Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

WBB0717

Client: Cardno - Hawaii Work Order:

Address: 737 Bishop St., Ste. 3050 Project: ADC Water Quality Monitoring

Honolulu, HI 96813 Reported: 5/6/2021 16:39

Attn: Benjamin Berridge

Case Narrative

T 1 (ID	C 1 M
<u>Laboratory ID</u>	Sample Name
WBB0717-01	DW-1/WW-1
WBB0717-02	DW-2
WBB0717-03	DW-3
WBB0717-04	WW-2
WBB0717-05	WW-3
WBB0717-06	W-1
WBB0717-07	I-1
WBB0717-08	E-2
WBB0717-09	WW-3 DUP
WBB0717-10	W-2
WBB0717-11	U-1/WW-7
WBB0717-12	U-2/WW-5 WET
WBB0717-13	U-3/WW-4
WBB0717-14	D-2
WBB0717-15	D-3
WBB0717-16	D-4
WBB0717-17	D-5
WBB0717-18	D-6
WBB0717-19	D-7
WBB0717-20	D-8

QA/QC Checks

Parameters	Yes / No	Exceptions / Deviations
Sample Holding Time Valid?	N	See Comments Section
Surrogate Recoveries Valid?	Y	NA
QC Sample(s) Recoveries Valid?	Y	See Comments Section
Method Blank(s) Valid?	Y	NA
Comments	N	See Comments Section

1. Holding Time Requirements

Some of the EPA 625 samples were extracted past holding time but analyzed within holding time.

2. Calibration Requirements

No problems encountered.

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

3. Surrogate Recovery Requirements

No problems encountered.

4. QC Sample (LCS/MS/MSD) Recovery Requirements

Matrix spike for HCID was low due to matrix interference. Atrazine LCS failed high.

5. Method Blank Requirements

The method blanks were non-detect for all analytes. No problems encountered.

6. Internal Standard(s) Response Requirements

No problems encountered

7. Comments

I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his or her designee.

Kathleen A. Sattler, Lab Manager

Analytical Results Report

Sample Location:

DW-1/WW-1

Lab/Sample Number:

WBB0717-01

Collect Date:

02/20/21 17:45

Date Received:

02/25/21 13:20

Collected By: Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.00224	mg/L	0.0000600	0.00100	3/3/21 13:15	TRC	EPA 200.8	
Mercury								
Mercury	<0.006	ug/L	0.00600	0.100	3/4/21 11:29	TRC	EPA 245.1	
Semivolatiles								
Diesel	0.370	mg/L	0.0520	0.0800	3/5/21 9:41	ARC	NWTPH-HCID	M2, T10
Gasoline	<0.160	mg/L	0.160	0.400	3/5/21 9:41	ARC	NWTPH-HCID	M2
Lube Oil	0.502	mg/L	0.0460	0.0800	3/5/21 9:41	ARC	NWTPH-HCID	M2, T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/5/21 9:41	ARC	NWTPH-HCID	M2
Surrogate: n-Hexacosane	85.4%		50-150		3/5/21 9:41	ARC	NWTPH-HCID	M2

Analytical Results Report (Continued)

Sample Location:

DW-2

Lab/Sample Number:

WBB0717-02

Collect Date:

02/20/21 15:30

Date Received:

02/25/21 13:20

Collected By:

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.00164	mg/L	0.0000600	0.00100	3/3/21 13:18	TRC	EPA 200.8	
Mercury								
Mercury	<0.006	ug/L	0.00600	0.100	3/4/21 11:32	TRC	EPA 245.1	
Semivolatiles								
Diesel	0.333	mg/L	0.0520	0.0800	3/5/21 10:37	ARC	NWTPH-HCID	M2, T10
Gasoline	<0.160	mg/L	0.160	0.400	3/5/21 10:37	ARC	NWTPH-HCID	M2
Lube Oil	0.466	mg/L	0.0460	0.0800	3/5/21 10:37	ARC	NWTPH-HCID	M2, T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/5/21 10:37	ARC	NWTPH-HCID	M2
Surrogate: n-Hexacosane	92.2%		50-150)	3/5/21 10:37	ARC	NWTPH-HCID	M2

Analytical Results Report

(Continued)

Sample Location:

DW-3

Lab/Sample Number: WBB0717-03 Collect Date:

02/20/21 14:15

Date Received:

02/25/21 13:20

Collected By: Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.00127	mg/L	0.0000600	0.00100	3/3/21 13:20	TRC	EPA 200.8	
Mercury								
Mercury	<0.006	ug/L	0.00600	0.100	3/4/21 11:34	TRC	EPA 245.1	
Semivolatiles								
Diesel	0.505	mg/L	0.0520	0.0800	3/5/21 11:34	ARC	NWTPH-HCID	M2, T10
Gasoline	<0.160	mg/L	0.160	0.400	3/5/21 11:34	ARC	NWTPH-HCID	M2
Lube Oil	0.639	mg/L	0.0460	0.0800	3/5/21 11:34	ARC	NWTPH-HCID	M2, T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/5/21 11:34	ARC	NWTPH-HCID	M2
Surrogate: n-Hexacosane	95.1%		50-150)	3/5/21 11:34	ARC	NWTPH-HCID	M2

Analytical Results Report (Continued)

Sample Location:

WW-2

Lab/Sample Number:

WBB0717-04

Collect Date:

02/20/21 12:00

Date Received:

02/25/21 13:20

Collected By: Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.000243	mg/L	0.0000600	0.00100	3/3/21 13:22	TRC	EPA 200.8	J
Mercury								
Mercury	<0.006	ug/L	0.00600	0.100	3/4/21 11:36	TRC	EPA 245.1	
Semivolatiles								
Diesel	<0.052	mg/L	0.0520	0.0800	3/5/21 14:24	ARC	NWTPH-HCID	
Gasoline	<0.160	mg/L	0.160	0.400	3/5/21 14:24	ARC	NWTPH-HCID	
Lube Oil	<0.046	mg/L	0.0460	0.0800	3/5/21 14:24	ARC	NWTPH-HCID	
Mineral Oil	<0.160	mg/L	0.160	0.400	3/5/21 14:24	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	88.2%		50-150)	3/5/21 14:24	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

WW-3

Lab/Sample Number: WBB0717-05 Collect Date: 02/20/21 12:30

Collected By:

Date Received: 02/25/21 13:20 Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.000739	mg/L	0.0000600	0.00100	3/3/21 13:25	TRC	EPA 200.8	J
Mercury								
Mercury	0.162	ug/L	0.00600	0.100	3/4/21 11:38	TRC	EPA 245.1	
Semivolatiles								
AMPA	<2	ug/L	2.00	10.0	3/2/21 11:05	MER	EPA 547	*
Glyphosate	<1	ug/L	1.00	5.00	3/2/21 11:05	MER	EPA 547	*
Atrazine	<0.200	ug/L	0.200	0.400	3/3/21 20:54	TGT	EPA 625.1	* H4
Chlorpyrifos	<0.2	ug/L	0.200	0.400	3/3/21 20:54	TGT	EPA 625.1	* H4
Metolachlor	<0.2	ug/L	0.200	0.400	3/3/21 20:54	TGT	EPA 625.1	* H4
Surrogate: Terphenyl-d14	88.0%		<i>25-135</i>	- -	3/3/21 20:54	TGT	EPA 625.1	
Diesel	0.388	mg/L	0.0520	0.0800	3/5/21 17:14	ARC	NWTPH-HCID	T10
Gasoline	<0.160	mg/L	0.160	0.400	3/5/21 17:14	ARC	NWTPH-HCID	
Lube Oil	0.546	mg/L	0.0460	0.0800	3/5/21 17:14	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/5/21 17:14	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	88.3%		50-150		3/5/21 17:14	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

W-1

Lab/Sample Number:

WBB0717-06

Collect Date:

02/20/21 13:15

Date Received:

02/25/21 13:20

Collected By: Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.0000870	mg/L	0.0000600	0.00100	3/3/21 13:32	TRC	EPA 200.8	J
Mercury								
Mercury	<0.006	ug/L	0.00600	0.100	3/4/21 11:45	TRC	EPA 245.1	
Semivolatiles								
Diesel	0.189	mg/L	0.0520	0.0800	3/5/21 19:06	ARC	NWTPH-HCID	T10
Gasoline	0.343	mg/L	0.160	0.400	3/5/21 19:06	ARC	NWTPH-HCID	J
Lube Oil	0.397	mg/L	0.0460	0.0800	3/5/21 19:06	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/5/21 19:06	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	70.3%		50-150)	3/5/21 19:06	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

I-1

Lab/Sample Number:

WBB0717-07

Collect Date:

02/20/21 18:30

Date Received:

02/25/21 13:20

Collected By: Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.000163	mg/L	0.0000600	0.00100	3/3/21 13:34	TRC	EPA 200.8	J
Mercury								
Mercury	0.0939	ug/L	0.00600	0.100	3/4/21 11:48	TRC	EPA 245.1	J
Semivolatiles								
Diesel	0.301	mg/L	0.0520	0.0800	3/5/21 20:02	ARC	NWTPH-HCID	T10
Gasoline	< 0.160	mg/L	0.160	0.400	3/5/21 20:02	ARC	NWTPH-HCID	
Lube Oil	0.422	mg/L	0.0460	0.0800	3/5/21 20:02	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/5/21 20:02	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	<i>85.3%</i>		50-150)	3/5/21 20:02	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

E-2

Lab/Sample Number:

WBB0717-08

Collect Date: Collected By: 02/20/21 11:00

Date Received:

02/25/21 13:20

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.0125	mg/L	0.0000600	0.00100	3/3/21 13:36	TRC	EPA 200.8	
Mercury								
Mercury	<0.006	ug/L	0.00600	0.100	3/4/21 11:54	TRC	EPA 245.1	
Semivolatiles								
AMPA	<2	ug/L	2.00	10.0	3/2/21 11:11	MER	EPA 547	*
Glyphosate	<1.00	ug/L	1.00	5.00	3/2/21 11:11	MER	EPA 547	*
Atrazine	<0.05	ug/L	0.0500	0.100	3/3/21 21:21	TGT	EPA 625.1	* H4
Chlorpyrifos	<0.05	ug/L	0.0500	0.100	3/3/21 21:21	TGT	EPA 625.1	* H4
Metolachlor	<0.05	ug/L	0.0500	0.100	3/3/21 21:21	TGT	EPA 625.1	* H4
Surrogate: Terphenyl-d14	45.9%		25-135	·	3/3/21 21:21	TGT	EPA 625.1	
Diesel	0.425	mg/L	0.0520	0.0800	3/5/21 20:57	ARC	NWTPH-HCID	T10
Gasoline	<0.160	mg/L	0.160	0.400	3/5/21 20:57	ARC	NWTPH-HCID	
Lube Oil	0.681	mg/L	0.0460	0.0800	3/5/21 20:57	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/5/21 20:57	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	90.6%		50-150)	3/5/21 20:57	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

WW-3 DUP

Lab/Sample Number:

WBB0717-09

Collect Date:

02/20/21 12:30

Date Received:

02/25/21 13:20

Collected By:

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.000798	mg/L	0.0000600	0.00100	3/3/21 13:48	TRC	EPA 200.8	J
Mercury								
Mercury	0.134	ug/L	0.00600	0.100	3/4/21 12:40	TRC	EPA 245.1	
Semivolatiles								
Diesel	0.439	mg/L	0.0520	0.0800	3/6/21 2:29	ARC	NWTPH-HCID	T10
Gasoline	< 0.160	mg/L	0.160	0.400	3/6/21 2:29	ARC	NWTPH-HCID	
Lube Oil	0.494	mg/L	0.0460	0.0800	3/6/21 2:29	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 2:29	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	88.0%		50-150)	3/6/21 2:29	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

W-2

Lab/Sample Number:

WBB0717-10

Collect Date:

02/20/21 13:00

Date Received:

02/25/21 13:20

Collected By:

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.000176	mg/L	0.0000600	0.00100	3/3/21 13:51	TRC	EPA 200.8	J
Mercury								
Mercury	0.0239	ug/L	0.00600	0.100	3/4/21 11:59	TRC	EPA 245.1	J
Semivolatiles								
Diesel	0.322	mg/L	0.0520	0.0800	3/6/21 3:24	ARC	NWTPH-HCID	T10
Gasoline	<0.160	mg/L	0.160	0.400	3/6/21 3:24	ARC	NWTPH-HCID	
Lube Oil	0.498	mg/L	0.0460	0.0800	3/6/21 3:24	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 3:24	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	92.6%		50-150)	3/6/21 3:24	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

U-1/WW-7

Lab/Sample Number:

WBB0717-11

Collect Date:

02/20/21 16:30

Date Received:

02/25/21 13:20

Collected By:

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.000791	mg/L	0.0000600	0.00100	3/3/21 13:53	TRC	EPA 200.8	J
Mercury								
Mercury	0.198	ug/L	0.00600	0.100	3/4/21 12:01	TRC	EPA 245.1	
Semivolatiles								
Diesel	<0.052	mg/L	0.0520	0.0800	3/6/21 4:19	ARC	NWTPH-HCID	
Gasoline	<0.160	mg/L	0.160	0.400	3/6/21 4:19	ARC	NWTPH-HCID	
Lube Oil	<0.046	mg/L	0.0460	0.0800	3/6/21 4:19	ARC	NWTPH-HCID	
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 4:19	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	94.3%		50-150)	3/6/21 4:19	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

U-2/WW-5 WET

Lab/Sample Number:

WBB0717-12

Collect Date:

02/20/21 14:50

Date Received:

02/25/21 13:20

Collected By: Benjamin Berridge

Water Matrix:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.000308	mg/L	0.0000600	0.00100	3/3/21 13:55	TRC	EPA 200.8	J
Mercury								
Mercury	0.0266	ug/L	0.00600	0.100	3/4/21 12:04	TRC	EPA 245.1	J
Semivolatiles								
Diesel	<0.052	mg/L	0.0520	0.0800	3/6/21 5:14	ARC	NWTPH-HCID	
Gasoline	< 0.160	mg/L	0.160	0.400	3/6/21 5:14	ARC	NWTPH-HCID	
Lube Oil	< 0.046	mg/L	0.0460	0.0800	3/6/21 5:14	ARC	NWTPH-HCID	
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 5:14	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	97.3%		50-150)	3/6/21 5:14	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

U-3/WW-4

Lab/Sample Number:

WBB0717-13

Collect Date: Collected By: 02/20/21 14:45

Date Received:

02/25/21 13:20

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.000468	mg/L	0.0000600	0.00100	3/3/21 13:58	TRC	EPA 200.8	J
Mercury								
Mercury	0.0496	ug/L	0.00600	0.100	3/4/21 12:06	TRC	EPA 245.1	J
Semivolatiles								
Diesel	<0.052	mg/L	0.0520	0.0800	3/6/21 6:09	ARC	NWTPH-HCID	_
Gasoline	< 0.160	mg/L	0.160	0.400	3/6/21 6:09	ARC	NWTPH-HCID	
Lube Oil	< 0.046	mg/L	0.0460	0.0800	3/6/21 6:09	ARC	NWTPH-HCID	
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 6:09	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	94.6%		50-150)	3/6/21 6:09	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

D-2

Lab/Sample Number:

WBB0717-14

Collect Date:

02/20/21 10:40

Date Received:

02/25/21 13:20

Collected By:

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.0143	mg/L	0.0000600	0.00100	3/3/21 14:00	TRC	EPA 200.8	
Mercury								
Mercury	<0.006	ug/L	0.00600	0.100	3/4/21 12:08	TRC	EPA 245.1	
Semivolatiles								
Diesel	0.331	mg/L	0.0520	0.0800	3/6/21 7:05	ARC	NWTPH-HCID	T10
Gasoline	< 0.160	mg/L	0.160	0.400	3/6/21 7:05	ARC	NWTPH-HCID	
Lube Oil	0.447	mg/L	0.0460	0.0800	3/6/21 7:05	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 7:05	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	73.7%		50-150)	3/6/21 7:05	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

D-3

Lab/Sample Number:

WBB0717-15

Collect Date:

02/20/21 15:10

Date Received:

02/25/21 13:20

Collected By:

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.00217	mg/L	0.0000600	0.00100	3/3/21 14:02	TRC	EPA 200.8	
Mercury								
Mercury	0.00890	ug/L	0.00600	0.100	3/4/21 12:11	TRC	EPA 245.1	J
Semivolatiles								
Diesel	0.358	mg/L	0.0520	0.0800	3/6/21 8:01	ARC	NWTPH-HCID	T10
Gasoline	<0.160	mg/L	0.160	0.400	3/6/21 8:01	ARC	NWTPH-HCID	
Lube Oil	0.391	mg/L	0.0460	0.0800	3/6/21 8:01	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 8:01	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	88.3%		50-150)	3/6/21 8:01	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

D-4

Lab/Sample Number:

WBB0717-16

Collect Date: Collected By: 02/20/21 11:30

Date Received:

02/25/21 13:20

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.00206	mg/L	0.0000600	0.00100	3/3/21 14:09	TRC	EPA 200.8	
Mercury								
Mercury	0.0468	ug/L	0.00600	0.100	3/4/21 12:17	TRC	EPA 245.1	J
Semivolatiles								
Diesel	0.275	mg/L	0.0520	0.0800	3/6/21 8:57	ARC	NWTPH-HCID	T10
Gasoline	<0.160	mg/L	0.160	0.400	3/6/21 8:57	ARC	NWTPH-HCID	
Lube Oil	0.563	mg/L	0.0460	0.0800	3/6/21 8:57	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 8:57	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	93.7%		50-150)	3/6/21 8:57	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

D-5

Lab/Sample Number:

WBB0717-17

Collect Date:

02/20/21 11:40

Date Received:

02/25/21 13:20

Collected By: Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.00166	mg/L	0.0000600	0.00100	3/3/21 14:12	TRC	EPA 200.8	
Mercury								
Mercury	0.0391	ug/L	0.00600	0.100	3/4/21 12:20	TRC	EPA 245.1	J
Semivolatiles								
Diesel	<0.052	mg/L	0.0520	0.0800	3/6/21 9:53	ARC	NWTPH-HCID	T10
Gasoline	<0.160	mg/L	0.160	0.400	3/6/21 9:53	ARC	NWTPH-HCID	
Lube Oil	0.426	mg/L	0.0460	0.0800	3/6/21 9:53	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 9:53	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	91.1%		50-150		3/6/21 9:53	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

D-6

Lab/Sample Number:

WBB0717-18

Collect Date:

02/20/21 16:00

Date Received:

02/25/21 13:20

Collected By:

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.00150	mg/L	0.0000600	0.00100	3/3/21 14:14	TRC	EPA 200.8	
Mercury								
Mercury	<0.006	ug/L	0.00600	0.100	3/4/21 12:26	TRC	EPA 245.1	
Semivolatiles								
Diesel	<0.052	mg/L	0.0520	0.0800	3/6/21 10:49	ARC	NWTPH-HCID	
Gasoline	< 0.160	mg/L	0.160	0.400	3/6/21 10:49	ARC	NWTPH-HCID	
Lube Oil	<0.046	mg/L	0.0460	0.0800	3/6/21 10:49	ARC	NWTPH-HCID	
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 10:49	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	95.3%		50-150)	3/6/21 10:49	ARC	NWTPH-HCID	

Analytical Results Report (Continued)

Sample Location:

D-7

Lab/Sample Number:

WBB0717-19

Collect Date: Collected By: 02/20/21 17:30

Date Received:

02/25/21 13:20

Benjamin Berridge

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.000734	mg/L	0.0000600	0.00100	3/3/21 14:26	TRC	EPA 200.8	J
Mercury								
Mercury	0.101	ug/L	0.00600	0.100	3/4/21 12:29	TRC	EPA 245.1	
Semivolatiles								
Diesel	<0.052	mg/L	0.0520	0.0800	3/6/21 16:26	ARC	NWTPH-HCID	
Gasoline	<0.160	mg/L	0.160	0.400	3/6/21 16:26	ARC	NWTPH-HCID	
Lube Oil	5.67	mg/L	0.0460	0.0800	3/6/21 16:26	ARC	NWTPH-HCID	
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 16:26	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	87.2%		50-150)	3/6/21 16:26	ARC	NWTPH-HCID	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: D-8

WBB0717-20 Collect Date: Lab/Sample Number: Date Received: Collected By: 02/20/21 17:00

02/25/21 13:20

Benjamin Berridge

Matrix: Water

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS								
Arsenic	0.00322	mg/L	0.0000600	0.00100	3/3/21 14:28	TRC	EPA 200.8	
Mercury								
Mercury	<0.006	ug/L	0.00600	0.100	3/4/21 12:31	TRC	EPA 245.1	
Semivolatiles								
Diesel	0.488	mg/L	0.0520	0.0800	3/6/21 17:22	ARC	NWTPH-HCID	T10
Gasoline	<0.160	mg/L	0.160	0.400	3/6/21 17:22	ARC	NWTPH-HCID	
Lube Oil	0.999	mg/L	0.0460	0.0800	3/6/21 17:22	ARC	NWTPH-HCID	T10
Mineral Oil	<0.160	mg/L	0.160	0.400	3/6/21 17:22	ARC	NWTPH-HCID	
Surrogate: n-Hexacosane	93.3%		50-150		3/6/21 17:22	ARC	NWTPH-HCID	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

Sample was extracted past required extraction holding time, but analyzed within analysis holding time. H4

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. J

L5 The associated blank spike recovery was above laboratory/method acceptance limits. This analyte was not

detected in the sample

M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable. Potential matrix effect.

T10 Non-target analyte in diesel and lube oil range, tentatively identified as heavy fuel oil.

