as well as OIBC recognized cultural descendants for SIHP # 7580. The meeting began with a brief discussion of data recovery as a mitigation measure that is employed to salvage archaeological data from a historic property before it is destroyed due to proposed project construction. Next, proposed data recovery excavations methods were presented, as well as the proposed locations of data recovery excavations. Proposed data recovery research objective were also briefly discussed. The cultural descendants understood and were agreeable to what was presented, but indicated that they wanted to review the data recovery plan once it is accepted by SHPD.
Section 5 Data Recovery Research Objectives and Methods

5.1 Research Objectives

The primary focus of the data recovery is to better determine the nature, density, and distribution of subsurface, culturally enriched strata (cultural layers), particularly SIHP # 50-80-14-7580, through a synthesis of previous archaeological findings and data recovery fieldwork. Collected data will help expand knowledge of traditional and western influenced Hawaiian settlement within marginal coastal areas of southern O'ahu. The synthesis of previous archaeological findings and data recovery fieldwork will be guided by the following research objectives:

Research Objective 1 - Acculturization: SIHP -7580 consists of a cultural layer associated with land use spanning from the pre-Contact (late-1400s) to post-Contact (early-1800s) period. Based on data obtained during the AIS (Tulchin et al. 2014b) it appears that settlement associated with SIHP -7580 was less intensive and involved individuals of lesser social position compared with sites documented to the north along the Honolulu waterfront [ex. SIHP -5496 (Lebo and McGuirt 2000) and SIHP -4875 (Goodwin and Allen 2005)]. What are the differences of cultural assimilation between groups of varying status? Is the rate of acculturization the same? Are there certain aspects of western culture that were universally adopted, such as religious practices (ex. Extended burial vs flexed), and others that reflected social stratification, such as acquisition imported building materials? Are western introduced artifacts/materials utilized differently?

Research Objective 2 - Site formation and chronology: What do the components of the subsurface cultural layer(s) inform about prior land use within the project area? What is the relationship between cultural layer formation and pre-land reclamation geology/topography (i.e., coastal sand dune, tidal flats, and coastal lagoon)? How are the various land forms utilized? Is there spatial patterning where particular types of features occur? Is the discontinuous nature of the cultural layer a function of historic disturbance, selective archaeological investigation, or reflective of discrete zones of cultural use?

5.2 Data Requirements

The following data are required to complete the proposed research design:

1) A synthesis of archival, ethnographic, archaeological, etc. datasets that have already been obtained for cultural layers documented along the Honolulu waterfront for comparison to SIHP # 50-80-14-7580, a cultural layer from coastal Kaka’ako.
2) The collection of new archaeological data for SIHP # 50-80-14-7580 including the stratigraphic sequence, characterization of sediments including depositional context and integrity, and radiocarbon, artifact, and floral/faunal material.
3) The collection of controlled hand-excavated data from 10-cm increments within SIHP # 50-80-14-7580 to assess possible vertical and/or horizontal changes in artifact, floral/faunal, charcoal, and other content, and to accurately identify the upper limit of each pit feature in order to better understand the sequence and depth of individual features.
4) The collection of controlled hand-excavated data from within each pit feature, including dimensions, volume, artifact, floral/faunal, charcoal, and other content which may be used to characterize intra- and/or inter-feature variability.

5) Radiocarbon analysis from multiple contexts that may be used to build the depositional chronology of land use.

5.3 Field Methods

5.3.1 Proposed Sample

Four data recovery test excavations (DR-1 to DR-4) are proposed within the current project area (Figure 43). Three of the data recovery test excavations (DR-1 to DR-3) are proposed to be 3 m long by 3 m wide, with the fourth proposed data recovery excavation being 6 m long by 3 m wide. This will result in 45 sq m of excavation. The proposed testing strategy is guided by the research design and targets locations within the project area that; 1) likely possess SIHP # 50-80-14-7580 and/or additional cultural deposits; 2) have not been tested during the project AIS or previous study; and 3) are located in proximity to or between previously identified archaeological features/site areas (see Figure 43). For example, DR-4 is located within the project area adjacent to AIS TE-5 which identified the presence of SIHP -7580 at the interface of two pre-land reclamation environmental zones (i.e., tidal flats and coastal lagoon). The excavation of DR-4 will assist in determining the nature of the cultural deposits at this location and expand knowledge about how the varying pre-land reclamation environmental conditions within the project area were exploited.