PQL Practical Quantitation Limit

ND Not Detected

MDL Method Detection Limit

Sample results reported on a dry weight basis Dry

Not a state-certified analyte

RPD Relative Percent Difference

Percent Recovery %REC

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory

The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585
W FLDOH	Florida Department of Health (NELAC)	Anatek-Spokane, WA	E871099

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Quality Control Data

Metals by ICP-MS

'										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBC0061 - W 3010 Diges	t									
Blank (BBC0061-BLK1)					Prepared: 3/2	/2021 Analyze	d: 3/3/2021			
Arsenic	0.0000770	J	0.00100	mg/L						
LCS (BBC0061-BS1)					Prepared: 3/2,	/2021 Analyze	d: 3/3/2021			
Arsenic	0.0523		0.00100	mg/L	0.0500		105	85-115		
Matrix Spike (BBC0061-MS2)	:	Source: W	/BB0717-15		Prepared: 3/2	/2021 Analyze	d: 3/3/2021			
Arsenic	0.0522		0.00100	mg/L	0.0500	0.00217	100	70-130		
Matrix Spike Dup (BBC0061-MSD2)		Source: W	/BB0717-15		Prepared: 3/2,	/2021 Analyze	d: 3/3/2021			
Arsenic	0.0531		0.00100	mg/L	0.0500	0.00217	102	70-130	1.63	20

Quality Control Data

Mercury

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBC0100 - W 245.1 Digest									
Blank (BBC0100-BLK1)				Prepared: 3/3	/2021 Analyze	ed: 3/4/2021			
Mercury	ND	0.100	ug/L						
LCS (BBC0100-BS1)				Prepared: 3/3	/2021 Analyze	ed: 3/4/2021			
Mercury	1.98	0.100	ug/L	2.00		99.2	85-115		
Matrix Spike (BBC0100-MS1)	Source:	WBB0717-05		Prepared: 3/3	/2021 Analyze	ed: 3/4/2021			
Mercury	2.01	0.100	ug/L	2.00	0.162	92.3	70-130		
Matrix Spike (BBC0100-MS2)	Source:	WBB0717-15		Prepared: 3/3	/2021 Analyze	ed: 3/4/2021			
Mercury	9.65	0.500	ug/L	10.0	ND	96.5	70-130		
Matrix Spike Dup (BBC0100-MSD1)	Source:	WBB0717-05		Prepared: 3/3	/2021 Analyze	ed: 3/4/2021			
Mercury	1.97	0.100	ug/L	2.00	0.162	90.5	70-130	1.86	20
Matrix Spike Dup (BBC0100-MSD2)	Source:	WBB0717-15		Prepared: 3/3	/2021 Analyze	ed: 3/4/2021			
Mercury	10.5	0.500	ug/L	10.0	ND	105	70-130	8.44	20

Quality Control Data

Semivolatiles

ſ											
				Reporting		Spike	Source		%REC		RPD
	Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Batch: BBB0734 - W TPH-Dx

Quality Control Data (Continued)

Result ND ND ND ND ND ND	M2 M2 M2	0.0800 0.400	Units mg/L	Level Prepared: 2/25	Result	%REC	Limits	RPD	Limit
ND ND ND	M2 M2		mg/L	Prepared: 2/25	i/2021 Analyz	ed: 3/4/2021			
ND ND	M2 M2		mg/L	Prepared: 2/25	/2021 Analyz	ed: 3/4/2021			
ND ND	M2 M2		mg/L			0, ., - 0 - 1			
ND	M2	0.400							
			mg/L						
ND		0.400	mg/L						
	M2	0.0800	mg/L						
	M2	45.1	mg/L	50.0		90.3	50-150		
				Prepared: 2/25	5/2021 Analyz	ed: 3/4/2021			
0.783	M2	0.0800	mg/L	1.00		77.9	0-200		
	M2	39.1	mg/L	50.0		78.3	50-150		
	Source: V	VBB0617-22		Prepared: 2/25	5/2021 Analyz	ed: 3/5/2021			
ND	M2	0.0800	mg/L		ND				200
ND	M2	0.400	mg/L		ND				200
ND	M2	0.400	mg/L		ND				200
ND	M2	0.0800	mg/L		ND				200
	M2	45.5	mg/L	50.0		91.0	50-150		
	Source: V	VBB0617-23		Prepared: 2/25	5/2021 Analyz	ed: 3/5/2021			
1.02	M2	0.0800	mg/L	1.00	0.531	48.2	0-200		
	M2	45.4	mg/L	50.0		90.8	50-150		
	Source: V	VBB0617-23		Prepared: 2/25	5/2021 Analyz	ed: 3/5/2021			
1.04	M2	0.0800	mg/L	1.00	0.531	50.6	0-200	2.28	200
	M2	48.0	mg/L	50.0		96.0	50-150		
				Dropprodu 2/1	/2021 Analysis	d. 2/2/2021			
ND		E 00	ua/l	riepared: 3/1	ZUZI ANAIYZE	:u: 3/2/2021			
			-						
	ND ND ND ND	M2 Source: V ND M2 ND M2 ND M2 ND M2 M2 M2 M2 M2 M2 M2 M	M2 39.1 Source: WBB0617-22 ND M2 0.0800 ND M2 0.400 ND M2 0.0800 M2 45.5 Source: WBB0617-23 1.02 M2 0.0800 M2 45.4 Source: WBB0617-23 1.04 M2 0.0800 M2 48.0 ND 5.00	M2 39.1 mg/L Source: WBB0617-22 ND M2 0.0800 mg/L ND M2 0.400 mg/L ND M2 0.0800 mg/L M2 45.5 mg/L Source: WBB0617-23 1.02 M2 0.0800 mg/L M2 45.4 mg/L Source: WBB0617-23 1.04 M2 0.0800 mg/L M2 48.0 mg/L ND 5.00 ug/L	0.783 M2 0.0800 mg/L 1.00 M2 39.1 mg/L 50.0 Source: WBB0617-22 Prepared: 2/25 ND M2 0.0800 mg/L MD MD <th< td=""><td>0.783 M2 0.0800 mg/L 1.00 M2 39.1 mg/L 50.0 Source: WBB0617-22 Prepared: 2/25/2021 Analyze ND M2 0.0800 mg/L ND ND M2 0.400 mg/L ND ND M2 0.0800 mg/L ND M2 45.5 mg/L 50.0 Source: WBB0617-23 Prepared: 2/25/2021 Analyze 1.04 M2 0.0800 mg/L 50.0 Source: WBB0617-23 Prepared: 2/25/2021 Analyze 1.04 M2 0.0800 mg/L 1.00 0.531 M2 48.0 mg/L 50.0 Prepared: 2/25/2021 Analyze ND 5.00 Ug/L</td><td>M2 39.1 mg/L 50.0 78.3 Source: WBB0617-22 Prepared: 2/25/2021 Analyzed: 3/5/2021 ND M2 0.0800 mg/L ND ND M2 0.0800 mg/L ND ND M2 45.5 mg/L 50.0 91.0 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.02 M2 45.4 mg/L 50.0 90.8 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.04 M2 0.0800 mg/L 1.00 0.531 50.6 M2 48.0 mg/L 50.0 96.0 Prepared: 3/1/2021 Analyzed: 3/2/2021 Prepared: 3/1/2021 Analyzed: 3/2/2021</td><td>0.783 M2 0.0800 mg/L 1.00 77.9 0-200 M2 39.1 mg/L 50.0 78.3 50-150 Source: WBB0617-22 Prepared: 2/25/2021 Analyzed: 3/5/2021 ND M2 0.400 mg/L ND ND M2 0.400 mg/L ND ND M2 0.0800 mg/L ND Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.02 M2 0.0800 mg/L 50.0 90.8 50-150 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.04 M2 0.0800 mg/L 50.0 90.8 50-150 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.04 M2 0.0800 mg/L 50.0 96.0 50-150 Prepared: 3/1/2021 Analyzed: 3/2/2021 ND 5.00 ug/L 96.0 50-150</td><td>0.783 M2 0.0800 mg/L 1.00 77.9 0-200 M2 39.1 mg/L 50.0 78.3 50-150 Source: WBB0617-22 Prepared: 2/25/2021 Analyzed: 3/5/2021 ND M2 0.0800 mg/L ND ND M2 0.400 mg/L ND ND M2 0.0800 mg/L ND M2 45.5 mg/L 50.0 91.0 50-150 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.02 M2 45.4 mg/L 50.0 90.8 50-150 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.04 M2 0.0800 mg/L 1.00 0.531 50.6 0-200 2.28 M2 48.0 mg/L 50.0 96.0 50-150 Prepared: 3/1/2021 Analyzed: 3/2/2021 ND Prepared: 3/1/2021 Analyzed: 3/2/2021</td></th<>	0.783 M2 0.0800 mg/L 1.00 M2 39.1 mg/L 50.0 Source: WBB0617-22 Prepared: 2/25/2021 Analyze ND M2 0.0800 mg/L ND ND M2 0.400 mg/L ND ND M2 0.0800 mg/L ND M2 45.5 mg/L 50.0 Source: WBB0617-23 Prepared: 2/25/2021 Analyze 1.04 M2 0.0800 mg/L 50.0 Source: WBB0617-23 Prepared: 2/25/2021 Analyze 1.04 M2 0.0800 mg/L 1.00 0.531 M2 48.0 mg/L 50.0 Prepared: 2/25/2021 Analyze ND 5.00 Ug/L	M2 39.1 mg/L 50.0 78.3 Source: WBB0617-22 Prepared: 2/25/2021 Analyzed: 3/5/2021 ND M2 0.0800 mg/L ND ND M2 0.0800 mg/L ND ND M2 45.5 mg/L 50.0 91.0 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.02 M2 45.4 mg/L 50.0 90.8 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.04 M2 0.0800 mg/L 1.00 0.531 50.6 M2 48.0 mg/L 50.0 96.0 Prepared: 3/1/2021 Analyzed: 3/2/2021 Prepared: 3/1/2021 Analyzed: 3/2/2021	0.783 M2 0.0800 mg/L 1.00 77.9 0-200 M2 39.1 mg/L 50.0 78.3 50-150 Source: WBB0617-22 Prepared: 2/25/2021 Analyzed: 3/5/2021 ND M2 0.400 mg/L ND ND M2 0.400 mg/L ND ND M2 0.0800 mg/L ND Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.02 M2 0.0800 mg/L 50.0 90.8 50-150 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.04 M2 0.0800 mg/L 50.0 90.8 50-150 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.04 M2 0.0800 mg/L 50.0 96.0 50-150 Prepared: 3/1/2021 Analyzed: 3/2/2021 ND 5.00 ug/L 96.0 50-150	0.783 M2 0.0800 mg/L 1.00 77.9 0-200 M2 39.1 mg/L 50.0 78.3 50-150 Source: WBB0617-22 Prepared: 2/25/2021 Analyzed: 3/5/2021 ND M2 0.0800 mg/L ND ND M2 0.400 mg/L ND ND M2 0.0800 mg/L ND M2 45.5 mg/L 50.0 91.0 50-150 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.02 M2 45.4 mg/L 50.0 90.8 50-150 Source: WBB0617-23 Prepared: 2/25/2021 Analyzed: 3/5/2021 1.04 M2 0.0800 mg/L 1.00 0.531 50.6 0-200 2.28 M2 48.0 mg/L 50.0 96.0 50-150 Prepared: 3/1/2021 Analyzed: 3/2/2021 ND Prepared: 3/1/2021 Analyzed: 3/2/2021

Quality Control Data (Continued)

Applieto	Dogult	Ougl	Reporting	l lait-	Spike	Source	0/ DEC	%REC	DDD	RPD Limit
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
Batch: BBC0012 - Glyphosate (Co	ontinued)									
LCS (BBC0012-BS1)					Prepared: 3/1	/2021 Analyze	ed: 3/2/2021			
Glyphosate	42.0		5.00	ug/L	50.0		84.0	70-130		
AMPA	79.1		10.0	ug/L	100		79.1	70-130		
Matrix Spike (BBC0012-MS1)		Source: V	WBB0717-05		Prepared: 3/1	/2021 Analyze	ed: 3/2/2021			
Glyphosate	49.1		5.00	ug/L	50.0	<1	98.2	70-130		
AMPA	76.2		10.0	ug/L	100	<2	76.2	70-130		
Matrix Spike Dup (BBC0012-MSD1)		Source: V	WBB0717-05		Prepared: 3/1	/2021 Analyze	ed: 3/2/2021			
Glyphosate	47.6		5.00	ug/L	50.0	<1	95.2	70-130	3.10	25
AMPA	76.3		10.0	ug/L	100	<2	76.3	70-130	0.131	25
Chlorpyrifos	ND		0.100	ug/L						
Blank (BBC0111-BLK1) Metolachlor	ND		0.100	ug/L	Prepared: 3/1	/2021 Analyzo	.u. 3/3/2021			
Atrazine	ND ND		0.100	ug/L						
					25.0			25 125		
Surrogate: Terphenyl-d14			23.7	ug/L	25.8		92.0	25-135		
LCS (BBC0111-BS1)					Prepared: 3/1	/2021 Analyze	ed: 3/3/2021			
Atrazine	3.39	L5	0.100	ug/L	2.50		136	60-135		
Chlorpyrifos	2.80		0.100	ug/L	2.50		112	50-125		
Metolachlor	3.27		0.100	ug/L	2.50		131	50-135		
Surrogate: Terphenyl-d14			24.0	ug/L	25.8		93.1	25-135		
LCS Dup (BBC0111-BSD1)					Prepared: 3/1	/2021 Analyze	ed: 3/3/2021			
Atrazine	3.40	L5	0.100	ug/L	2.50		136	60-135	0.295	20
Chlorpyrifos	2.84		0.100	ug/L	2.50		114	50-125	1.42	20
Metolachlor	3.23		0.100	ug/L	2.50		129	50-135	1.23	20
Surrogate: Terphenyl-d14			21.6	ug/L	25.8		84.1	25-135		

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	Quai	Lillic	Units	Level	Result	70KLC	Lillius	NFD	LIIIII
Batch: BBC0111 - SVOC Water (C	ontinued)									
Duplicate (BBC0111-DUP1)	9	Source: W	/BB0717-05		Prepared: 3/1	/2021 Analyze	ed: 3/3/2021			
Atrazine	ND		0.100	ug/L		<0.200				200
Chlorpyrifos	ND		0.100	ug/L		<0.2				200
Metolachlor	ND		0.100	ug/L		<0.2				200
Surrogate: Terphenyl-d14			22.5	ug/L	25.8		87.5	25-135		
Matrix Spike (BBC0111-MS1)	s	Source: W	/BB0717-05		Prepared: 3/1	/2021 Analyze	ed: 3/3/2021			
Atrazine	13.6		0.400	ug/L	10.0	<0.200	136	40-140		
Chlorpyrifos	11.2		0.400	ug/L	10.0	<0.2	112	40-140		
Metolachlor	13.4		0.400	ug/L	10.0	<0.2	134	40-140		
Surrogate: Terphenyl-d14			94.4	ug/L	103		91.6	60-130		
Matrix Spike Dup (BBC0111-MSD1)	S	Source: W	/BB0717-05		Prepared: 3/1	/2021 Analyze	ed: 3/3/2021			
Metolachlor	12.9		0.400	ug/L	10.0	<0.2	129	40-140	3.66	20
Atrazine	13.4		0.400	ug/L	10.0	<0.200	134	40-140	1.78	20
Chlorpyrifos	11.0		0.400	ug/L	10.0	<0.2	110	40-140	1.44	20
Surrogate: Terphenyl-d14			91.0	ug/L	103		88.3	60-130		
Batch: BBC0132 - W TPH-Dx										
Blank (BBC0132-BLK1)					Prepared: 3/4	/2021 Analyze	ed: 3/5/2021			
Lube Oil	ND		0.0800	mg/L						
Mineral Oil	ND		0.400	mg/L						
Gasoline	ND		0.400	mg/L						
Diesel	ND		0.0800	mg/L						
Surrogate: n-Hexacosane			43.4	mg/L	50.0		86.7	50-150		
LCS (BBC0132-BS1)					Prepared: 3/4	/2021 Analyze	ed: 3/5/2021			
Diesel	0.981		0.0800	mg/L	1.00		97.6	0-200		
Surrogate: n-Hexacosane			47.4	mg/L	50.0		94.8	50-150		

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBC0132 - W TPH-Dx (Cor	ntinued)									
Matrix Spike (BBC0132-MS1)		Source: W	BB0717-04		Prepared: 3/4	/2021 Analyze	d: 3/5/2021			
Diesel	1.13		0.0800	mg/L	1.00	<0.052	112	0-200		
Surrogate: n-Hexacosane			48.1	mg/L	50.0		96.3	50-150		
Matrix Spike Dup (BBC0132-MSD1)		Source: W	/BB0717-04		Prepared: 3/4	/2021 Analyze	d: 3/5/2021			
Diesel	1.07		0.0800	mg/L	1.00	<0.052	106	0-200	5.07	200
Surrogate: n-Hexacosane			45.0	mg/L	50.0		90.0	50-150		

Anatek
Labs,
Inc.

Chain of Custody Record

Anatek Log-In#

٧	V	B	В	U/	1/	
	1	III			1111	III
Ш	ı	Ш	Ш		Ш	Ш
Ш	ı	Ш	Ш	Ш	Ш	Ш

Comp	any Name:		Cardno-GS		Proje	ect Ma	nager:			Bei	njam	in B	erric	lge		Turn Aroui
Addre	ess: 7	37 Bi	shop St Suite 30	50	Proje	ect Nar	me & 7	#:	ADO	C Wa	ter (Quali	ity M	onit	oring	Please refer to our normal turn around urnes au http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Honolulu	5	State: HI Zip:	96813	Ema	il Addr	ess:	ben	jami	in.be	rrid	ge@	card	no-g	s.com	✓ Normal *All rush order —Phone
Phone	e:	(8	808) 476-0067		Purc	hase C	Order #	:								Next Day* requests must beMailFaxFax
Fax:					Sam	pler Na	ame &	phone	e:							Other* <u>*_Email</u>
	Provid	le Sa	mple Description	1				List	Ana	lyse	s Re	ques	sted			Note Special Instructions/Comments
Lab					Containers	Sample Volumers	TSS EPA 160.2	TPH HCID - SW 846 MOD 8015	**TPH GRO SW846M8015	Arsenic EPA 200.8	Mercury EPA 245.1	Pesticides EPA 625 SIM	Glyphosate EPA 547	Pesticides Sed EPA 827D	Glyphosate Sed EPA 8321B	**Please do not conduct TPH GRO analysis until Cardno confirms it should be run.
ID	Sample Identifica	_	Sampling Date/Time	Matrix	# of	Sar		ТРН	. (0)			ш		Pe	S.	
	DW-1/WW-1	2.	/20/2021 17:45 HST	W	5			×		×	x				100	
	DW-2		2/20/2021 15:30 HST	W	5			×		×	×				- 1	
	DW-3	- 2	2/20/2021 14:15 HST	W	5			×		×	×	9.7				
	WW-2	2	2/20/2021 12:00 HST	W	5		-	×		×	×			-		
	WW-3	2	2/20/2021 12:30 HST	W	8			×		×	×	×	×			
	W-1	2	/20/2021 13:15 HST	W	5			x	-	×	×	1.1				
	151	2	2/20/2021 18:30 HST	W	5			×		×	X					
	E-2	2	2/20/2021 11:00 HST	W	8			×		×	×	×	×			Inspection Checklist
	WW-3 DUP	2	2/20/2021 12:30 HST	W	8			×		×	×	×	×		O I	Received Intact?
	WW-3 MS/MSD	- 1	2/20/2021 12:30 HST	W	8		×	x		x	X	x	×			Labels & Chains Agree? Y N Containers Sealed? Y N
1									\Box				-			Containers Sealed? VOC Head Space? Y N
		Printon	d Name	Cianatura					Carr				Date		Time	Cooler Hoc Food Ex
		- 125		Signature		1_	_		Com				-	_		
Relino	quished by	150	n Berriage	0	15	T			C	erdn	0		2/2	12/	14:00	751115
Recei	ved by	Kath	y Sattler	Kathy &	ettle				And	dele	10 l	8	2-25	21	1320	Preservative: HCI 2003851 HN03 2002280
Relino	uished by	1	0	1 0												pH-2 2001015
Recei	ved by															Date & Time:
Relino	uished by															Inspected By:
	ved by											-		_		

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 2

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

	Anatek
	Labs,
AT	Inc.