5.3.2 Mechanically Assisted Excavation

The data recovery excavations will be assisted by the use of a backhoe. Mechanical assistance will be used to remove the compacted fill layers that cap the SIHP -7580 cultural layer, and will be used to replace and compact the fill following the completion of each data recovery excavation. In general, mechanical excavation assistance of fill deposits will extend to a depth of 60 to 100 cm based on the documentation of stratigraphy during the project AIS.

Data recovery methodology has been designed to eliminate mechanical excavation through sand deposits including Jaucas sand and culturally enriched sand A horizons above the water table. These sand deposits will be hand excavated. During hand excavation through sand deposits, the backhoe may assist with the removal of already hand-excavated sediments. For example, if the archaeologists piled the hand-excavated sand into one corner of the excavation, the backhoe may remove this already excavated sand.

5.3.3 Controlled Excavation

Controlled excavation methodology will be implemented for all soil potentially containing the buried SIHP # 50-80-14-7580 subsurface cultural layer. Excavation will begin with the mechanical removal of fill deposits down to the upper boundary of the buried A horizon. The upper boundary of the buried A horizon will be scraped clean using a flat-bladed shovel and any exposed potential feature outlines or in situ artifacts or manuports will be mapped in plan view with specific depths recorded below surface. The upper boundary will be photographed from multiple angles. Artifacts and/or manuports will be collected and bagged by provenience. Excavations at the surface of SIHP -7580 will be divided into a grid of 1m x 1m test units.
Figure 43. Aerial photograph showing the project area and the location of the proposed location of data recovery excavations (source: Google Earth 2013)
Excavation will be conducted in arbitrary 10 cm increments, stopping at each increment to clean, photograph, and map the excavation surface and to inspect for potential pit feature outlines. The excavation by increments will be accomplished using both flat-bladed shovels and trowels. All in situ artifacts or concentrations of cultural material will be mapped in plan view and/or profile. A 100% screening sampling strategy will be employed for the culturally enriched strata. Pit fill from subsurface pit features will be 100% screened and weighed. Incremental excavation will cease upon the full exposure of culturally sterile Jaucas sand or marine sediment. All four sidewalls will be profiled for each data recovery test excavation.

5.3.4 Subsurface Feature Documentation

Subsurface pit features such as post molds and fire pits will be excavated in 10 cm increments, in the same manner as the surrounding A horizon. Features will be photographed and measured and a plan view drawn. The depth of origin below surface and base below surface will be measured.

5.3.5 Field Screening

A 100% screening sampling strategy will be employed for the culturally enriched strata. Screening will be performed through 1/8-inch wire mesh. All of the material collected from screened samples will be bagged and labeled with provenience information. All cultural material will be collected and have a provenience by stratum, depth below surface, and test excavation/test unit. This data will be used to create density contour maps for charcoal, midden, and artifacts.

5.3.6 Collection of Radiocarbon Samples

Radiocarbon samples will originate from in situ charcoal concentrations, lenses, or fragments. Individual charcoal fragments collected during excavation will be handled as little as possible and preferably only with a trowel or tweezers. Individual charcoal specimens will be placed securely within a pocket of aluminum foil and within a sample bag labeled with provenience information. These samples will then be submitted for wood taxa identification. Short-lived plant species identified by taxa will then be selected for radiocarbon analysis using the Accelerator Mass Spectrometry (AMS) technique. Large samples of charcoal concentrations or the organic sediment collected from a column subsample can be placed directly within a plastic bag and submitted for AMS radiocarbon analysis. Individual charcoal specimens will range from 10 to 50 mg. Organic sediment samples will range from 2 to 10 g. Analysis will include a comparison with other radiocarbon data reported from cultural layers documented along the Honolulu waterfront and from coastal Kaka'ako.

5.3.7 Collection of Artifacts

All traditional Hawaiian and historic artifacts associated with historic properties selected for data recovery will be collected, sorted by type if applicable, and bagged by provenience. In situ artifacts will be included on plan and/or profile maps. All of the artifacts will be taken to the laboratory for type-specific processing and curation. Analysis will include a comparison with other finds documented along the Honolulu waterfront and from coastal Kaka'ako.
5.3.8 Collection of Faunal Remains

All terrestrial and marine vertebrates and invertebrates associated with historic properties selected for data recovery will be collected, sorted by type if applicable, and bagged by provenience. Analysis will include a comparison with other finds documented along the Honolulu waterfront and from coastal Kaka‘ako.

5.4 Laboratory Methods

5.4.1 Wood Taxa Identification

Appropriate charcoal samples will be prepared, weighed, and submitted for species identification. Samples will be submitted to the International Archaeological Research Institute, Inc. (IARII) for taxa identification. The samples will be analyzed under magnification of a dissecting microscope and then compared with anatomical characteristics of known woods in the Pacific Islands Wood Collection at the Department of Botany, University of Hawai‘i at Mānoa, as well as published descriptions. Taxa identification of wood samples will provide useful information for interpreting the environmental and cultural history of the project area. Analysis by IARII will also identify short-lived plant species, which can be used for radiocarbon analysis.

5.4.2 Radiocarbon Analysis

Charcoal samples from identified plant species will be handled as little as possible in the laboratory and submitted to Beta Analytic, Inc. of Miami, Florida, for radiocarbon dating analysis. The samples will be analyzed using the AMS method. The conventional radiocarbon age determined by Beta Analytic, Inc. will be calibrated to calendar ages using the OxCal calibration program, Version 4.1, developed by the University of Oxford Radiocarbon Accelerator Unit and available as shareware over the internet.

5.4.3 Artifact Analysis

All traditional Hawaiian and historic artifacts from historic properties selected for data recovery will be collected and transported to the laboratory. Artifact processing within the laboratory will be class-specific and may include dry-brushing, washing, drying, and refitting. Traditional Hawaiian artifacts will be identified by form and function. Lithics may be submitted for Energy-Dispersive X-Ray Fluorescence (EDXRF) analysis. Historic artifacts will be identified using standard reference material. Artifact analysis will produce a master catalogue to be presented in the data recovery report. The analysis will be used to better refine the chronology of specific deposits and archaeological features as well as provide information on land use and potential cultural affiliation.

5.4.4 EDXRF Analysis

Selected lithic artifacts or debitage may be submitted to Dr. Peter Mills at the X-Ray Fluorescence (XRF) Laboratory at the University of Hawai‘i at Hilo for EDXRF analysis. EDXRF analysis is an effective way to determine elemental composition of archaeological material, and in some instances the origin of the material can be determined. X-ray spectrometry emissions produce an energy spectrum observable as peaks of high and low concentrations of trace elements. These trace elements are measured as value ranges. These value ranges are compared to other known value sets and to a constant geological standard (BHVO-2) used as the control sample. Samples are analyzed non-destructively with an accuracy of less than 1% of...
relative error and comparable reproducibility (Shackley 2010). This analysis does not relate to a specific data recovery research objective, but may assist in the characterization of settlement patterns, trade, lithic utilization, and craft specialization. This data will be compared with EDXRF data and groupings collected during the project’s AIS as well as other sources. Following analysis, artifacts will be returned to the CSH laboratory for curation.

5.4.5 Faunal Analysis

Vertebrate faunal material will be identified to the lowest possible taxa, weighed in grams, and catalogued. Shell midden will be separated from non-midden shell. Shell midden will be identified to the lowest possible taxa, weighed in grams, and catalogued. Non-midden shell will be weighed in grams as a bulk total with no additional analysis warranted. A master catalogue of faunal material will be produced and included in the data recovery report.

5.5 Data Recovery Report Production

In compliance with HAR §13-278-4(a), the final data recovery report will contain the following:

1. An in-depth management summary that presents concise information including information about the site(s) studied and general findings relevant to research objectives;
2. An introduction, including reasons for conducting research and the location of the project area. A standard topographic map, as produced by the U.S. Geological Survey, shall be used to delineate the project area and the site(s) investigated. The introduction will include text that specifies the ahupua’a, district, island, and Tax Map Key (TMK) of the project parcel;
3. An in-depth presentation of the research questions incorporating prior archaeological and historic studies;
4. An archaeological field methods section which identifies the date the work was performed and the number of personnel assigned to the investigation, with names and qualifications of the principal investigator and field director. The field methods will also specify any deviations from the data recovery plan, including sampling strategies and techniques used;
5. Scale maps of sediment profiles and any other features exposed by trench excavations;
6. A section on radiocarbon analysis methodology and reported results;
7. A separate section on any other types of cultural material found, possibly including historic trash (i.e. glass bottles), traditional Hawaiian artifacts, (i.e., fishhooks or other fishing gear), macro-wood particles, marine or terrestrial shell, and vertebrate bone;
8. A summary chapter which reevaluates the findings relative to each research question and reviews and analyzes earlier data collected during the inventory survey;
9. References; and
10. Appendices:
 - Beta Analytic Radiocarbon Sheets
 - Other specialized analysis, such as fossilized shell analysis, or vertebrate bone analysis, if appropriate.