Chain of Custody Reco.	ra	ra	r	0	0	C	e	R	1	v	d	to	Si	Cu	f	0	in	ia	CI
------------------------	----	----	---	---	---	---	---	---	---	---	---	----	----	----	---	---	----	----	----

Anatek Log-In# WBB0717

A	Labs, Inc.	dturas Drive, orague Ste D,											Due: 03/11/21	
Comp	any Name:	Cardno-GS			ect Mar			(===)		_		ridge		Turn /
Addre	ss: 737 I	Bishop St Suite 30	50	Proje	ect Nar	ne & ;	#:	ADO		•		Monit	oring	Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Honolulu	State: HI Zip:	96813	Ema	il Addr	ess:	ben	ijami	n.be	erridg	e@ca	rdno-g	gs.com	✓ Normal *All rush order —Phone Next Day* requests must be —Mail
Phone	2:	(808) 476-0067		Purc	hase C	rder#								Next Day* requests must beMail 2nd Day* prior approvedFax
Fax:				Sam	pler Na	me &	phone	e:						Other* <u>*_</u> Email
	Provide S	ample Description	l Company		35		List	Ana	lyse	s Req	ueste	d	395	Note Special Instructions/Comments
Lab				Containers	Sample Volume	TSS EPA 160.2	TPH HCID - SW 846 MOD 8015	**TPH GRO SW846M8015	Arsenic EPA 200.8	Mercury EPA 245.1				**Please do not conduct TPH GRO analysis until Cardno confirms it should be run.
ID	Sample Identification	Sampling Date/Time	Matrix	# of	Sa		<u>P</u>	us						
	W-2	2/20/2021 13:00 HST	W	5			×		x	×				
	U-1/WW-7	2/20/2021 16:30 HST	W	5			×		×	X			1-1	
	U-2/WW-5 WET	2/20/2021 14:50 HST	W	5			×		×	×				
	U-3/WW-4	2/20/2021 14:45 HST	W	5	100/	-	×		X	×				
	D-2	2/20/2021 10:40 HST	W	5			×		×	×			137	
	D-3	2/20/2021 15:10 HST	W	5			×	_	X	x				
	D-4	2/20/2021 11:30 HST	W	5	1		×		×	×			1-4	
	D-5	2/20/2021 11:40 HST	W	5			×		×	X				Inspection Checklist
	D-6	2/20/2021 16:00 HST	W	5			×		×	×				Received Intact? (Y) N
	D-7	2/20/2021 17:30 HST	W	5			×		×	×			C. 3. H.	Labels & Chains Agree? (Y) N Containers Sealed? (Y) N
	D-8	2/20/2021 17:00 HST	W	5		-	×		×	×				VOC Head Space? Y N
	Prin	ted Name	Signature		10.00			Comp	pany		Da	ate	Time	Cooler The Fidex Temperature (°C): See Phys. 1
Relin	quished by	sen Bemilye	3	2/	7			(Car	dro	2	7-22-21	14:00	Temperature (°C): See But
Recei	ived by	try sattle	Rothy 7	attle				Ana	tik	lab	2-	1521	1320	Preservative:
Relin	quished by	0	1											
Recei	ived by													Date & Time:
Relin	quished by													Inspected By:
Recei	ived by													

Form COC01.00 - Eff 1 Mar 2015

Page 2 of 2

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

Quantitation Report (QT Reviewed)

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10055.D

Vial: 41

Acq On : 05 Mar 2021 12:30 Sample : BBC0132-BLK1 Operator: ARC Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 05 13:18:50 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Initial Calibration

DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.94	98795895	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65 50 - 150	83287904 Recovery =	43.367 ppm 86.73%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	O	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h HCID Diesel (C12-C14)	0.00	0	N.D. ppm	
8) h HCID Oil (>C14)	0.00	0	N.D. ppm	

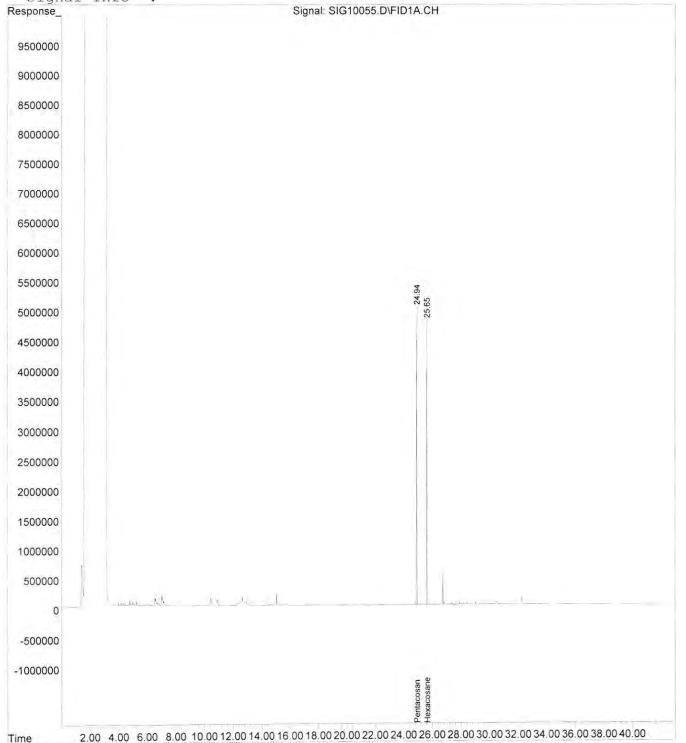
Data File: W:\HPCHEM\1\2021DATA\030321\SIG10055.D

Vial: 41 Operator: ARC

Acq On : 05 Mar 2021 12:30 Sample : BBC0132-BLK1

Inst : HP G1530A

Multiplr: 1.00 Misc


IntFile : EVENTS1.E

Quant Time: Mar 5 13:19 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration DataAcq Meth : DXHCID5.M

Quantitation Report (QT Reviewed)

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10056.D Vial: 42 Operator: ARC

Acq On : 05 Mar 2021 13:27 Sample : BBC0132-BS1 Inst : HP G1530A

Misc Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 05 14:13:07 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Title :
Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.95	106633815	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.66 50 - 150	98241839 Recovery	47.393 ppm = 94.79%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h HCID Diesel (C12-C14)	21.97	306180794	245.334 ppm	
8) h HCID Oil (>C14)	0.00	0	N.D. ppm	

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10056.D

Vial: 42 Operator: ARC

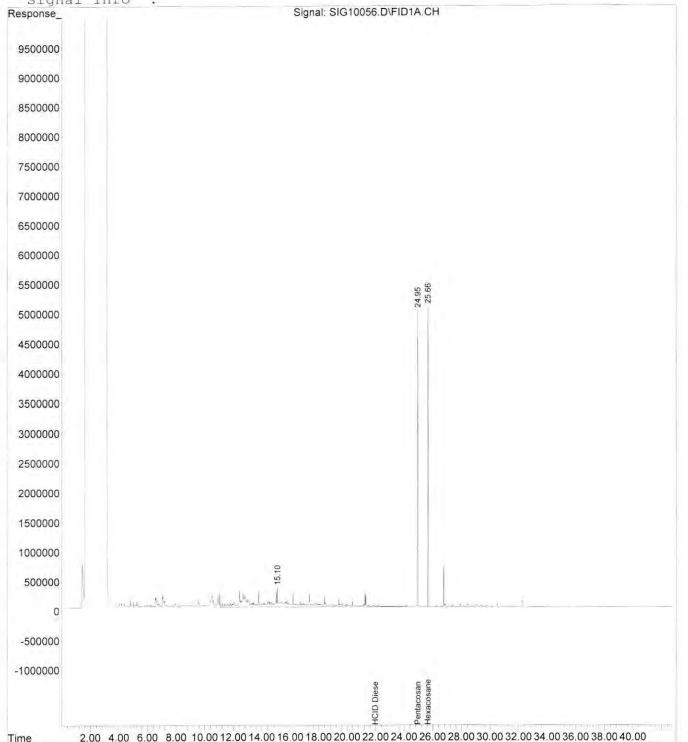
Acq On : 05 Mar 2021 13:27 Sample : BBC0132-BS1

Inst : HP G1530A

Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 5 14:13 2021 Quant Results File: 210301LOW.RES


Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Misc

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Quantitation Report (QT Reviewed)

Vial: 43 Data File: W:\HPCHEM\1\2021DATA\030321\SIG10057.D Operator: ARC

Acq On : 05 Mar 2021 14:24 Sample : WBB0717-04 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 05 15:09:40 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Initial Calibration DataAcq Meth : DXHCID5.M

R.T.	Response	Conc Units	
24.95	103803250	50.000 ppm	m
25.65 age 50 - 150	89009654 Recovery =	44.111 ppm 88.22%	m
0.00	0	M.D. ppm	
0.00	O		
0.00	O		
0.00	0		
0.00	0		
0.00	0	N.D. ppm	
	24.95 3 25.65 age 50 - 150 0.00 0.00 0.00 0.00 0.00	24.95 103803250 25.65 89009654 age 50 - 150 Recovery = 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	24.95 103803250 50.000 ppm 25.65 89009654 44.111 ppm age 50 - 150 Recovery = 88.22% 0.00 0 N.D. ppm 0.00 0 N.D. ppm

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10057.D

Vial: 43

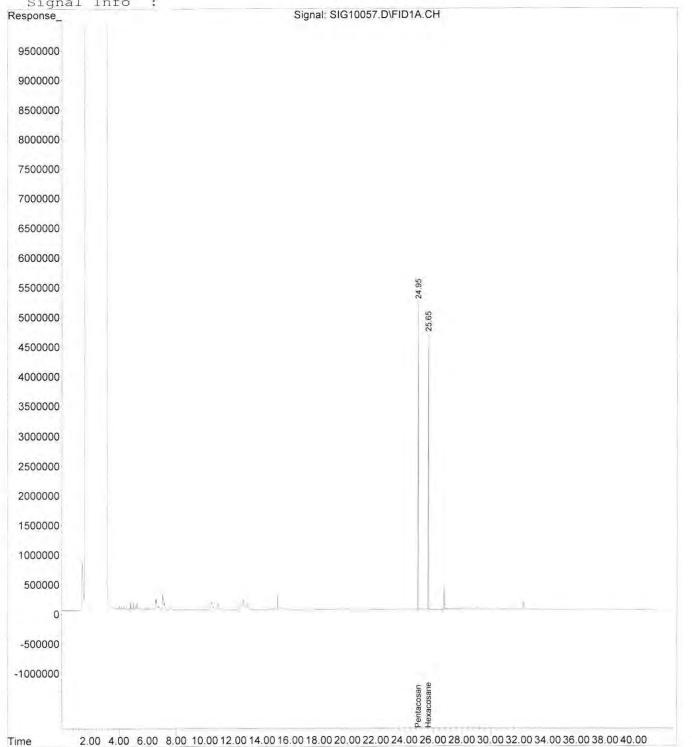
Acq On : 05 Mar 2021 14:24 Sample : WBB0717-04

Operator: ARC Inst : HP G1530A

Misc

Multiplr: 1.00

IntFile : EVENTS1.E


Quant Time: Mar 5 15:10 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10058.D Vial: 44

Acq On : 05 Mar 2021 15:21 Sample : BBC0132-MS1 Operator: ARC

Inst : HP G1530A

Misc Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 05 16:09:56 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.95	98643988	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65 50 - 150	92296361 Recovery	48.132 ppm = 96.26%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h HCID Diesel (C12-C14)	21.97	324813831	281.345 ppm	
8) h HCID Oil (>C14)	0.00	Q	N.D. ppm	

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10058.D

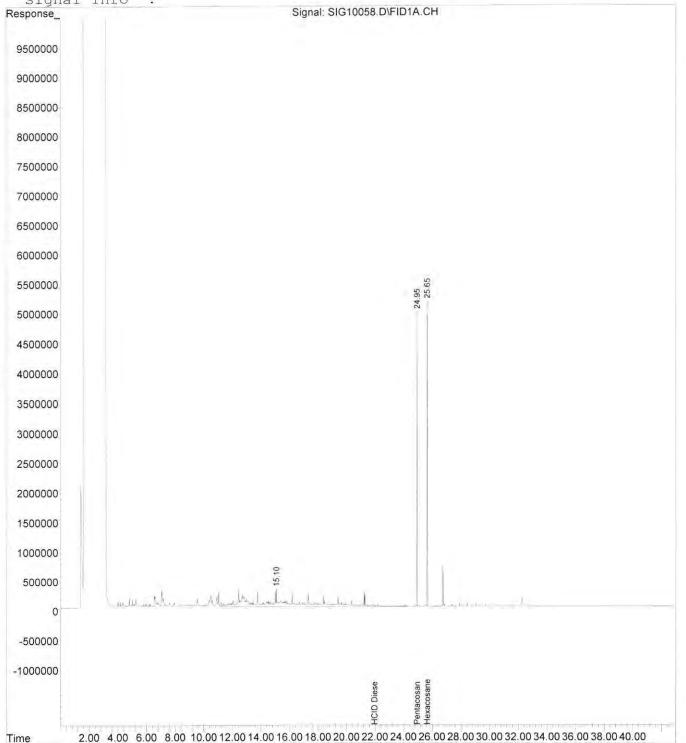
Vial: 44 Operator: ARC

Acq On : 05 Mar 2021 15:21 Operat Sample : BBC0132-MS1 Inst

Inst : HP G1530A

Misc : Multiplr: 1.00

IntFile : EVENTS1.E


Quant Time: Mar 5 16:10 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title :

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10059.D

Vial: 45 Operator: ARC Acq On : 05 Mar 2021 16:18 Sample : BBC0132-MSD1

Inst : HP G1530A

Multiplr: 1.00 Misc IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:31 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

	Compound	R.T.	Response	Conc (Jnits
In 1) I	ternal Standards Pentacosane	24.95	117045999	50.000	ppm m
2) S	stem Monitoring Compounds Hexacosane d Amount 50.000 Range	25.65 50 - 150	102390030 Recovery	45.000	
Ta	rget Compounds				
3) H	TPH Diesel (C12-C14)	0.00	0	N.D.	ppm
4) H	TPHDX-Lube Oil (>C14)	0.00	0	N.D.	ppm
5) H	Mineral Oil	0.00	0	N.D.	ppm
6) h	HCID Gas (C7-C12)	0.00	0	N.D.	ppm
7) h	HCID Diesel (C12-C14)	21.97	366351052	267.434	ppm
8) h	HCID Oil (>C14)	0.00	0	N.D.	ppm

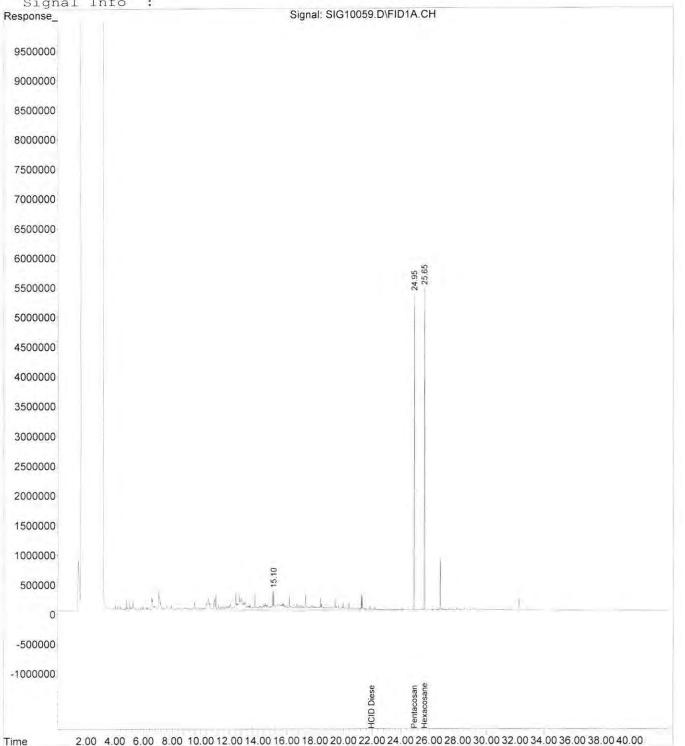
Data File : W:\HPCHEM\1\2021DATA\030321\SIG10059.D

Vial: 45 Operator: ARC

Acq On : 05 Mar 2021 16:18 : BBC0132-MSD1 Sample

Inst : HP G1530A

Multiplr: 1.00 Misc


IntFile : EVENTS1.E

Quant Time: Mar 8 8:01 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10060.D Vial: 46 Operator: ARC

Acq On : 05 Mar 2021 17:14 Sample : WBB0717-05 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:32 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator) Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

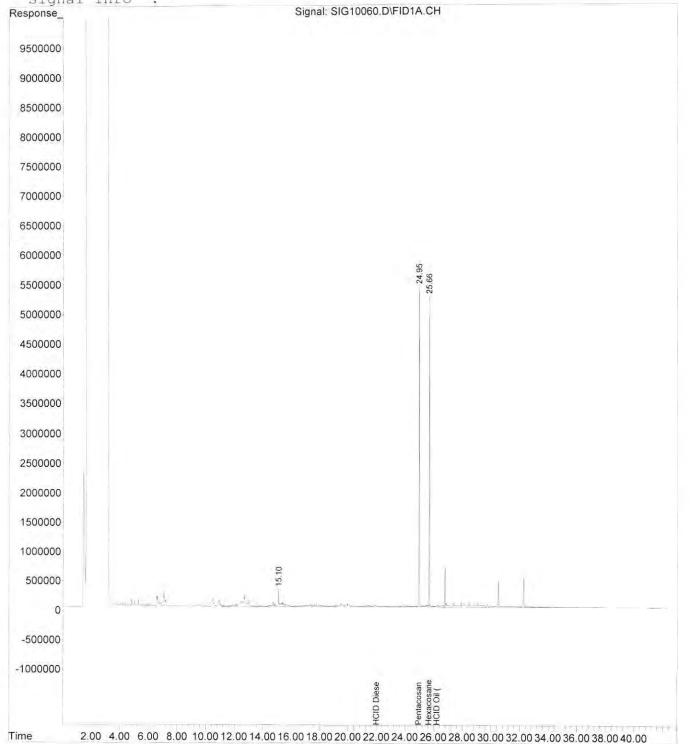
	Compound	R.T.	Response	Conc Units	
Inte	ernal Standards Pentacosane	24.95	121617696	50.000 ppm n	n
Syst 2) S	tem Monitoring Compounds Hexacosane	25.66	104379975	44.151 ppm n	n
Spiked	Amount 50.000 Range	50 - 150	Recovery	= 88.30%	
Taro	get Compounds				
3) H	TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H	TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H	Mineral Oil	0.00	0	N.D. ppm	
6) h	HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h	HCID Diesel (C12-C14)	21.97	138170528	97.072 ppm	
8) h	HCID Oil (>C14)	26.20	146814581	136.590 ppm	
				The second secon	

Vial: 46

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10060.D

Acq On : 05 Mar 2021 17:14 Sample : WBB0717-05 Operator: ARC Inst : HP G1530A

Multiplr: 1.00 Misc


IntFile : EVENTS1.E

Quant Time: Mar 8 13:59 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10062.D

Vial: 48

Acq On : 05 Mar 2021 19:06 Sample : WBB0717-06 Operator: ARC

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:34 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021
Response via: Initial Calibration
DataAcq Meth: DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.96	136053476	50.000 ppm m	
System Monitoring Compounds 2) S Hexacosane	25.66	92943028	35.142 ppm m	
Spiked Amount 50.000 Range	50 - 150	Recovery =	70.28%	
Target Compounds	0.00	0	N1 D	
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	O	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	5.05	142755148	85.699 ppm	
7) h HCID Diesel (C12-C14)	21.97	75152168	47.196 ppm	
8) h HCID Oil (>C14)	26.20	119378572	99.280 ppm	
			and the second s	

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10062.D

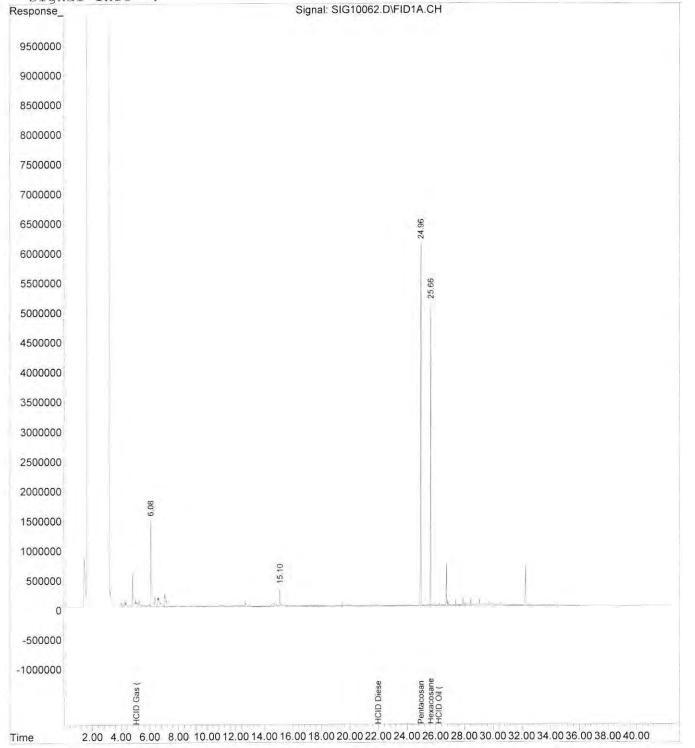
Vial: 48 Operator: ARC

Acq On : 05 Mar 2021 19:06 Sample : WBB0717-06 : HP G1530A Inst

Multiplr: 1.00

Misc

IntFile : EVENTS1.E


Quant Time: Mar 8 14:04 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10063.D Vial: 49

Acq On : 05 Mar 2021 20:02 Sample : WBB0717-07 Operator: ARC

Inst : HP G1530A

Misc Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:35 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.95	126275573	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.66 50 - 150	104660395 Recovery	42.636 ppm = 85.27%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h HCID Diesel (C12-C14)	21.97	111290887	75.304 ppm	
8) h HCID Oil (>C14)	26.20	117749963	105.508 ppm	

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10063.D

Vial: 49

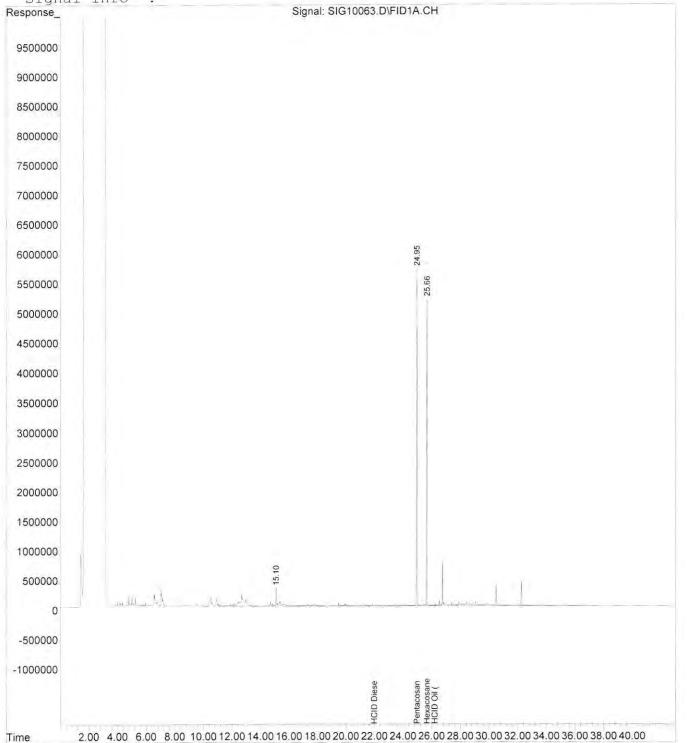
Acq On : 05 Mar 2021 20:02 Sample : WBB0717-07

Operator: ARC

: HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 8 14:05 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10064.D

Vial: 50

Acq On : 05 Mar 2021 20:57 Sample : WBB0717-08 Operator: ARC

Sample

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:36 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