An end of field work letter will be submitted to the SHPD and Kamehameha Schools (project proponent) within 30 days of the fieldwork’s completion. When Kamehameha Schools is satisfied with the draft data recovery report, the report will be submitted to SHPD for their concurrence with the content of the data recovery report and the successful implementation of this data recovery program. SHPD will have 30 days to comment on the data recovery report. A final report shall then be produced, incorporating any recommended revisions as agreed upon by all reviewing parties.

Under HAR § 13-284-9(d) Kamehameha Schools (project proponent) can provide documentation to SHPD that the data recovery fieldwork has been successfully completed and ask for SHPD’s concurrence that, with the understanding that the complete data recovery report is forthcoming, construction can start at the project. Based on this documentation, SHPD has 30 days to concur with the project proponent’s request.

5.6 Burials

SIHP # 50-80-14-7580 consists of a pre-Contact to post-Contact cultural layer with a historic burial cluster (Burial Finds 1–8) that was previously identified during the project’s AIS (Tulchin et al. 2014b). The project’s AIS evaluated SIHP # 50-80-14-7580 as significant under HAR § 13-284-6 Criteria “c,” “d” and “e” (Tulchin et al. 2014b). As this historic property is previously identified any burials encountered during data recovery will also be considered “previously identified”. Thus if any additional burials are encountered, they will fall under the jurisdiction of the O‘ahu Island Burial Council (OIBC), with their treatment to be addressed in a burial treatment plan per HAR Chapter 13-300-33.

5.7 Disposition of Collections

Upon conclusion of the data recovery study, all materials collected will be temporarily curated at the offices of Cultural Surveys Hawai‘i, Inc. in Waimanalo, O‘ahu, until a permanent facility can be decided upon, based on consultation with the landowner and SHPD/DLNR.
Section 6 References Cited

Andrews, Lorrin

Arnold, Harry L.

Armstrong, Warwick, editor

Athens, Stephen J.
1986 *Archaeological Monitoring at the Judiciary Parking Garage, Honolulu, Hawai‘i (TMK 2-1-30:003, 004, 038, 039, 041, 043; State Site 80-14-3984)*. International Archaeological Research Institute, Inc., Honolulu.

Athens, Stephen J. and Jerome V. Ward

Avery, Serge and Joseph Kennedy

Beckwith, Martha

Bingham, Hiram

Bishop, S.E.
1884 Map of Honolulu, Kewalo Section. Registered Map 1090. Archived at Hawai‘i Land Survey Division, Department of Accounting and General Services, 1151 Punchbowl Street, Room 210, Honolulu.

Boelen, Jacobus
Castle, William R., Jr.

Clark, Stephen D.

Cook, James P.
1784 *A Voyage to the Pacific Ocean . . . the Northern Hemisphere . . . Performed Under the Direction of Captains Cook, Clerke, and Gore, in . . . the Resolution and Discovery . . . in the years 1776, 1777, 1779, and 1780*. Vols. 2 and 3. G. Nichol & T. Cadell, London.

Covington, R.
1881 Hawaiian Government Survey map. Registered Map 1381. Available at the Department of Accounting and General Services, Land Survey Division, 1151 Punchbowl Street, Room 210, Honolulu.

Dale, John B.

Davis, Bertell D.

Daws, Gavan

Dean, Love

Douglas, Michele Toomay

1991b *Report on Six Human Skeletons from Coral Street and Queen Street, Kaka‘ako, O‘ahu, Honolulu, Hawai‘i*. Available at State Historic Preservation Division, Kapolei, Hawai‘i.