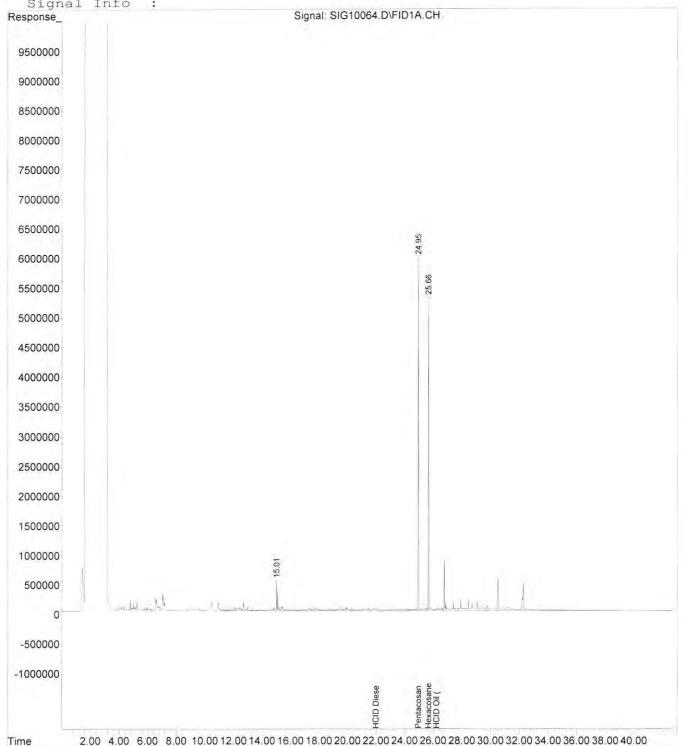
Title :
Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.95	115832795	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.66 50 - 150	102029538 Recovery	45.312 ppm = 90.62%	m
Target Compounds 3) H TPH Diesel (C12-C14) 4) H TPHDX-Lube Oil (>C14) 5) H Mineral Oil 6) h HCID Gas (C7-C12) 7) h HCID Diesel (C12-C14)	0.00 0.00 0.00 0.00 21.97	0 0 0 0 0 143958102	N.D. ppm N.D. ppm N.D. ppm N.D. ppm 106.189 ppm	
8) h HCID Oil (>C14)	26.20	174288998	170.249 ppm	

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10064.D Acq On : 05 Mar 2021 20:57 Sample : WBB0717-08

Vial: 50 Operator: ARC Inst : HP G1530A

Multiplr: 1.00 Misc


IntFile : EVENTS1.E

Quant Time: Mar 8 8:05 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021
Response via: Multiple Level Calibration
DataAcq Meth: DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10070.D Vial: 51 Operator: ARC

Acq On : 06 Mar 2021 2:29 Sample : WBB0717-09 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:42 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Initial Calibration DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc Unit	s
Internal Standards 1) I Pentacosane	24.95	116898947	50.000 ppm	m
System Monitoring Compounds	25 65	00020007		
2) S Hexacosane Spiked Amount 50.000 Range	25.65 50 - 150	99930227 Recovery	43.975 ppm = 87.95%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h HCID Diesel (C12-C14)	21.97	150067253	109.686 ppm	
8) h HCID Oil (>C14)	26.20	127620959	123.525 ppm	

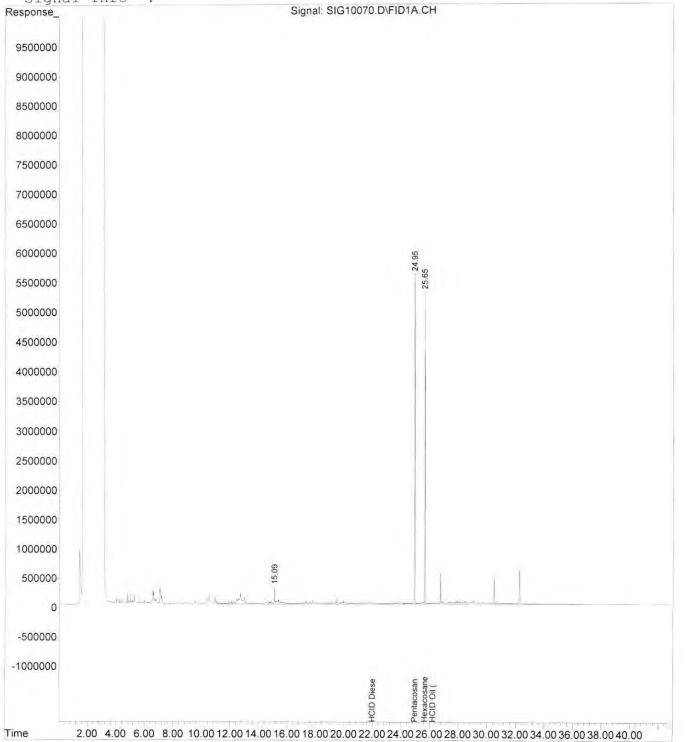
Data File : W:\HPCHEM\1\2021DATA\030321\SIG10070.D

Vial: 51 Operator: ARC

Acq On : 06 Mar 2021 2:29 Sample : WBB0717-09 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 8 8:08 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10071.D

Vial: 52 Acq On : 06 Mar 2021 3:24 Sample : WBB0717-10 Operator: ARC

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:43 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title :
Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

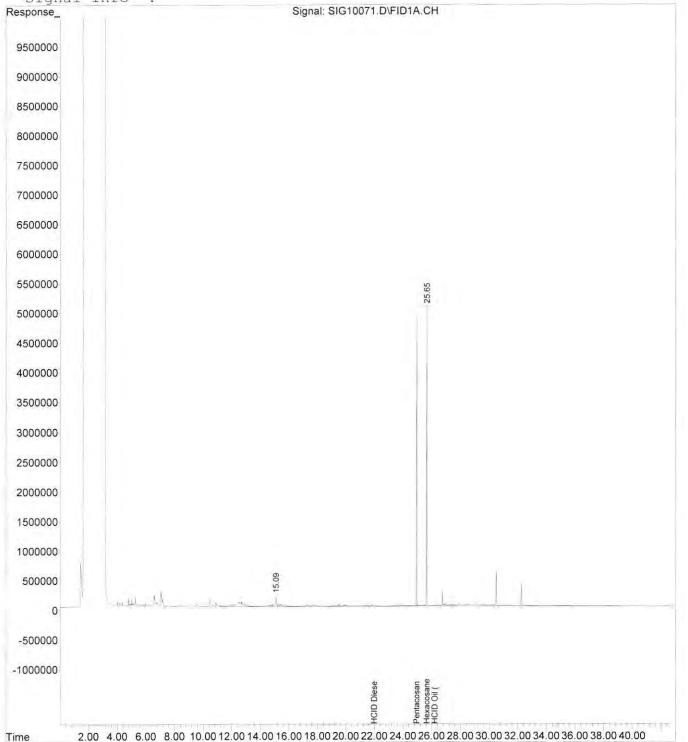
Compo	and	R.T.	Response	Conc Un	its
Internal Sta 1) I Pentaco		24.94	91249751	50.000 p	pm m
System Monit 2) S Hexacos Spiked Amount		ds 25.65 ange 50 - 150	82173249 Recovery	46.325 p = 92.65%	
Target Compo	ounds				
3) H TPH Die	esel (C12-C14)	0.00	0	N.D. p	pm
4) H TPHDX-1	Lube Oil (>C14)	0.00	O	N.D. p	pm
5) H Mineral	Oil	0.00	O	N.D. p	pm
6) h HCID Ga	as (C7-C12)	0.00	0	N.D. p	pm
7) h HCID D:	lesel (C12-C14)	21.97	86071532	80.594 p	pm
8) h HCID O	ll (>C14)	26.20	100312433	124.385 p	pm

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10071.D

Vial: 52

Multiplr: 1.00

Misc : IntFile : EVENTS1.E


Quant Time: Mar 8 8:09 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title :

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10072.D Vial: 53

Acq On : 06 Mar 2021 4:19 Sample : WBB0717-11 Operator: ARC

Inst : HP G1530A Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:44 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

		Compound	R.T.	Response	Conc Uni	ts
		ernal Standards Pentacosane	24.94	102738420	50.000 pp	m m
2)	S	tem Monitoring Compounds Hexacosane Amount 50.000 Range	25.65 50 - 150	94178211 Recovery =	47.156 pp	m m
,	Tar	get Compounds				
3)	H	TPH Diesel (C12-C14)	0.00	0	N.D. pp	m
4)	Н	TPHDX-Lube Oil (>C14)	0.00	0	N.D. pp	
5)	H	Mineral Oil	0.00	0	N.D. pp	
6)	h	HCID Gas (C7-C12)	0.00	0	N.D. pp	
7)	h	HCID Diesel (C12-C14)	0.00	0	N.D. pp	
8)	h	HCID Oil (>C14)	0.00	0	N.D. pp	

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10072.D

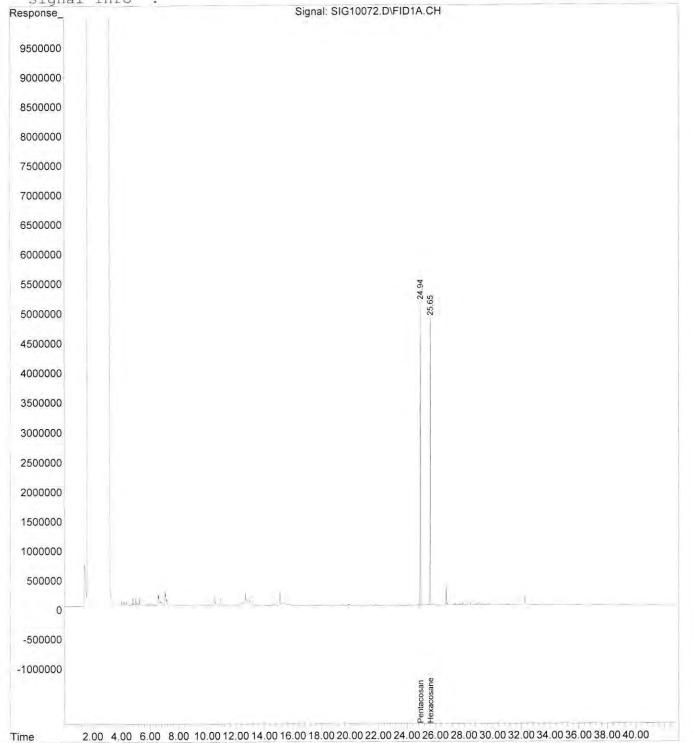
Vial: 53

Acq On : 06 Mar 2021 4:19 Sample : WBB0717-11 Operator: ARC

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 8 8:09 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Vial: 54 Data File: W:\HPCHEM\1\2021DATA\030321\SIG10073.D Operator: ARC

Acq On : 06 Mar 2021 5:14 Sample : WBB0717-12 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:45 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021
Response via: Initial Calibration
DataAcq Meth: DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.95	135752285	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.66 50 - 150	128426267 Recovery =	48.666 ppm 97.33%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	O	N.D. ppm	
5) H Mineral Oil	0.00	O	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h HCID Diesel (C12-C14)	0.00	0	N.D. ppm	
8) h HCID Oil (>C14)	0.00	0	N.D. ppm	

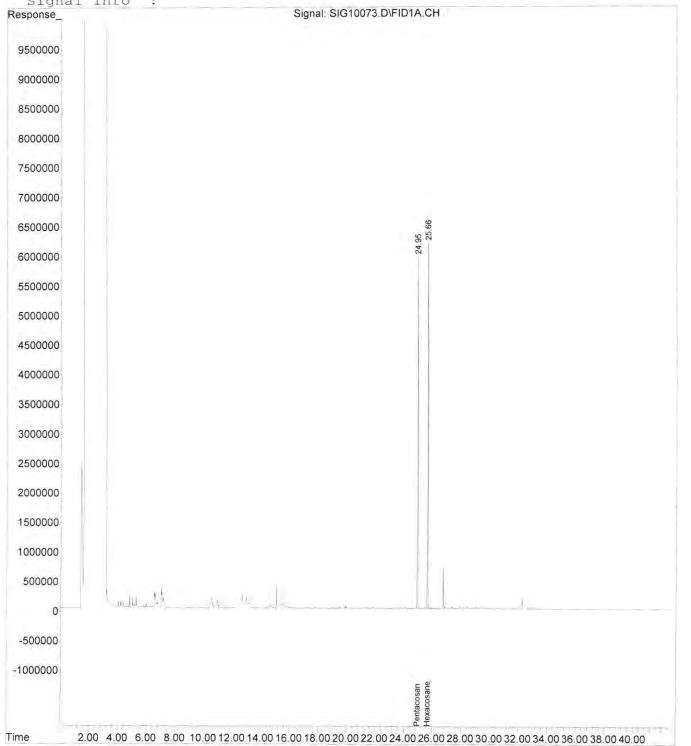
Data File : W:\HPCHEM\1\2021DATA\030321\SIG10073.D

Vial: 54 Operator: ARC

Acq On : 06 Mar 2021 5:14 Sample : WBB0717-12 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 8 8:10 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10074.D

Vial: 55

Acq On : 06 Mar 2021 6:09 Sample : WBB0717-13 Operator: ARC

Sample Misc

Inst : HP G1530A

Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:46 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

Compound	R.T.	Response	Conc Units
Internal Standards			
1) I Pentacosane	24.95	129287671	50.000 ppm m
System Monitoring Compounds	W- W-		
2) S Hexacosane	25.66	118878552	47.300 ppm m
Spiked Amount 50.000 Range	50 - 150	Recovery =	94.60%
Target Compounds			
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm
4) H TPHDX-Lube Oil (>C14)	0.00	O	N.D. ppm
5) H Mineral Oil	0.00	0	N.D. ppm
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm
7) h HCID Diesel (C12-C14)	0.00	0	N.D. ppm
8) h HCID Oil (>C14)	0.00	Ö	N.D. ppm

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10074.D

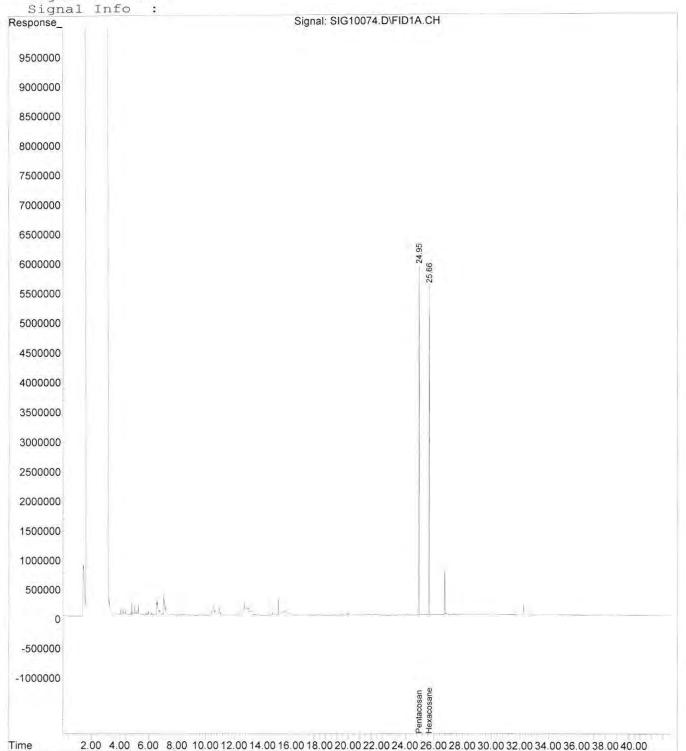
Vial: 55

Acq On : 06 Mar 2021 6:09 Operator: ARC Sample : WBB0717-13 Inst : HP G1530A

Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 8 8:10 2021 Quant Results File: 210301LOW.RES


Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title :

Misc

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10075.D Acq On : 06 Mar 2021 7:05 Sample : WBB0717-14 Vial: 56 Operator: ARC

Inst : HP G1530A

Multiplr: 1.00 Misc

Intfile : EVENTS1.E Quant Time: Mar 08 07:54:47 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

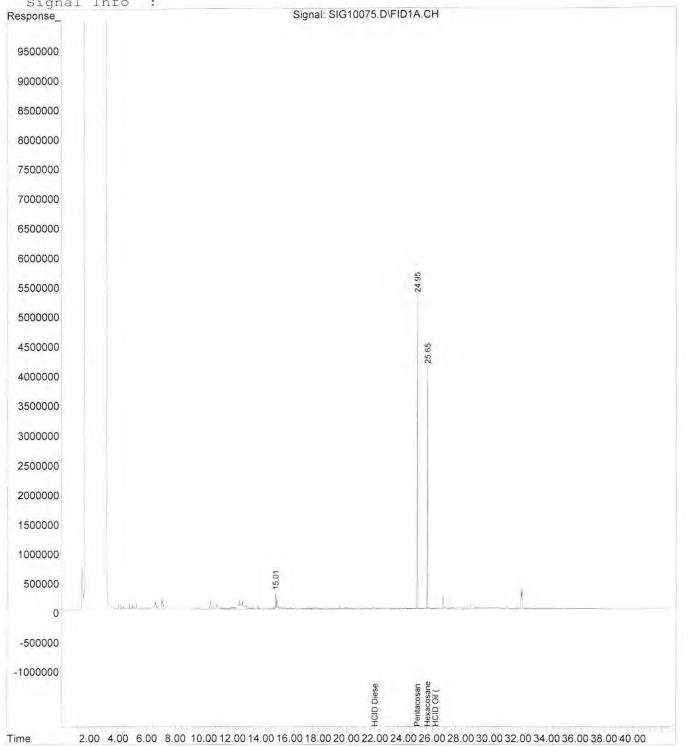
Compound	R.T.	Response	Conc Unit	s
Internal Standards 1) I Pentacosane	24.95	106897955	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65f 50 - 150		36.864 ppm = 73.73%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	O	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h HCID Diesel (C12-C14)	21.97	103380775	82.631 ppm	
8) h HCID Oil (>C14)	26.20	105482645	111.649 ppm	

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10075.D Vial: 56
Acq On: 06 Mar 2021 7:05 Operator: ARC

Acq On : 06 Mar 2021 7:05 Operator: ARC Sample : WBB0717-14 Inst : HP G1530A

Misc: Multiplr: 1.00

IntFile : EVENTS1.E


Quant Time: Mar 8 14:06 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title :

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10076.D Vial: 57 Operator: ARC

Acq On : 06 Mar 2021 8:01 Sample : WBB0717-15 Misc : Inst : HP G1530A

Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:48 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Initial Calibration DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.96	151839422	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.66 50 - 150	130254916 Recovery =	44.129 ppm = 88.26%	m
Target Compounds 3) H TPH Diesel (C12-C14) 4) H TPHDX-Lube Oil (>C14) 5) H Mineral Oil 6) h HCID Gas (C7-C12) 7) h HCID Diesel (C12-C14) 8) h HCID Oil (>C14)	0.00 0.00 0.00 0.00 21.97 26.20	0 0 0 0 159209650 131205311	N.D. ppm N.D. ppm N.D. ppm N.D. ppm 89.590 ppm 97.771 ppm	

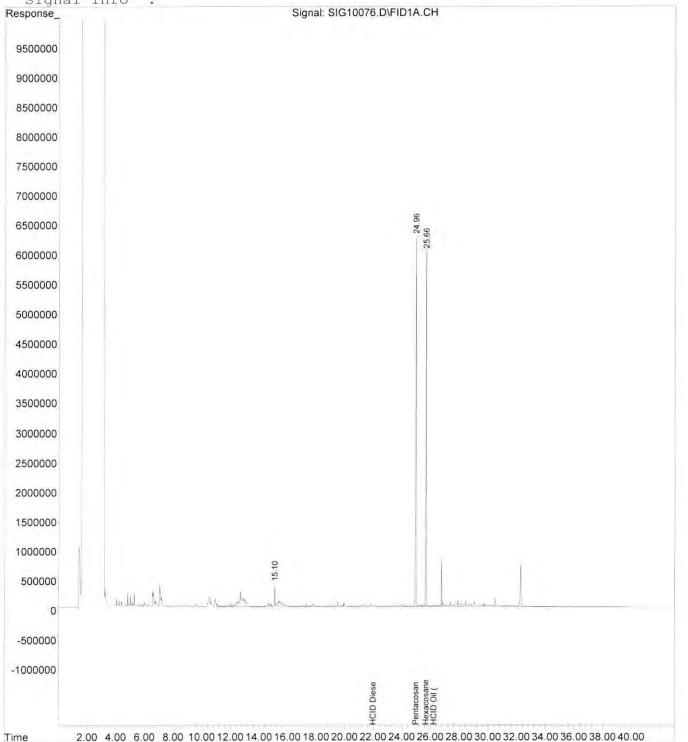
Data File : W:\HPCHEM\1\2021DATA\030321\SIG10076.D

Vial: 57 Operator: ARC

Acq On : 06 Mar 2021 8:01 Sample : WBB0717-15 Inst : HP G1530A Misc

Multiplr: 1.00

IntFile : EVENTS1.E


Quant Time: Mar 8 8:11 2021 Quant Results File: 210301LOW.RES

Ouant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10077.D Vial: 58

Acq On : 06 Mar 2021 8:57 Sample : WBB0717-16 Operator: ARC Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:49 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Initial Calibration DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.94	94275874	50.000 ppm m	
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65 50 - 150	85867122 Recovery	46.854 ppm m = 93.71%	
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	7
4) H TPHDX-Lube Oil (>C14)	26.20	126695886	134.178 ppm JV	nc
5) H Mineral Oil	0.00	0	N.D. ppm 3/	8/21
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	0.1
7) h HCID Diesel (C12-C14)	21.97	75868653	68.760 ppm	
8) h HCID Oil (>C14)	26.20	117334008	140.821 ppm	