Dukas, Neil Bernard

Dye, Tom and J. Stephen Athens
Ellis, William
1827 Narrative of a Tour through Hawaii, or Owhyhee; With Observations on the Natural History of the Sandwich Islands, and Remarks on the Manners, Customs, Traditions, History, and Language of their Inhabitants. Printed for B.J. Holdsworth, London.

Emmert, Paul
1850 Sketch of Honolulu. Original at Hawaiian Historical Society, Honolulu.

Emory, Kenneth P., William J. Bonk, and Yoshihiko H. Sinoto

Fitzpatrick, Gary

Fletcher, Charles H. III and Anthony T. Jones

Foote, D.E., E.L. Hill, S. Nakamura, and F. Stephens

Forbes, David

Gessler, Clifford

Gilman, Gorman D.

Goodwin, Conrad and Jane Allen
2005 Kikihale to Honolulu: From Village to City-Archaeological Data Recovery at Site 50-80-14-4875, Kekaulike Diamond Head Block, Nu‘uanu Ahupua‘a, Honolulu, O‘ahu, Hawai‘i, TMK 1-7-03:20. International Archaeological Research Institute, Inc., Honolulu, HI.

Google Earth

Grant, Glen

Griffin, P. Bion, D.T.P. Keene, and Joseph Kennedy
Grossman, E.E. and C.H. Fletcher

Hammatt, Hallett H.

Hammatt, Hallett H. and Rodney Chiogioji

Hammatt, Hallett H. and Michael Pfeffer

Handy, E.S. Craighill and Elizabeth G. Handy

Hanley, Sister Mary Laurence and O.A. Bushnell

Hawaii Board of Health

Hawaii Department of Public Works

Hawaii Governor

Hawaii Legislature

Hawaii State Historic Preservation Division

Hawaii Supreme Court

Hawaii‘i TMK Service
2013 Tax Map Key [1] 2-1-056. Available at Hawai‘i TMK Service, 222 Vineyard Street, Suite 401, Honolulu.

Hawaiian Gazette
1897 Article from 29 January.

Ho‘olumāhiehie

Hustace, Frank Ward, III

‘Ī‘ī, John Papa
1959 Fragments of Hawaiian History as Recorded by John Papa Ii. Bishop Museum Press, Honolulu.

Iwamoto, Lana

Judd, Walter F.

Kamakau, Samuel M.

Kawasaki, Annette

Kay, E. Alison
Ke Alakai o Hawaii
1932 Rawley Ice Cream advertisement (text in Hawaiian). Ke Alakai o Hawaii 3(37):3.

Kekahuna, Henry E.P.

Kirch, Patrick

Kortum, Karl

Kotzebue, Otto von

Kuykendall, Ralph S.

LaPasse, Lt. Joseph de

Larrison, G.

Lebo, Susan A.
1997 Native Hawaiian and Euro-American Culture Change in Early Honolulu, Archaeological Data Recovery, Harbor Court Property, Site No. 50-80-14-2456, Honolulu, Hawai‘i. Susan A. Lebo, editor. Anthropology Department, Bishop Museum, Honolulu.

Lebo, Susan A. and Michael D. McGuirt
2000 PILI GRASS, WOOD FRAME, BRICK, AND CONCRETE,:ARCHAEOLOGICAL DATA RECOVERY AT 800 NUUANU (SITE 50-80-14-5496). Bishop Museum Anthropology Department, Honolulu, HI.

Leidemann, H.H.

Lister, Florence C. and Robert H. Lister
Lyons, Curtis J.
1876 Kaakaukukui and Puunui. Map by C.J. Lyons, Registered Map 611. Available at Hawai‘i Land Survey Division, Department of Accounting and General Services, 1151 Punchbowl Street, Room 210, Honolulu.

Macdonald, Gordon A., Agatin T. Abbott, and Frank L. Peterson

Malo, David

Mason Architects, Inc.

McElroy, Windy K., Amanda Sims, and Michael Desilets

McElroy, Windy K., Amanda Sims, and Michael Desilets

Medina, Leandra W. and Hallett H. Hammatt

Murakami, Gail M.

Myatt, Carl

Nakamura, Barry
Nicol, Brian

Ota, J. and W. Kam
1982 An Osteological Study of Human Remains from the State Office Building #2 (Corner of Punchbowl and Halekauwila). Division of State Parks, Department of Land and Natural Resources, Honolulu.