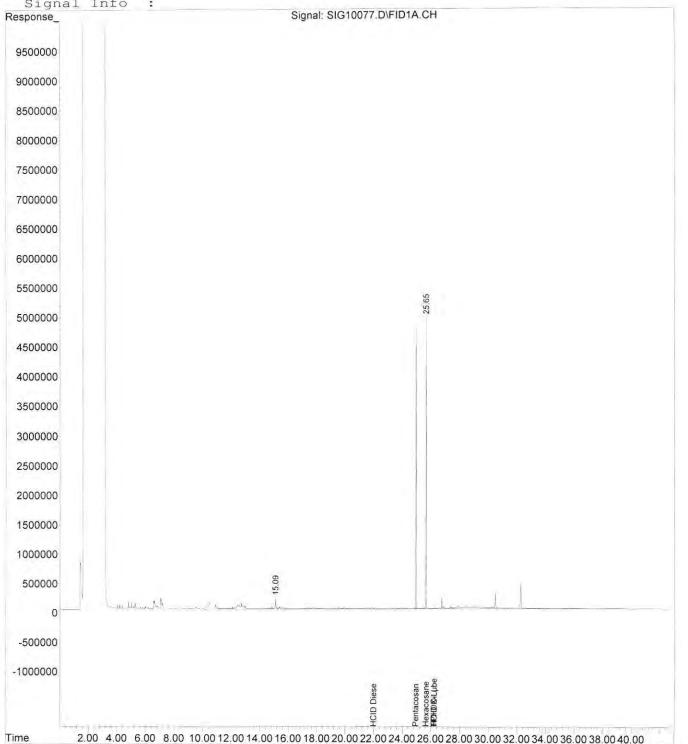
Data File : W:\HPCHEM\1\2021DATA\030321\SIG10077.D

Operator: ARC Inst : HP G1530A

Vial: 58

Acq On : 06 Mar 2021 8:57 Sample : WBB0717-16 Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 8 8:12 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10078.D

Vial: 59 Operator: ARC

Acq On : 06 Mar 2021 9:53 Sample : WBB0717-17 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07;54:50 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

Compound	R.T.	Response	Conc Uni	ts
Internal Standards 1) I Pentacosane	24.95	125203767	50.000 pp	om m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.66 50 - 150	110832010 Recovery	45.537 pp = 91.07%	om m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. pp	m
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. pp	
5) H Mineral Oil	0.00	0	N.D. pp	m
6) h HCID Gas (C7-C12)	0.00	0	N.D. pp	m
7) h HCID Diesel (C12-C14)	0.00	0	N.D. pp	m
8) h HCID Oil (>C14)	26.20	117726511	106.390 pp	m

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10078.D

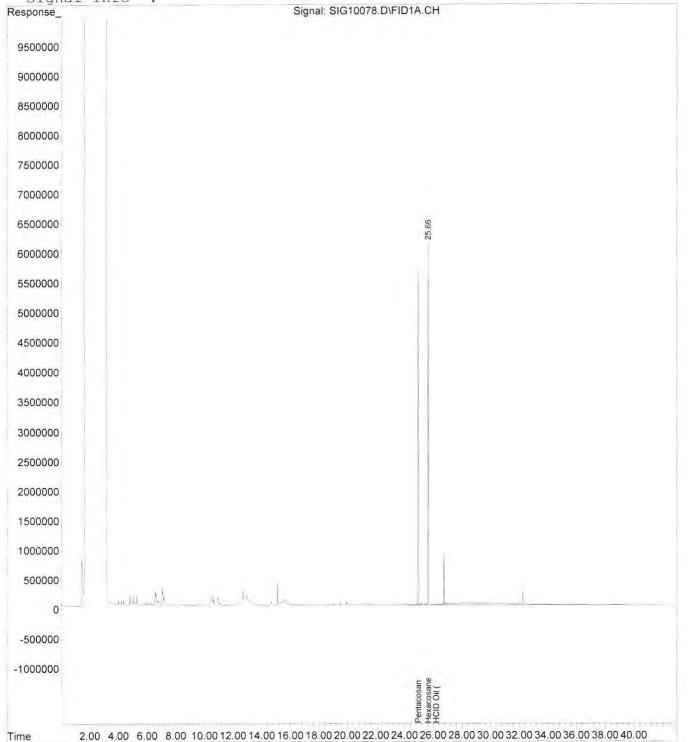
Vial: 59

Acq On : 06 Mar 2021 Sample : WBB0717-17 Operator: ARC 9:53

: HP G1530A Inst

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 8 8:12 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10079.D

Vial: 60 Operator: ARC

Acq On : 06 Mar 2021 10:49 Sample : WBB0717-18 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:51 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Initial Calibration DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.95	112493120	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65 50 - 150	104188727 Recovery =		m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h HCID Diesel (C12-C14)	0.00	0	N.D. ppm	
8) h HCID Oil (>C14)	0.00	0	N.D. ppm	

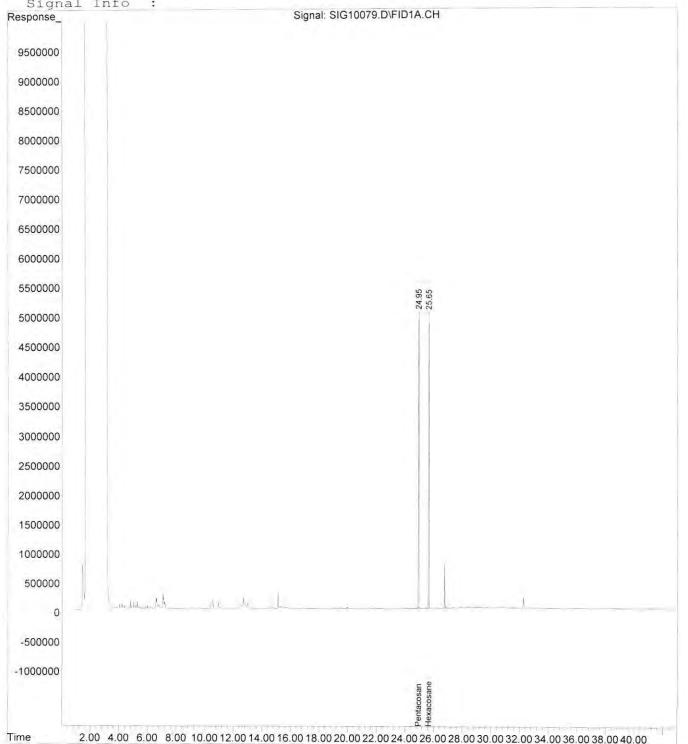
Data File : W:\HPCHEM\1\2021DATA\030321\SIG10079.D

Vial: 60

Acq On : 06 Mar 2021 10:49 Sample : WBB0717-18 Operator: ARC : HP G1530A Inst

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 8 8:12 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10085.D

Vial: 61

Acq On : 06 Mar 2021 16:26 Sample : WBB0717-19 Operator: ARC

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 08 07:54:57 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021

Response via : Initial Calibration DataAcq Meth : DXHCID5.M

	Compound	R.T.	Response	Conc	Units	_
Int 1) I	ernal Standards Pentacosane	24.95	116987909	50.000	ppm m	
2) s	tem Monitoring Compounds Hexacosane Amount 50.000 Range	25.66 50 - 150	99105980 Recovery	43.579 = 87.1		
Tar	get Compounds					
3) H	TPH Diesel (C12-C14)	0.00	0	N.D.	ppm	
4) H	TPHDX-Lube Oil (>C14)	0.00	0	N.D.	ppm	
5) H	Mineral Oil	0.00	0	N.D.	ppm	
6) h	HCID Gas (C7-C12)	0.00	0	N.D.	ppm	
7) h	HCID Diesel (C12-C14)	0.00	0	N.D.	ppm	
8) h	HCID Oil (>C14)	26.20	1465348954	1417.246	ppm	

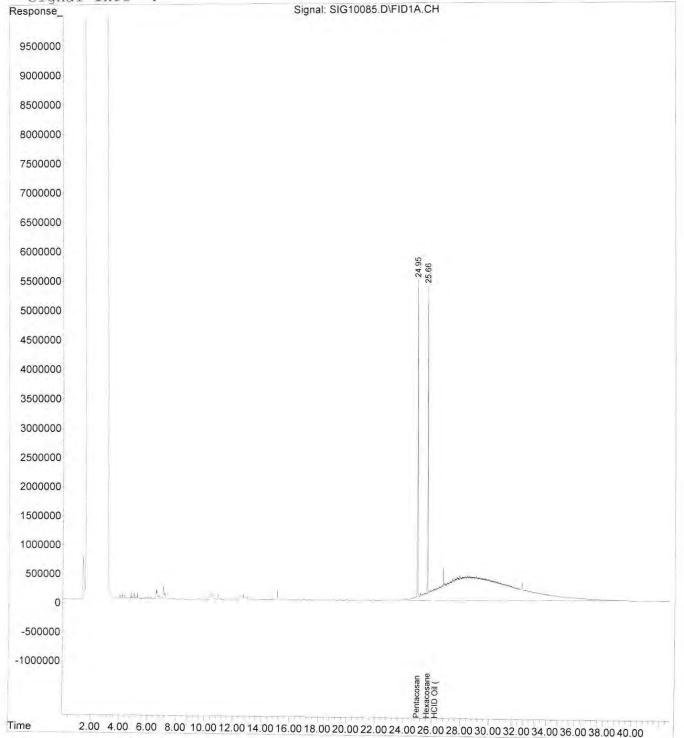
Data File : W:\HPCHEM\1\2021DATA\030321\SIG10085.D

Vial: 61 Operator: ARC

Acq On : 06 Mar 2021 16:26 Sample : WBB0717-19

Inst : HP G1530A

Multiplr: 1.00 Misc


IntFile : EVENTS1.E

Quant Time: Mar 8 8:15 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration DataAcq Meth : DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10086.D

Vial: 62 Acq On : 06 Mar 2021 17:22 Sample : WBB0717-20 Operator: ARC

Sample Inst : HP G1530A

Misc Multiplr: 1.00

IntFile : EVENTS1.E Quant Time: Mar 08 07:54:58 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Initial Calibration DataAcq Meth : DXHCID5.M

	Compound	R.T.	Response	Conc Units	S
Int	ernal Standards				
1) I	Pentacosane	24.96	132835418	50.000 ppm	m
Sys	tem Monitoring Compounds				
2) S	Hexacosane	25.66	120466519	46.652 ppm	m
piked	Amount 50.000 Range	50 - 150	Recovery	= 93.30%	
Tar	get Compounds				
3) H	TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H	TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H	Mineral Oil	0.00	0	N.D. ppm	
6) h	HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h	HCID Diesel (C12-C14)	21.97	189832130	122.104 ppm	
8) h	HCID Oil (>C14)	26.20	293242257	249.780 ppm	
				A A	

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10086.D

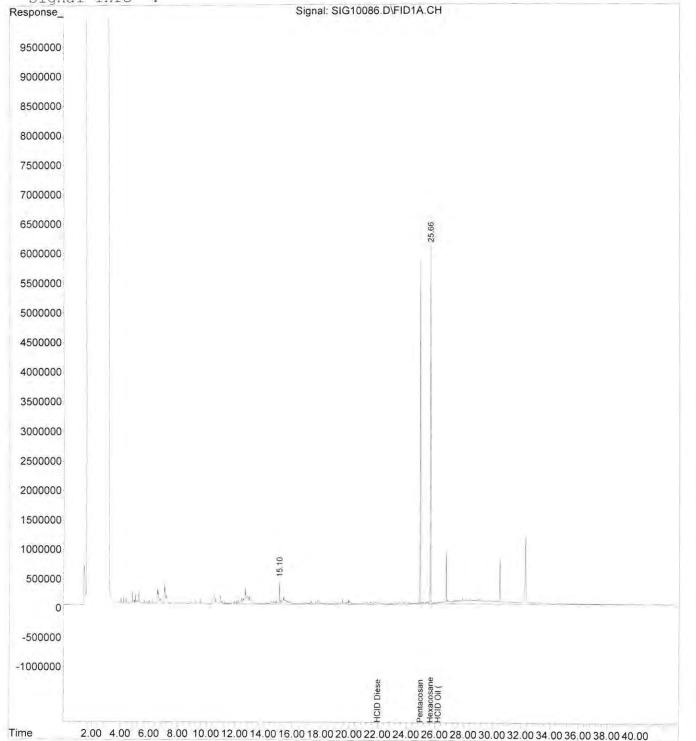
Vial: 62 Operator: ARC

Acq On : 06 Mar 2021 17:22 Sample : WBB0717-20

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 8 8:16 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10037.D

Vial: 29 Acq On : 04 Mar 2021 19:52 Sample : BBB0734-BLK1 Misc : Operator: ARC

Inst : HP G1530A

Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 05 07:54:49 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

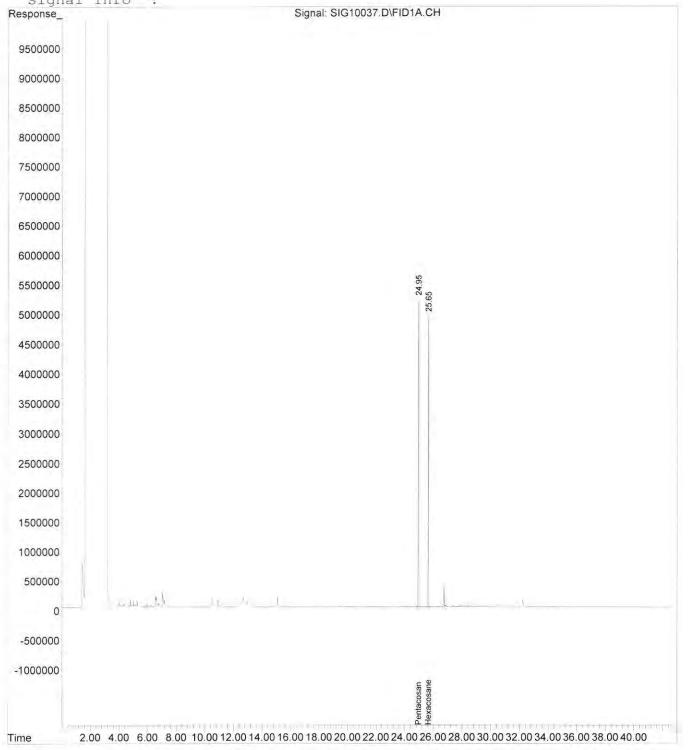
Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.95	108911736	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65 e 50 - 150	95543019 Recovery =	45.127 ppm 90.25%	m
Target Compounds 3) H TPH Diesel (C12-C14) 4) H TPHDX-Lube Oil (>C14) 5) H Mineral Oil 6) h HCID Gas (C7-C12) 7) h HCID Diesel (C12-C14) 8) h HCID Oil (>C14)	0.00 0.00 0.00 0.00 0.00	0 0 0 0	N.D. ppm N.D. ppm N.D. ppm N.D. ppm N.D. ppm N.D. ppm	

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10037.D Vial: 29 Acq On : 04 Mar 2021 19:52 Operator: ARC

Inst : HP G1530A Sample : BBB0734-BLK1

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 5 7:57 2021 Quant Results File: 210301LOW.RES

Ouant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10038.D

Vial: 30

Acq On : 04 Mar 2021 20:47 Sample : BBB0734-BS1 Operator: ARC

Inst : HP G1530A

Multiplr: 1.00 Misc IntFile : EVENTS1.E

Quant Time: Mar 05 07:54:50 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Initial Calibration DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc Units
Internal Standards 1) I Pentacosane	24.95	122394431	50.000 ppm m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65 50 - 150	93118267 Recovery	39.137 ppm m = 78.27%
Target Compounds			
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm
4) H TPHDX-Lube Oil (>C14)	0.00	O	N.D. ppm
5) H Mineral Oil	0.00	0	N.D. ppm
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm
7) h HCID Diesel (C12-C14)	21.97	280343923	195.706 ppm
8) h HCID Oil (>C14)	0.00	0	N.D. ppm

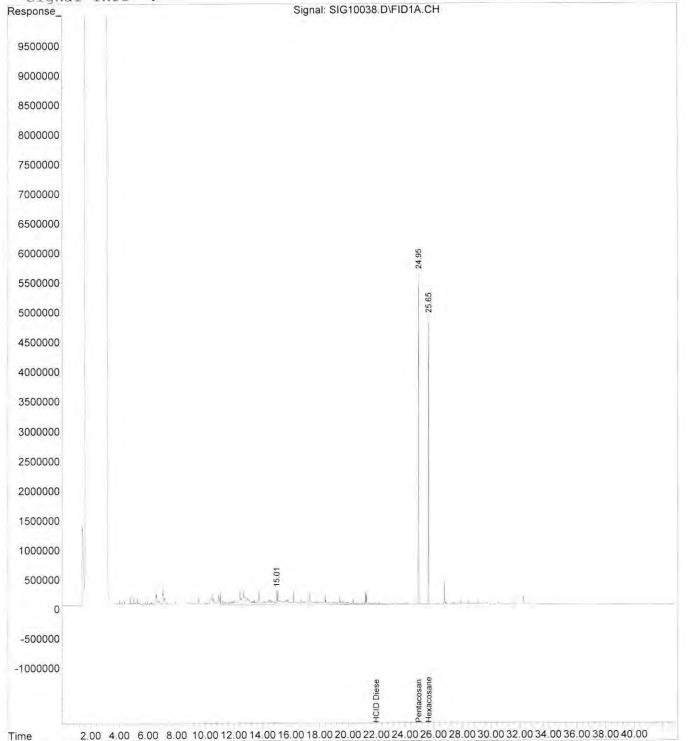
Data File : W:\HPCHEM\1\2021DATA\030321\SIG10038.D

Vial: 30 Operator: ARC

Acq On : 04 Mar 2021 Sample : BBB0734-BS1 20:47

: HP G1530A Inst

Multiplr: 1.00 Misc


IntFile : EVENTS1.E

Quant Time: Mar 5 7:58 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

: Tue Mar 02 09:08:48 2021 Last Update Response via : Multiple Level Calibration DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10039.D

Vial: 31 Operator: ARC

Acq On : 04 Mar 2021 21:43 Sample : WBB0617-20 Inst : HP G1530A

Misc

Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 05 07:54:51 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

Compound	В.Т.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.94	103798109	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25,65f 50 - 150	76987078 Recovery =	38.154 ppm 76.31%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	O	N.D. ppm	
7) h HCID Diesel (C12-C14)	0.00	0	N.D. ppm	
8) h HCID Oil (>C14)	0.00	0	N.D. ppm	

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10039.D

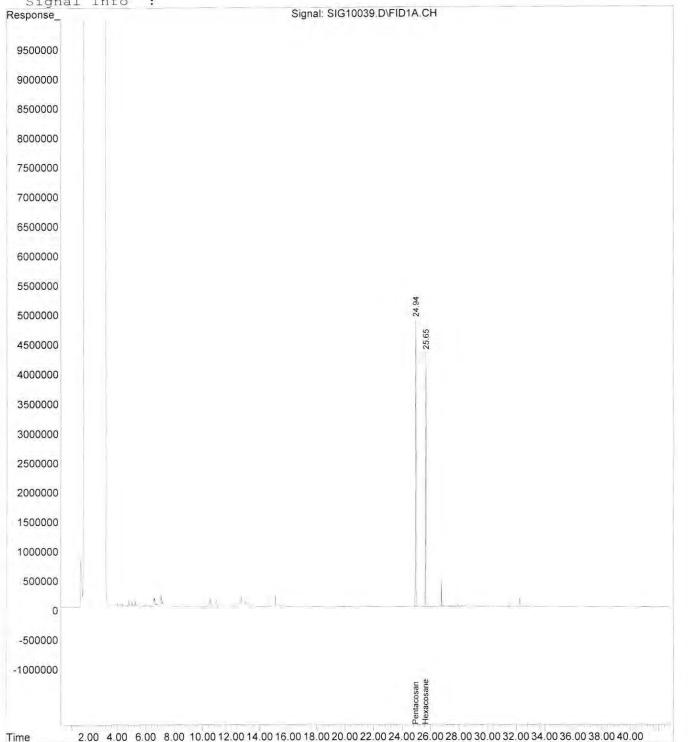
Vial: 31 Operator: ARC

Acq On : 04 Mar 2021 21:43 Sample : WBB0617-20 Multiplr: 1.00

Misc

Inst : HP G1530A

IntFile : EVENTS1.E


Quant Time: Mar 5 7:59 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10040.D

Vial: 32 Acq On : 04 Mar 2021 22:38 Sample : WBB0617-21 Operator: ARC

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 05 07:54:52 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Title :
Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc U	nits
Internal Standards 1) I Pentacosane	24.94	102987784	50.000	ppm m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65f 50 - 150	84602151 Recovery	42.258 j = 84.52	
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	O	N.D.	ppm
4) H TPHDX-Lube Oil (>C14)	0.00	0		ppm
5) H Mineral Oil	0.00	0		ppm
6) h HCID Gas (C7-C12)	0.00	0		ppm
7) h HCID Diesel (C12-C14)	21.97	148861859		ppm
8) h HCID Oil (>C14)	26.20	156822226	172.293	ppm

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10040.D

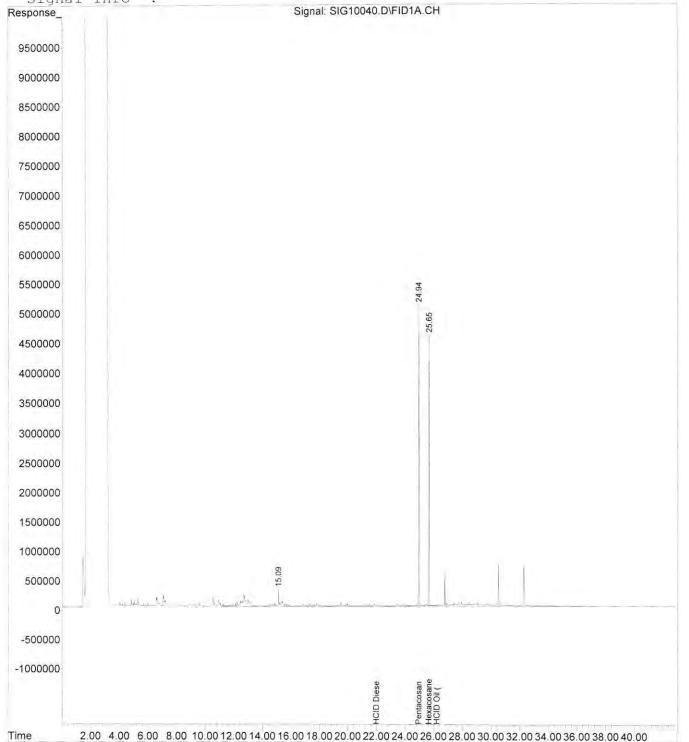
D Vial: 32 Operator: ARC

Acq On : 04 Mar 2021 22:38 Sample : WBB0617-21

Inst : HP G1530A

Misc : Multiplr: 1.00

IntFile : EVENTS1.E


Quant Time: Mar 5 7:59 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title :

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10046.D

Vial: 33 Acq On : 05 Mar 2021 4:08 Sample : WBB0617-22 Operator: ARC

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E Quant Time: Mar 05 07:55:13 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Title :
Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.95	114743355	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65 50 - 150	89264714 Recovery =	40.019 ppm 80.04%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	O	N.D. ppm	
7) h HCID Diesel (C12-C14)	0.00	0	N.D. ppm	
8) h HCID Oil (>C14)	0.00	0	N.D. ppm	

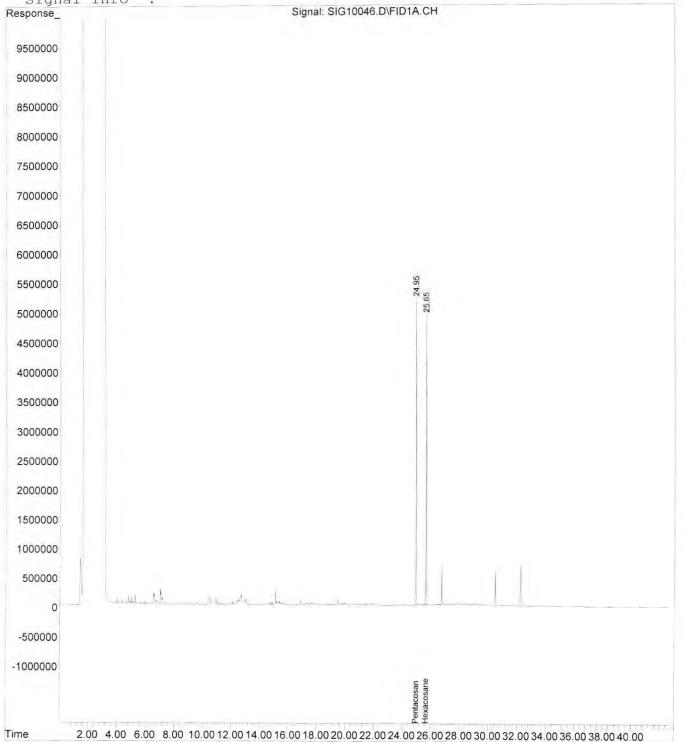
Vial: 33 Operator: ARC

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10046.D Acq On : 05 Mar 2021 4:08 Sample : WBB0617-22

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 5 8:07 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10047.D Vial: 34 Operator: ARC 5:03

Acq On : 05 Mar 2021 Sample : BBB0734-DUP1 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 05 07:55:14 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Title :
Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

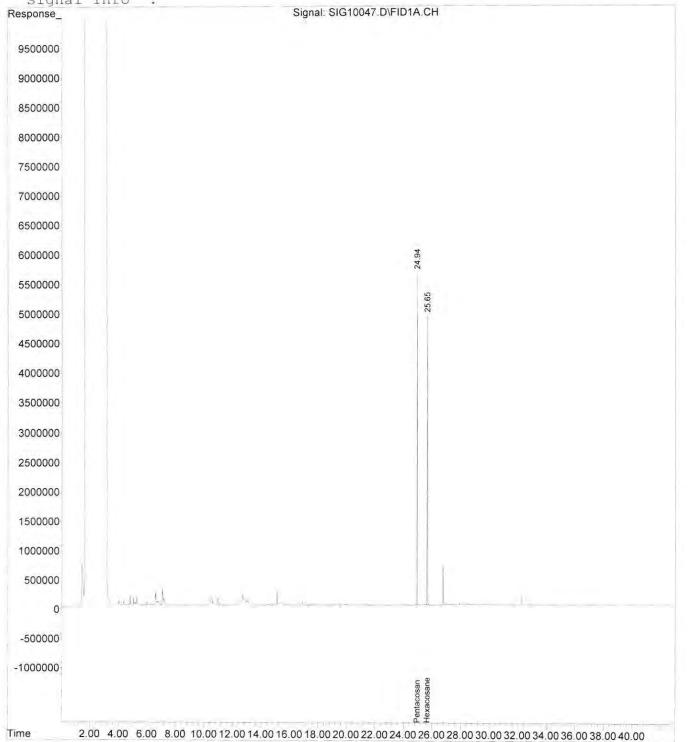
Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.94	105410658	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65f 50 - 150	93230800 Recovery =	45.498 ppm 91.00%	m
Target Compounds 3) H TPH Diesel (C12-C14) 4) H TPHDX-Lube Oil (>C14) 5) H Mineral Oil 6) h HCID Gas (C7-C12) 7) h HCID Diesel (C12-C14) 8) h HCID Oil (>C14)	0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0	N.D. ppm N.D. ppm N.D. ppm N.D. ppm N.D. ppm N.D. ppm	

Vial: 34

Data File: W:\HPCHEM\1\2021DATA\030321\SIG10047.D

Misc: Multiplr: 1.00

IntFile : EVENTS1.E


Quant Time: Mar 5 8:07 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title :

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10048.D Vial: 35

Acq On : 05 Mar 2021 5:58 Sample : WBB0617-23 Operator: ARC Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 05 08:07:51 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Initial Calibration DataAcq Meth : DXHCID5.M

	Compound	R.T.	Response	Conc U	nits
Inter 1) I	rnal Standards Pentacosane	24.94	104990200	50.000	ppm m
2	em Monitoring Compounds Hexacosane Amount 50.000 Range	25.65 50 - 150	91191582 Recovery	44.681 = 89.36	
Targe	et Compounds				
3) H	TPH Diesel (C12-C14)	0.00	0	N.D.	ppm
4) H	TPHDX-Lube Oil (>C14)	0.00	0		ppm
	Mineral Oil	0.00	0	1002	ppm
6) h	HCID Gas (C7-C12)	0.00	0		ppm
7) h	HCID Diesel (C12-C14)	21.97	163079072		ppm
8) h	HCID Oil (>C14)	26.20	261665848		ppm

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10048.D

Vial: 35

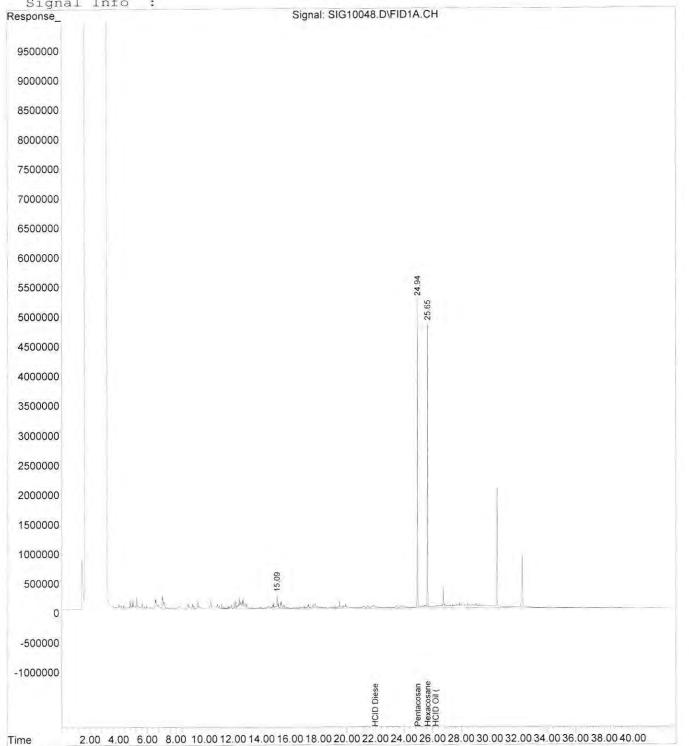
Acq On : 05 Mar 2021 5:58 Sample : WBB0617-23

Operator: ARC Inst : HP G1530A

Misc

IntFile : EVENTS1.E

Multiplr: 1.00


Quant Time: Mar 5 8:09 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10049.D Acq On : 05 Mar 2021 6:53 Sample : BBB0734-MS1

Vial: 36 Operator: ARC

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 05 08:07:52 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

Compound	R.T.	Response	Conc U	nits
Internal Standards 1) I Pentacosane	24.94	105563618	50.000	ppm m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65 50 - 150	93198666 Recovery	45.416 = 90.83	- L
Target Compounds 3) H TPH Diesel (C12-C14) 4) H TPHDX-Lube Oil (>C14) 5) H Mineral Oil 6) h HCID Gas (C7-C12) 7) h HCID Diesel (C12-C14) 8) h HCID Oil (>C14)	0.00 0.00 0.00 0.00 21.97 26.20	0 0 0 0 313686399 53403775	N.D. N.D. N.D. 253.896	ppm ppm ppm ppm ppm

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10049.D

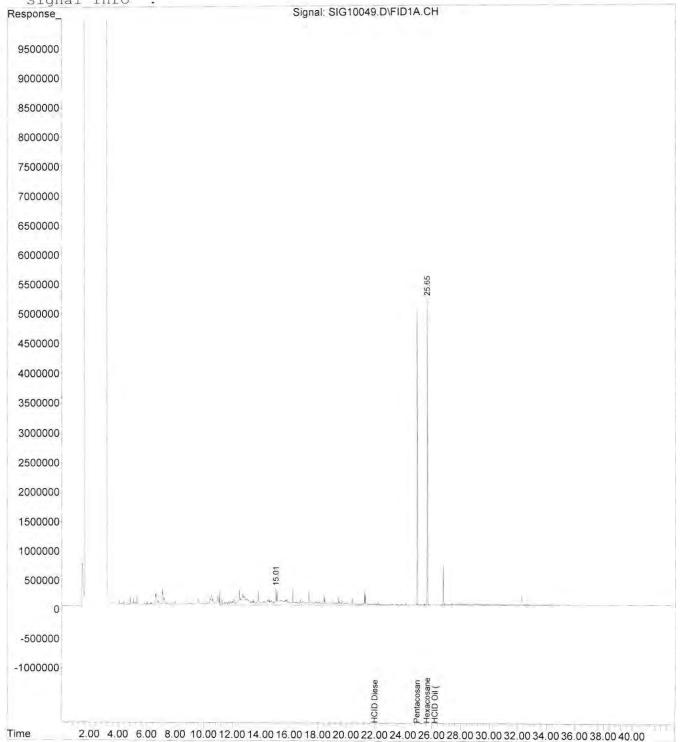
Vial: 36 Operator: ARC

Acq On : 05 Mar 2021 6:53 Op Sample : BBB0734-MS1

Inst : HP G1530A

Misc : Multiplr: 1.00

IntFile : EVENTS1.E


Quant Time: Mar 5 8:10 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title :

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10050.D

Vial: 37

Acq On : 05 Mar 2021 7:49 Operator: ARC

Sample : BBB0734-MSD1

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 05 08:32:17 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

Compound		R.T.	Response	Conc l	Jnits
ernal Standards Pentacosane		24.94	105451950	50.000	ppm m
Hexacosane		25.65 50 - 150	98442119 Recovery	48.022 = 96.04	
get Compounds					
TPH Diesel (C12-C14))	0.00	0	N.D.	ppm
TPHDX-Lube Oil (>C14	4)	0.00	0	N.D.	ppm
Mineral Oil		0.00	0	N.D.	ppm
HCID Gas (C7-C12)		0.00	0	2.4	ppm
HCID Diesel (C12-C14	4)	21.97	320581845		
HCID Oil (>C14)		26.20	47776515	51.263	ppm
	ernal Standards Pentacosane tem Monitoring Compou Hexacosane Amount 50,000 get Compounds TPH Diesel (C12-C14 TPHDX-Lube Oil (>C1 Mineral Oil HCID Gas (C7-C12) HCID Diesel (C12-C1	ernal Standards Pentacosane tem Monitoring Compounds Hexacosane Amount 50.000 Range get Compounds TPH Diesel (C12-C14) TPHDX-Lube Oil (>C14) Mineral Oil HCID Gas (C7-C12) HCID Diesel (C12-C14)	ernal Standards Pentacosane 24.94 tem Monitoring Compounds Hexacosane 25.65 Amount 50.000 Range 50 - 150 get Compounds TPH Diesel (C12-C14) 0.00 TPHDX-Lube Oil (>C14) 0.00 Mineral Oil 0.00 HCID Gas (C7-C12) 0.00 HCID Diesel (C12-C14) 21.97	ernal Standards Pentacosane 24.94 105451950 tem Monitoring Compounds Hexacosane 25.65 98442119 Amount 50.000 Range 50 - 150 Recovery get Compounds TPH Diesel (C12-C14) 0.00 0 TPHDX-Lube Oil (>C14) 0.00 0 Mineral Oil 0.00 0 HCID Gas (C7-C12) 0.00 0 HCID Diesel (C12-C14) 21.97 320581845	ernal Standards Pentacosane 24.94 105451950 50.000 tem Monitoring Compounds Hexacosane 25.65 98442119 48.022 Amount 50.000 Range 50 - 150 Recovery = 96.04 get Compounds TPH Diesel (C12-C14) 0.00 0 N.D. TPHDX-Lube Oil (>C14) 0.00 0 N.D. Mineral Oil 0.00 0 N.D. HCID Gas (C7-C12) 0.00 0 N.D. HCID Diesel (C12-C14) 21.97 320581845 259.752

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10050.D

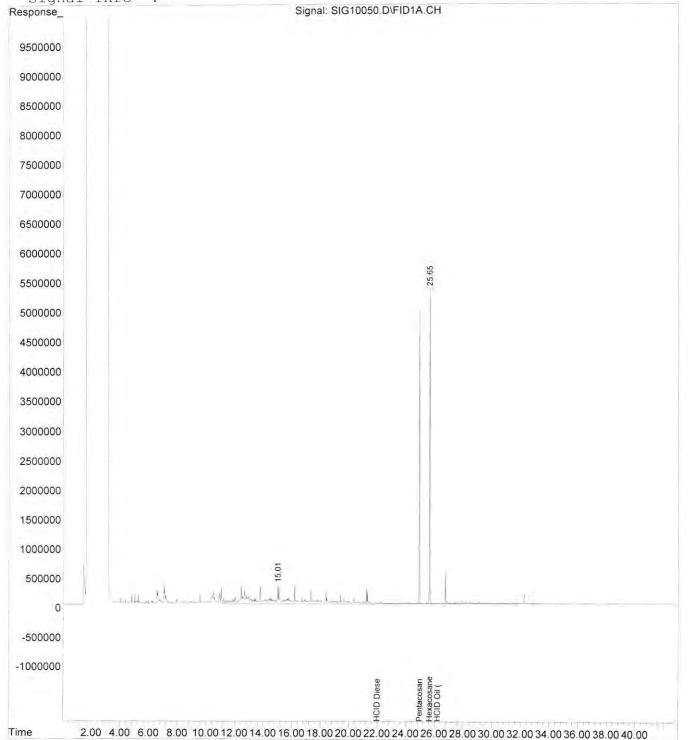
Vial: 37

Operator: ARC Acq On : 05 Mar 2021 Sample : BBB0734-MSD1 7:49 Inst : HP G1530A

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Misc

Multiplr: 1.00


IntFile : EVENTS1.E

Quant Time: Mar 5 8:32 2021 Quant Results File: 210301LOW.RES

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Vial: 38 Operator: ARC Data File: W:\HPCHEM\1\2021DATA\030321\SIG10052.D

Acq On : 05 Mar 2021 9:41 Sample : WBB0717-01 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 05 10:33:13 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Title :
Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

Compound		R.T.	Response	Conc I	Units	
Internal Standards 1) I Pentacosane		24.95	103445420	50.000	ppm	m
System Monitoring Com 2) S Hexacosane Spiked Amount 50.000		25.65 50 - 150	85827395 Recovery	42.681 = 85.36		m
Target Compounds						
3) H TPH Diesel (C12-	C14)	0.00	0	N.D.	ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D.	ppm	
5) H Mineral Oil		0.00	0	N.D.	ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D.	ppm	
7) h HCID Diesel (C12		21.97	111989599	92.500	ppm	
8) h HCID Oil (>C14)		26.20	114848539	125.620	ppm	

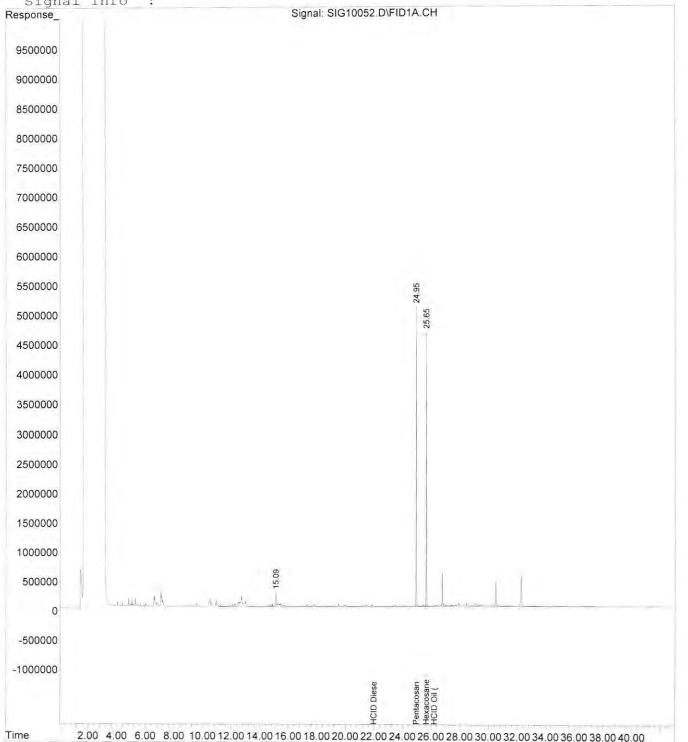
Vial: 38

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10052.D Acq On : 05 Mar 2021 9:41 Sample : WBB0717-01 Operator: ARC Inst : HP G1530A

Misc

Multiplr: 1.00

IntFile : EVENTS1.E


Quant Time: Mar 5 10:33 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10053.D

Vial: 39

Acq On : 05 Mar 2021 10:37 Sample : WBB0717-02 Operator: ARC

Sample

Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E

Quant Time: Mar 05 11:46:46 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Title :
Last Update : Tue Mar 02 09:08:48 2021
Response via : Initial Calibration
DataAcq Meth : DXHCID5.M

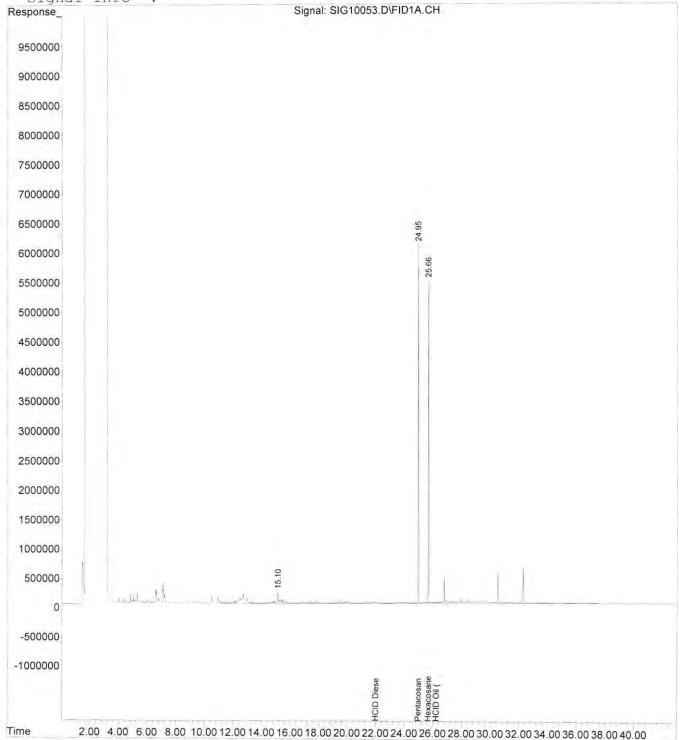
	Compound	R.T.	Response	Conc Units	
Into	ernal Standards Pentacosane	24.95	121069639	50.000 ppm	m
2) S	tem Monitoring Compounds Hexacosane Amount 50.000 Range	25.66 50 - 150	108531754 Recovery	46.115 ppm = 92.23%	m
Tar	get Compounds				
3) H	TPH Diesel (C12-C14)	0.00	O	N.D. ppm	
4) H	TPHDX-Lube Oil (>C14)	0.00	O	N.D. ppm	
5) H	Mineral Oil	0.00	O	N.D. ppm	
6) h	HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h	HCID Diesel (C12-C14)	21.97	118117667	83.359 ppm	
8) h	HCID Oil (>C14)	26.20	124733104	116.571 ppm	

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10053.D Vial: 39 Operator: ARC

Acq On : 05 Mar 2021 10:37 Sample : WBB0717-02 Inst : HP G1530A

Multiplr: 1.00 Misc

IntFile : EVENTS1.E


Quant Time: Mar 5 11:48 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Data File : W:\HPCHEM\1\2021DATA\030321\SIG10054.D

Vial: 40

Acq On : 05 Mar 2021 11:34 Sample : WBB0717-03 Operator: ARC

Inst : HP G1530A

Misc Multiplr: 1.00

IntFile : EVENTS1.E

Quant Time: Mar 05 12:35:07 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title

Last Update: Tue Mar 02 09:08:48 2021 Response via: Initial Calibration DataAcq Meth: DXHCID5.M

Compound	R.T.	Response	Conc Units	
Internal Standards 1) I Pentacosane	24.95	110795519	50.000 ppm	m
System Monitoring Compounds 2) S Hexacosane Spiked Amount 50.000 Range	25.65 50 - 150	102436065 Recovery	47.561 ppm = 95.12%	m
Target Compounds				
3) H TPH Diesel (C12-C14)	0.00	0	N.D. ppm	
4) H TPHDX-Lube Oil (>C14)	0.00	0	N.D. ppm	
5) H Mineral Oil	0.00	0	N.D. ppm	
6) h HCID Gas (C7-C12)	0.00	0	N.D. ppm	
7) h HCID Diesel (C12-C14)	21.97	163818375	126.333 ppm	
8) h HCID Oil (>C14)	26.20	156320703	159.639 ppm	