Pammer, Michelle, Jeff Fong, and Hallett H. Hammatt

Pammer, Michelle, and Hallett H. Hammatt

Pearson, Richard

Pfeffer, Michael, Borthwick, Douglas F., and Hallett H. Hammatt
1993 An Archaeological Summary of the Kaka‘ako Improvement District 1 Monitoring, Kaka‘ako, O‘ahu, Hawai‘i (TMKs 2-1-29 to 2-1-32, 2-1-46 to 1-2-48, 2-1-51, 2-1-54, and 2-1-55), for Hawaii Community Development Authority, Cultural Surveys Hawai‘i, Inc., Kailua, Hawai‘i.

Pukui, Mary Kawena and Samuel H. Elbert

Pukui, Mary Kawena, Samuel H. Elbert, and Esther T. Mookini

Richardson, Kent D.

Rogove, Susan Tobier and Marcia Baun Steinhauer

Sanborn Fire Insurance Company

Schmitt, Robert C.

Scott, Edward B.

Severson, Don R., Michael D. Horikawa, and Jennifer Saville

Shackley, M. Steven

Sigall, Bob

Stearns, H.T.

Stewart, C.S.
1970 *Journal of a Residence in the Sandwich Islands, During the Years 1823, 1824, and 1825*. University of Hawai‘i Press for the Friends of the Library of Hawai‘i, Honolulu.

Stone, Scott C.S.

Tayman, John

Thomas, Mifflin
1983 *Schooner from Windward. Two Centuries of Hawaiian Interisland Shipping*. University of Hawai‘i Press, Honolulu.

Thrum, Thomas G.
1884 Retrospect of the Year 1883. *Hawaiian Almanac and Annual for 1884*. Thomas G. Thrum, Honolulu.

1916 *Hawaiian Almanac and Annual for 1917*. Thomas G. Thrum, Honolulu.

1920 *Hawaiian Almanac and Annual for 1921*. Thomas G. Thrum, Honolulu.

1923 *More Hawaiian Folk Tales*. Unknown publisher.

Titcomb, Margaret

1972 *Native Use of Fish in Hawaii*. University of Hawai‘i Press, Honolulu.

1979 *Native Use of Marine Invertebrates in Old Hawaii*. University of Hawai‘i Press, Honolulu.

Tulchin, Jon and Hallett H. Hammatt

Tulchin, Jon, Constance O’Hare and Hallett H. Hammatt

2014a *Archaeological Inventory Survey for Kamehameha Schools Kaka‘ako Block B, Honolulu Ahupua‘a, Honolulu (Kona) District, Island of O‘ahu, TMKs: (1) 2-1-054: 025, 027, 028 por. and 032*. Cultural Surveys Hawai‘i, Inc., Kailua, Hawai‘i.

Tulchin, Todd, Kendy Altizer, Douglas Borthwick, and Hallett H. Hammatt

Data Recovery Plan for SIHP # 50-80-14-7580, Kamehameha Schools Kaka‘ako Block I

TMKs: [1] 2-1-056:002, 007, and 008
References Cited

University of Hawai‘i School of Ocean and Earth Science Technology (SOEST)
1927 Aerial photography of Waikīkī coast. University of Hawai‘i of Ocean and Earth Science Technology (SOEST), Honolulu.

U.S. Department of Agriculture

U.S. Geological Survey
1927 Honolulu USGS 7.5-minute topographic quadrangle. Available at USGS Information Services, Box 25286, Denver, Colorado.
1998 Honolulu USGS 7.5-minute topographic quadrangle. Available at USGS Information Services, Box 25286, Denver, Colorado.

U.S. War Department
1919 U.S. War Department 7.5-minute topographic map, Honolulu Quadrangle. Available at USGS Information Services, Box 25286, Denver, Colorado.

Waihona ʻAina

Wall, W.A.
1887 Map of Honolulu and Vicinity, Oahu Island, Kona District. Copy at Library of Congress, Geography and Map Division. Archived at Hawai‘i Land Survey Division, Department of Accounting and General Services, 1151 Punchbowl Street, Room 210, Honolulu.

Westervelt, W.D.

1998 Final Environmental Impact Statement for the Block J Redevelopment Project Honolulu, O‘ahu, Hawai‘i. Prepared for City and County of Honolulu Department of Community Services, Honolulu.

Wienieski, John P. and Hallett H. Hammatt

Yent, M.