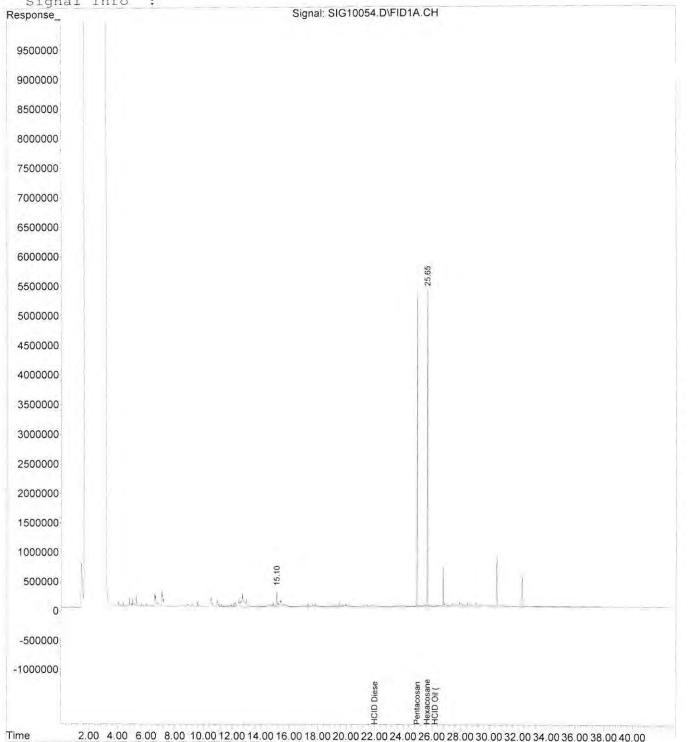
Data File : W:\HPCHEM\1\2021DATA\030321\SIG10054.D

Vial: 40 Operator: AR

Acq On : 05 Mar 2021 11:34 Operator: ARC Sample : WBB0717-03 Inst : HP G1530A

Multiplr: 1.00

Misc : IntFile : EVENTS1.E


Quant Time: Mar 5 12:35 2021 Quant Results File: 210301LOW.RES

Quant Method: W:\HPCHEM\1\METHODS\210301LOW.M (Chemstation Integrator)

Title :

Last Update : Tue Mar 02 09:08:48 2021 Response via : Multiple Level Calibration

DataAcq Meth : DXHCID5.M

Starting sequence Wed Mar 03 10:56:13 2021

Instrument Name: MSD4

Sequence File: T:\Data1\MSD4\SEQUENCES\2021\MAR\02PSUP.s

Comment:
Operator: MAH

Data Path: T:\DATA1\MSD4\2021\MAR\03\

Method Path: C:\MSDCHEM\1\METHODS\

Line	Туре	Vial	DataFile	Method	Sample Name
1)	Sample	1	00101001	SVOCT1	SYS CHECK
2)	Sample	1	00102002	SVOCT1	SYS CHECK
3)	Sample	2	00201003	CARDSIM	10 PPM PEST ICAL
4)	Sample	3	00301004	CARDSIM	5 PPM PEST ICAL
5)	Sample	4	00401005	CARDSIM	2.5 PPM PEST ICAL
6)	Sample	5	00501006	CARDSIM	1 PPM PEST ICAL
7)	Sample	6	00601007	CARDSIM	0.5 PPM PEST ICAL
8)	Sample	7	00701008	CARDSIM	0.10 PPM PEST ICAL
9)	Sample	8	00801009	CARDSIM	0.05 PPM PEST ICAL
10)	Sample	11	01101010	CARDSIM	BBC0110-BS1
11)	Sample	12	01201011	CARDSIM	BBC0110-BSD1
12)	Sample	21	02101012	CARDSIM	BBC0111-BS1
13)	Sample	22	02201013	CARDSIM	BBC0111-BSD1
14)	Sample	13	01301014	CARDSIM	BBC0110-BLK1
15)	Sample	14	01401015	CARDSIM	WBB0617-05
16)	Sample	15	01501016	CARDSIM	WBB0617-08
17)	Sample	21	02101017	CARDSIM	BBC0111-BS1
18)	Sample	22	02201018	CARDSIM	BBC0111-BSD1
19)	Sample	23	02301019	CARDSIM	BBC0111-MS1
20)	Sample	24	02401020	CARDSIM	BBC0111-MSD1
21)	Sample	25	02501021	CARDSIM	BBC0111-BLK1
22)	Sample	26	02601022	CARDSIM	BBC0111-DUP1
23)	Sample	27	02701023	CARDSIM	WBB0717-05
24)	Sample	28	02801024	CARDSIM	WBB0717-08

Sequence completed Wed Mar 03 21:42:22 2021

T:\DATA1\MSD4\2021\MAR\03\2021 Mar 03 1056 Quality Log.LOG T:\DATA1\MSD4\2021\MAR\03\2021 Mar 03 1056 Sequence Log .LOG

Anatek Labs, Inc

1282 Alturas Drive Moscow, ID 83843

1,4-Dioxane Cal. Standard Prep. Form

IS/Surrogate Standards

Standard	Reagent ID	Expiration	Concentration (ppm)
CLP B/N Surrogate	2002553	2/22	1000
CLP Internal Standard	2003865	11/21	2000

Target Compound Standards

Standard	Reagent ID	Expiration	Concentration (ppm)
Chlorpyrifos	2003215	6/25/23	1000
Metolachlor	2003216	3/5/23	1000
Atrazine	2003218	11/21/24	1000

Calibration Dilution Template

Desired Concentration (ppm)	Stock Concentration (ppm) **	uL Standard Added	Final Volume (uL)
10	100	100	1000
5	100	50	1000
2.5	100	25	1000
1.0	100	10	1000
0.5	100	5	1000
0.1	100	1	1000
0.05	100	0.5	1000

Calibration made from target compound standards in the table. 25 uL of surrogate and 10 uL of 1S stock added to each standard point. Dilutions were made in MeCl₂ (2003529).

Method: EPA 625.1/8270D

Response Factor Report MSD4

Method Path : T:\Data1\MSD4\METHODS\2021\

Method File : Cardno0303.m

Title : EPA 8270D - GC MSD4

Last Update : Wed Mar 03 15:03:00 2021

Response Via: Initial Calibration

Calibration Files

0.05=00801009.D 10 =00201003.D 5 =00301004.D 2.5 =00401005.D 1 =00501006.D 0.5 =00601007.D

0.1 = 00701008.D

	Compound	0.05 10	5	2.5 1	0.5	0.1	Avg	%RSD
1) I 2) S		5 1.822 1.8	21 1.821	ISTD 1.778 1.76	7 1.845	1.837	1.813	1.60
3) I 4)				0.222 0.193				36.11
5) I 6) 7)	Phenanthrene-d10 Metolachlor Chlorpyrifos	0.214 0.5	53 0.524	0.410 0.309 0.101 0.08	0.246	0.405	0.380	34.38 27.72
8) I 9) S	Chrysene-d12 Terphenyl-d14			0.959 0.949				3.89

^{(#) =} Out of Range

PREPARATION BENCH SHEET Organics

BBC0110

Matrix: Water

03/05/2021

Prepared using: SVOC - SVOC Water

Print Date/Time: 03/12/2021 3:28 pm

Analyses
SVOC 625 MISC

Spiking Solution(s)

02/23/2021 2/24/2021 11:10:00AM

Surrogate Solution(s)
2002552 CLP Acid Surr 2000

25

CLP B/N 1000

2002553

							_		
Lab Number	Sample and Source ID	Date Due	Extract by	Prepared	Initial (mL)	Final (mL)	ul Spike	ul Surrogate	Extraction Comments
BBC0110-BLK1	Blank			2/24/2021 11:10:00AM	1000	1		25	
BBC0110-BS1	LCS			2/24/2021 11:10:00AM	1000	1		25	
BBC0110-BSD1	LCS Dup			2/24/2021 11:10:00AM	1000	1		25	
WBB0617-05	WW-3	03/05/2021	02/23/2021	2/24/2021 11:10:00AM	250	1		25	

534

1

Reagents		
<u>Standard</u>	Description	<u>LotNum</u>
2000154	Acetone - GC grade	59074
2000155	H2SO4	58115
2003324	Dichloromethane	60192

Batch Comments:

WBB0617-08

Acidic start/stop time: 3PM- 8AM Basic start/stop time: 8AM-3PM Instrument: 7890/5975 GCMS

E-2

Ext. Method: 3520C liq-liq/Waste Dilution/Microextr

TurboVap: 01 Balance: 04

I.S2003865 2000ppm EXP 11/21

		3/3/21	
Analyst:	Date	Run Date:	Date

PREPARATION BENCH SHEET Organics

BBC0111

Matrix: Water Prepared using: SVOC - SVOC Water

Analyses SVOC 625 MISC Spiking Solution(s)

Surrogate Solution(s)

2002552 CLP Acid Surr 2000 2002553 CLP B/N 1000

Print Date/Time: 03/12/2021 3:29 pm

Lab Number	Sample and Source ID	Date Due	Extract by	Prepared	Initial (mL)	Final (mL)	ul Spike	ul Surrogate	Extraction Comments
BBC0111-BLK1	Blank			3/1/2021 11:13:00AM	1000	1		25	
BBC0111-BS1	LCS			3/1/2021 11:13:00AM	1000	1		25	
BBC0111-BSD1	LCS Dup			3/1/2021 11:13:00AM	1000	1		25	
BBC0111-DUP1	Duplicate [WBB0717-05]			3/1/2021 11:13:00AM	1000	1		25	
BBC0111-MS1	Matrix Spike [WBB0717-05]			3/1/2021 11:13:00AM	250	1		25	
BBC0111-MSD1	Matrix Spike Dup [WBB0717-05]			3/1/2021 11:13:00AM	250	1		25	
WBB0717-05	ww-3	03/09/2021	02/27/2021	3/1/2021 11:13:00AM	250	1		25	
WBB0717-08	E-2	03/09/2021	02/27/2021	3/1/2021 11:13:00AM	1000	1		25	

Reagents		
<u>Standard</u>	Description	<u>LotNum</u>
2000154	Acetone - GC grade	59074
2000155	H2SO4	581 15
2003324	Dichloromethane	60192

Batch Comments:

Acidic start/stop time: 3PM- 8AM Basic start/stop time: 8AM-3PM Instrument: 7890/5975 GCMS

Ext. Method: 3520C liq-liq/Waste Dilution/Microextr

TurboVap: 01 Balance: 04

I.S2003865 2000ppm EXP 11/21

			3/9/21	
Analyst:	Date	Run Date:	Da	ate

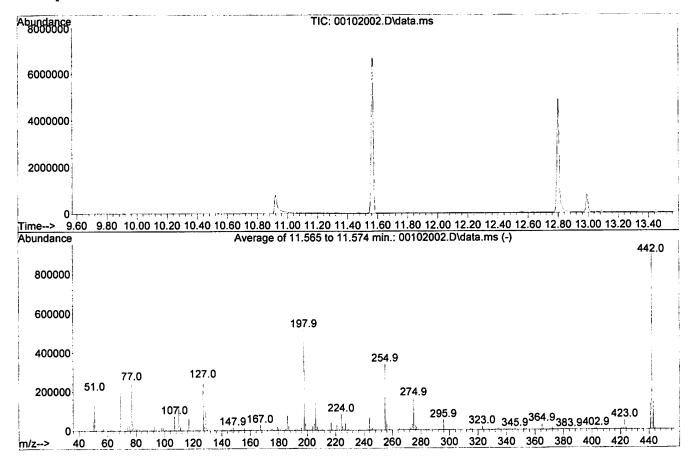
Data Path : T:\Data1\MSD4\2021\MAR\03\ Data File : 00102002.D

3 Mar 2021 11:25 am Acq On :

: MAH Operator

: SYS CHECK Sample

Misc


ALS Vial : 1 Sample Multiplier: 1

Integration File: events.e

: T:\Data1\MSD4\METHODS\2021\Cardno0311.m Method

: EPA 8270D - GC MSD4 Title

Last Update : Fri Mar 12 09:37:25 2021

AutoFind: Scans 1968, 1969, 1970; Background Corrected with Scan 1944

and the 14/ E

Data Path: T:\Data1\MSD4\2021\MAR\03\

Data File : 00201003.D

Acq On : 3 Mar 2021 11:52 am Operator : MAH Sample : 10 PPM PEST ICAL

Misc

: 2 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 03 15:00:31 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

Quant Title : EPA 82/0D - GC MSD4
QLast Update : Wed Mar 03 15:00:12 2021
Response via : Initial Calibration

Compound	R.T.	QIon Response	Conc Ur	nits Dev(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.739 9.333 11.134 14.352	164 30045722 188,41931881	20.00 20.00 20.00 20.00	ppm # 0.00 ppm # 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.545 13.111	172 51900614 244 35125371 Recove	25.11 24.54	ppm 0.00
Target Compounds 4) Atrazine 6) Metolachlor 7) Chlorpyrifos	10.851 12.020 12.030	162 11598004m 197 2501650m	9.77 9.83 9.84	ppm

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

11. Pt. 11.

```
OT On
....
 11 5/67
          5 : . . .
 166
 168
          1
240 %
          3000
  j + 4 €
 -1.72 4
          061
 244 3
          5
          Raci
 200
162
          2.3%
          800
197
          10.
          . .
cal inf.
  - A 15 4
 4.
عقومتني بمالماتها
          •--
 4.30
 år¥.÷
 特拉曼
          . . . . .
          1000
```

34,

. . .

1.

2.00

11.65

Data Path : T:\Data1\MSD4\2021\MAR\03\

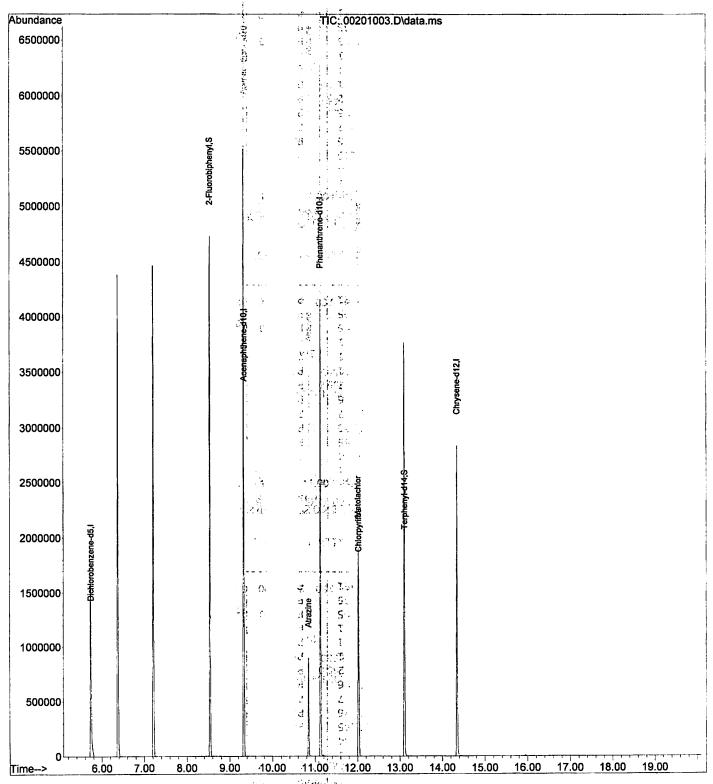
Data File : 00201003.D

Acq On : 3 Mar 2021 11:52 am

Operator : MAH

: 10 PPM PEST ICAL Sample

Misc


: 2 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 03 15:00:31 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update: Wed Mar 03 15:00:12 2021

Response via: Initial Calibration

4.5 35.

1.

. 4. . . .

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 00301004.D

Acq On : 3 Mar 2021 12:19 pm Operator : MAH

Sample : 5 PPM PEST ICAL

Misc :

: 3 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 03 15:02:03 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m Quant Title: EPA 8270D - GC MSD4 QLast Update: Wed Mar 03 15:00:12 2021

QLast Update: Wed Mar 03 15:00: Response via: Initial Calibration	12 2021	100 f (1) (2) (2) Mark (1) (4) (4) (4) Mark (1) (4) (4)			
Compound	R.T.	QIon Response	Conc Ur	nits Dev	(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.740 9.333 11.134 14.352	164 33741577 188 ₀ 50988130	20.00	ug/mL ug/mL ug/mL ug/mL	# 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	13.114	172 56754750 244 46786293 Recove	25.25		0.00
Target Compounds 4) Atrazine 6) Metolachlor 7) Chlorpyrifos		200 2548042 162 6673132 197 1532975	5.50	Qv ug/mL ug/mL ug/mL	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

```
and the second second
                                      aon i
                                                                                                                                                                                                  7000
                                              ......
                                                                                                                                                                                        •; •••
                                            1.5.0.
                                                                                                                                                                                                  3000
                                            164 3
                                                                                                                                                                                            1.57
                                            168
                                                                                                                                                                                              B : \mathbb{R}_{+}
                                            246 ...
                                                                                                                                                                                                らぜえ
                                                                                                                                                                                                4 7 ...
                                172 :
                                            200 %
                                                                                                                                                                                                  бъ.
                                                                                                                                                                                                  13000
                                                                                                                                                                                                  3 € 7
                                            200
                                      162
                                                                                                                                                                                                      3.00
                                                                                                                                                                                                    233
14 4, 49372 to
                                                                                                                                                                                                    .....
                                  a int
                                                                                                                                                                                                  200
                                  4.50.
                                                                                                                                                                                                  1.00
                                                                                                                                                                                                . . .
                                      \frac{1}{2} \frac{A}{A} \frac{A}{A} \frac{A}{A} = \frac{1}{2} \frac{A}{A} \frac{
                                                                                                                                                                                                9544.
157
                                            11900
                                                                                                                                                                                                100
```

23.

3.8

2003 3003 1003

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 00301004.D

Acq On : 3 Mar 2021 12:19 pm

Operator : MAH

Sample : 5 PPM PEST ICAL

Misc

ALS Vial: 3 Sample Multiplier 1


Quant Time: Mar 03 15:02:03 2021 🖁

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03, 15:00:12 2021

Response via: Initial Calibration

1.193.4

Cars West

4.

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 00401005.D

Acq On : 3 Mar 2021 12:46 pm Operator : MAH Sample : 2.5 PPM PEST ICAL

Misc

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Mar 03 15:03:26 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

QLast Update: Wed Mar 03 15:03:00 2021

Response via : Initial Calibrat	ion			
Compound	R.T.	QIon Response	Conc Units Dev(Min)	
Internal Standards				
1) Dichlorobenzene-d5	5.737	150 24302016	20.00 ug/mL 0.00	
3) Acenaphthene-d10	9.332	164 31846420	20.00 ug/mL # 0.00	
5) Phenanthrene-d10	11.133	188-43806348	20.00 ug/mL # 0.00	
8) Chrysene-d12	14.351		20.00 ug/mL # 0.00	
System Monitoring Compounds				
2) 2-Fluorobiphenyl	8.544	172 54024092	24.52 ug/mL 0.00	
9) Terphenyl-d14	13.112	244 39172820	24.91 ug/mL 0.00	
Spiked Amount 25.000		Recove	ry = 99.64%	
Target Compounds		Qvalue		
4) Atrazine	10.848	200 882761	2.30 ug/mL 98	
6) Metolachlor	12.023	162 2242671	2.44 ug/mL 98	
7) Chlorpyrifos	12.034	197:: 551215	2.43 ug/mL 99	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

 M_{\odot}

ki.

```
Aldn'
            COST
 المتنافق عدده
            ... ...
 sanda karan
            11 ....
  136 2
             204
  168 ..
             6421
  3 8 B 3
             5:1:
   240
             1.72
            400
  244
             281
             Ric
             21. 12.
. 200
            200
   1.62
  997 - -
            1:32
            ****
o a int
             atic
  \mathcal{A} = \{\{\}\}^{n}
            · 建
  159 z
164
            203.
            35 J.Z
   321
            _0 = \( \frac{1}{2ξ} \)
   240
```

. . . 200

1. (1)

4877 . 0

2.5 12.

2.93

8 1 5

Data Path : T:\Data1\MSD4\2021\MAR\03\

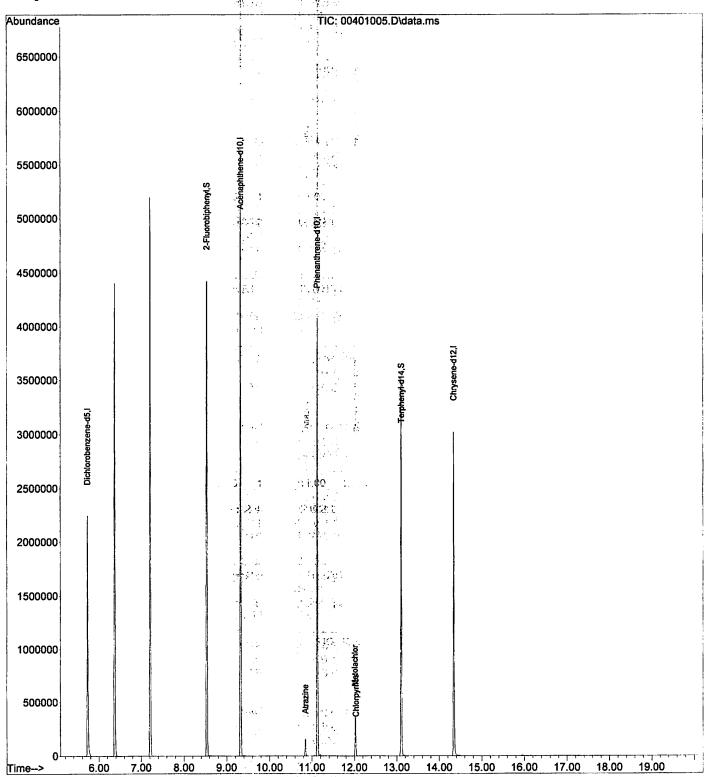
Data File : 00401005.D

: 3 Mar 2021 12:46 pm Acq On

Operator : MAH

Sample : 2.5 PPM PEST (ICAL

Misc


: 4 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 03 15:03:26 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update: Wed Mar 03 15:03:00 2021

Response via: Initial Calibration

 $f_{1} \propto 3^{2} N^{\alpha}$

.

Data Path : T:\Data1\MSD4\2021\MAR\03\ Data File : 00501006.D

: 3 Mar 2021 r : MAH Acq On 1:13 pm

Operator

: 1 PPM PEST ICAL Sample

Misc

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Mar 03 15:03:08 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 . 1000

QLast Update : Wed Mar 03 15:03:00 2021

Response via : Initial Calibrat		dos Higgsi				
Compound	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
Internal Standards		ਜਜਨਾਨਾ 'ਤੋਂ ਹੈ				
 Dichlorobenzene-d5 	5.739	150 2	5176537	20.00	ug/mL	0.00
 Acenaphthene-d10 	9.333	164 3	3418737	20.00	ug/mL	# 0.00
5) Phenanthrene-d10	11.134	18804	9599812	20.00	ug/mL	# 0.00
8) Chrysene-d12	14.351	3	8470261		ug/mL	# 0.00
System Monitoring Compounds			. :			
2) 2-Fluorobiphenyl	8.545		5621124		ug/mL	
9) Terphenyl-d14	13.114	244 4	5634731	24.66	ug/mL	0.00
Spiked Amount 25.000			Recove	ry =	98.64	ક
•			11 g	_		
Target Compounds					Q	value
4) Atrazine	10.843	200	334250m	0.90	ug/mL	
6) Metolachlor	12.018	162	779590m	0.82	ug/mL	
7) Chlorpyrifos	12.029	. . 197 r.c.			ug/mL	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

```
atomics.
            တဝင်္ကာ
unit di di martini.
            منبغ بسويت
            V + V
150 2
            8500
364 1
            82/3%
 136 26
            9.647
 240 0
            リスた
            27.
 3721
20%
            .5
            ROG.
            4:..
200
            ) : :
항상 :
1.62
197, -
والمستاني والمحارية
(1. (金))
            P. . . . L
 . . . . .
41 AMO 11
            41,000
            150
            4 7 3
1.00
160000
240
            12.00
             , i.
 - T. .
```

1. No. 1.

3 .1: 200

1.53

\$ 970.

--, e

1.

. . Go }

.

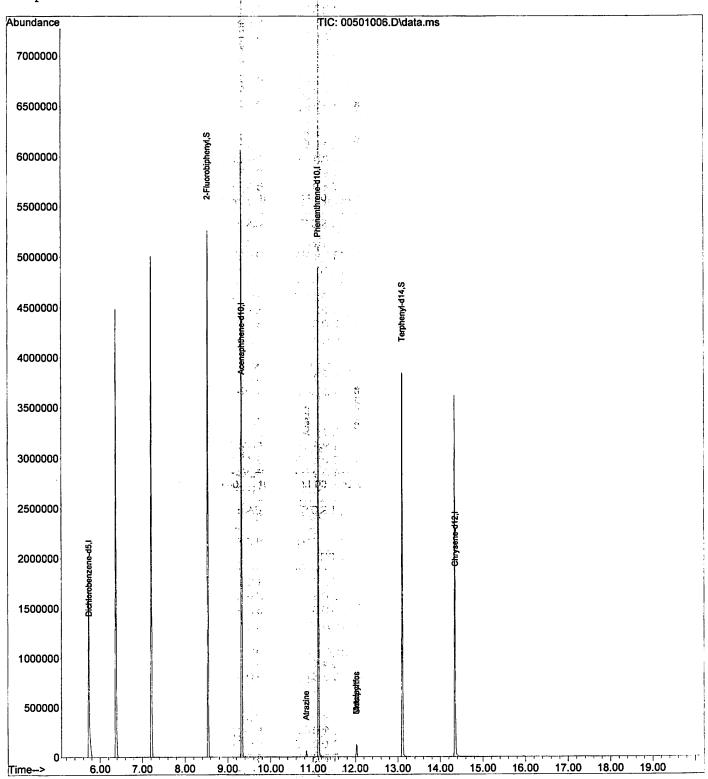
Data File : 00501006.D

Acq On : 3 Mar 2021 1:13 pm

Operator : MAH

Sample : 1 PPM PEST ICAL

Misc


ALS Vial : 5 Sample Multiplier 1

Quant Time: Mar 03 15:03:08 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4
QLast Update : Wed Mar 03 15:03:00 2021

Response via: Initial Calibration

; ; ;

3 10 10

1, 15, 110

Talles.

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 00601007.D

Acq On : 3 Mar 2021 Operator : MAH 1:40 pm

Sample : 0.5 PPM PEST ICAL

Misc :

: 6 ALS Vial Sample Multiplier: 1

Quant Time: Mar 03 15:04:41 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update : Wed Mar 03 15:03 Response via : Initial Calibrat	:00 2021	00.4	हुए । सम्बद्धाः			
Compound	R.T.	QIon:	Response	Conc Ur	nits De	v(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.738 9.332 11.134 14.352	164 1880	22967569 31327656 45347405 30021765	20.00 20.00	ug/mL ug/mL ug/mL ug/mL	
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.544 13.111		52967470 38726755 Recove	26.81	ug/mL ug/mL 107.24	
Target Compounds 4) Atrazine 6) Metolachlor 7) Chlorpyrifos	10.843 12.020 12.034	162		0.35	Q ug/mL ug/mL ug/mL	99

e sport e (#) = qualifier out of range (m) = manual integration (+) = signals summed

MON-0025 y 5:0 × 175,61 1.64 76\$ 1.30 () 240 130 172, ! 7.0 244 8.15 J. Oak Rus 433 -200 3 52 1.62 4.9% . . 10.3 d. 450 3 1 7. 71.1MW 7 7 : 6 16.5**.3**1.52 100 38. 15 . . .

2.00

:,.

11:

4.10

337

. . . 41.

200

11.66

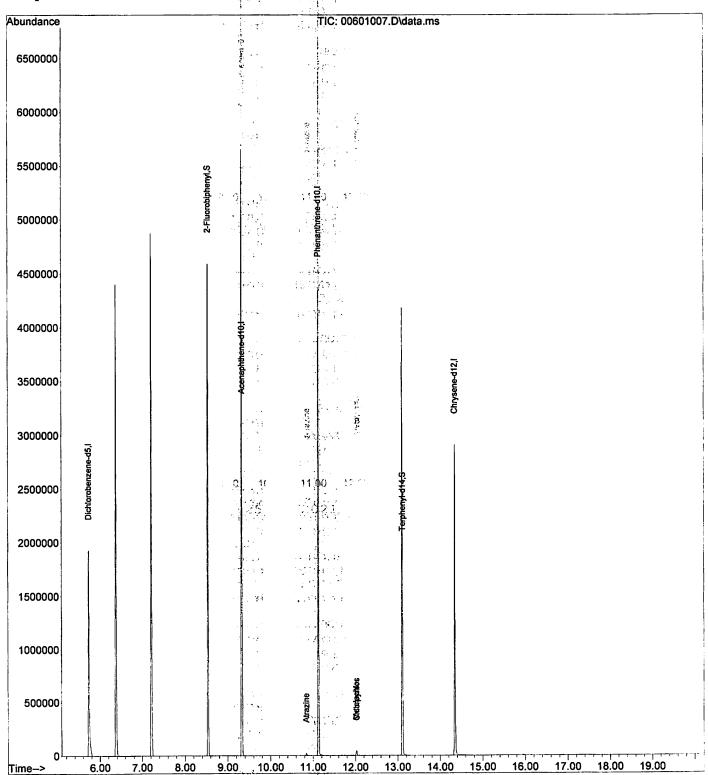
Data File : 00601007.D

Acq On : 3 Mar 2021 1:40 pm

Operator : MAH

Sample : 0.5 PPM PEST ICAL

Misc


ALS Vial : 6 Sample Multiplier 1

Quant Time: Mar 03 15:04:41 2021

Quant Method: T:\Data1\MSD4\METHDDS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03 15:03:00 2021

. (19. g) - Yu

12.5%

Court of the second

Data Path: T:\Data1\MSD4\2021\MAR\03\

Data File : 00701008.D

Acq On : 3 Mar 2021 2:07 pm

Operator : MAH

Sample : 0.10 PPM PEST ICAL

Misc

: 7 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 03 15:03:39 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

Quant Title : EPA 8270D - GC MSD4
QLast Update : Wed Mar 03 15:03:00 2021

Response via : Initial Calibration

Compound		QIon Response		Dev(Min)
Internal Standards		ANTO C.		
 Dichlorobenzene-d5 	5.739	150 23325242	20.00 ug/r	nL 0.00
Acenaphthene-d10	9.332	164 30679135	20.00 ug/r	nL # 0.00
5) Phenanthrene-d10	11.127	188 22078888	20.00 ug/r	nL # 0.00
8) Chrysene-d12	14.352	240 30790476	20.00 ug/r	nL # 0.00
System Monitoring Compounds		er V		
2) 2-Fluorobiphenyl	8.545	172 53562048	25.33 ug/r	nL 0.00
9) Terphenyl-d14	13.111	244 37366169	25.22 ug/r	nL 0.00
Spiked Amount 25.000		Recove	ery = 100	.88%
Target Compounds				Qvalue
4) Atrazine	10.843	200 19090m	0.10 ug/r	nL
6) Metolachlor	12.021	162 44673	0.13 ug/r	nL 98
7) Chlorpyrifos	12.030	197r. 10551m		

(#) = qualifier out of range (m) = manual integration (+) = signals summed

od program i da da Hon 7375 - 44 m. $S^{1}(\Omega, \mathbb{R}^{n})$ 150 > 52... 1.64 3 91 1.88c.3 發於 。 240 Э. 172 204 244 244 240 240 5:5 Rade 200. 909 1.62 467. 000 194 ----11 **3**1.1 1. . . 1130 · . 11.00 💠 33 70 . . 1. . . 4 'a ... 15 . . . 244

200

1.02

1977

ξ. « 1800 1

909

41.

200

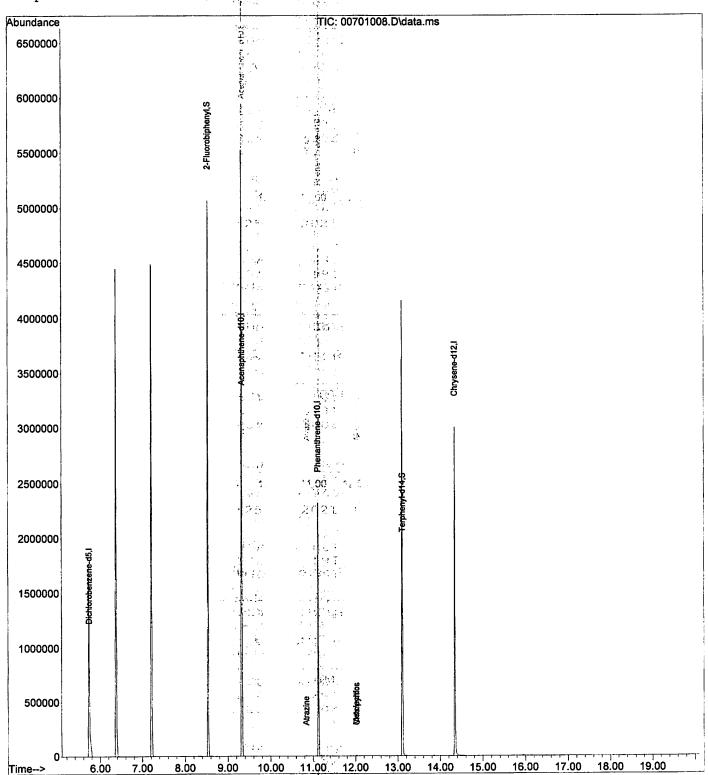
Data File : 00701008.D

2:07 pm : 3 Mar 2021 Acq On

Operator : MAH

Sample : 0.10 PPM PEST ICAL

Misc


Sample Multiplier: 1 : 7 ALS Vial

Quant Time: Mar 03 15:03:39 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update : Wed Mar 03 15:03:00 2021

· (4)

i. ed i

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 00801009.D

Acq On : 3 Mar 2021 2:34 pm

Operator : MAH

Sample : 0.05 PPM PEST ICAL

Misc

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Mar 03 15:04:04 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03 15:03:00 2021

Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.740 9.333 11.135 14.353	164 188	24399123 33303470 50824187 42655800	20.00	ug/mL ug/mL ug/mL ug/mL	0.00 # 0.00 # 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.545 13.114	172	55555798 48454665 Recove	23.61	ug/mL ug/mL 94.449	0.00
Target Compounds 4) Atrazine 6) Metolachlor 7) Chlorpyrifos	10.843 12.021 12.030	162	10705m 26741 6185m	0.05	Qv ug/mL ug/mL# ug/mL	7alue 29
		i rear	\$ 4.09			

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

4.4

- Okon . . ----1150.2 912: 1.54 1 347. 1.885.45 Si iv 240 4 1 1322 1 57.9 465 244 6 Rec 200 6701 -162 8.7.4 1/2/ \$(3.8) ... 12:47 114 A Will (digns zit. J2 08. ----1 B 18 34 a said 1090 dο 11.1 11.11 1/2 1 2 < 4

 $P_{i} = 0$

078 -

t. .

ę.,

२५<mark>००</mark> १ दङ्ग

34.8<u>\$</u>4.7

Data File: 00801009.D

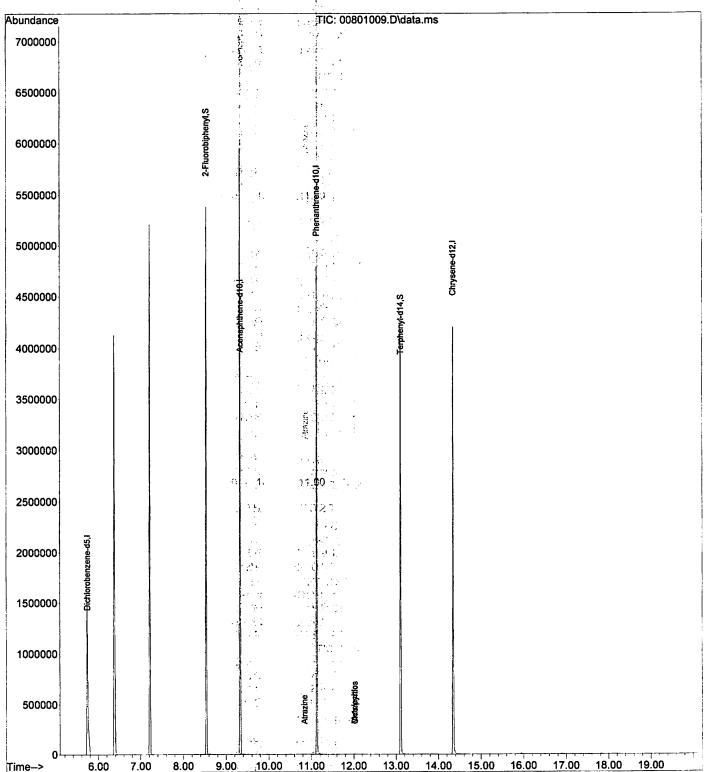
2:34 pm : 3 Mar 2021 Acq On

Operator : MAH

Sample : 0.05 PPM PEST ICAL

Misc

:


ALS Vial : 8 Sample Multiplier: 1

Quant Time: Mar 03 15:04:04 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update : Wed Mar 03 15:03:00 2021

1.14

 $\phi \in O(0, \mathbb{R}^n)$

S MAN W TH

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 01101010.D

Acq On : 3 Mar 2021 3:02 pm

Operator : MAH

Sample : BBC0110-BS1

Misc

: 11 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 03 15:26:12 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03 15:03:00 2021

Response via : Initial Calibrat	ion				
Compound	R.T.	QIon Response	Conc Ur	nits De	v(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.739 9.331 11.133 14.351	164 26059862 188038863219	20.00 20.00	ug/mL ug/mL ug/mL ug/mL	
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.542 13.111		22.72	ug/mL ug/mL 90.88	
Target Compounds 4) Atrazine 6) Metolachlor 7) Chlorpyrifos		162 2527691m 197r 615361m	3.02	Q ug/mL ug/mL ug/mL	value
		(1) · · · · · · · · · · · · · · · · · · ·			

(#) = qualifier out of range (m) = manual integration (+) = signals summed

fon. actri

> 150 836 164 2 386 321

18801 240 3 1

472 9 .

244 . 318 Rest 1

7. 200

162 709 6 50 C .. 499

..... ----

A Jij 3 ...4

, . . . 5 . . .

46.6 355

16000 3.3

3 C.C. 1,52

a quality

.

3.44 . 900

,

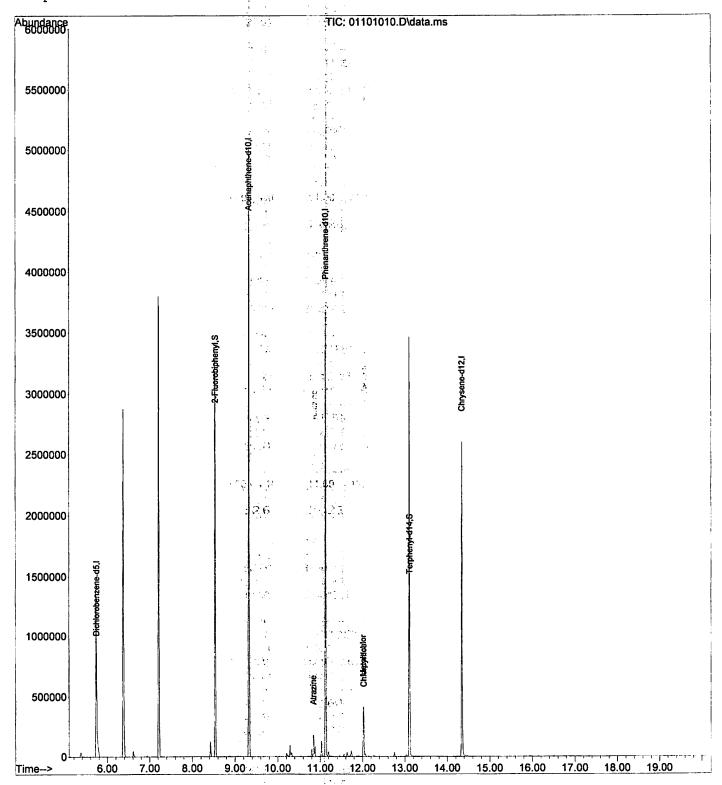
马.飞机

Page 117 of 144

Data File : 01101010.D

: 3 Mar 2021 3:02 pm Acq On

Operator : MAH


Sample : BBC0110-BS1

Misc

Sample Multiplier: 1 ALS Vial : 11

Quant Time: Mar 03 15:26:12 2021 🖟 Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update: Wed Mar 03 15:03:00 2021

g ones

. 14 1...

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 01201011.D

Acq On : 3 Mar 2021 Operator : MAH 3:29 pm

Sample : BBC0110-BSD1

Misc

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 04 09:29:02 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MS QLast Update : Wed Mar 03 15:03: Response via : Initial Calibrati	00 2021				
Compound	R.T.	QIon Response	Conc Ur	nits Dev	(Min)
Internal Standards					
-,	5.738	4.4		J .	0.00
3) Acenaphthene-d10	9.331	164 30521283		ug/mL	
5) Phenanthrene-d10	11.134	188: 44619007	20.00	ug/mL	# 0.00
8) Chrysene-d12	14.351	240 29920881	20.00	ug/mL	# 0.00
System Monitoring Compounds		Sept.			
2) 2-Fluorobiphenyl	8.542	172 40894275	20.17	ua/mL	0.00
9) Terphenyl-d14	13.111				
Spiked Amount 25.000	10.111	Recove		101.88%	
Target Compounds				Qv	alue
4) Atrazine	10.850	200 1142812	3.02	ug/mL#	87
6) Metolachlor	12.022			ug/mL	100
7) Chlorpyrifos		197 698456		ug/mL	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

150 164 108

240 ***

102.7 244.5

200

1.52 397

al Int

High.

200

1.62

140

 $\frac{1}{2} \mathcal{D} \mathcal{U}$

256 1:25 94

no.

427 21.3 Rec

200

623

375

a-1 .

91,0

4.

300

•

2.3

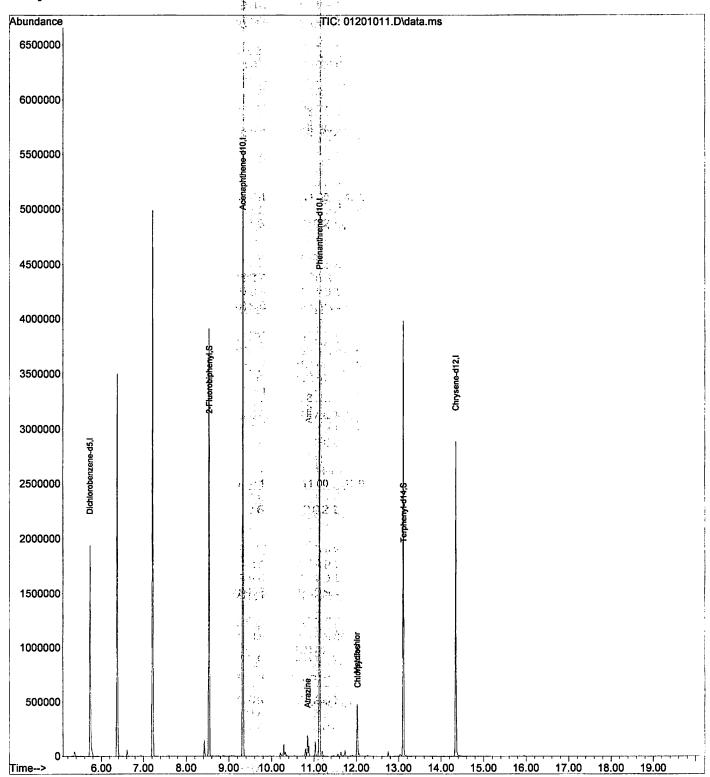
875

Data File : 01201011.D

Acq On : 3 Mar 2021 3:29 pm

Operator : MAH

Sample : BBC0110-BSD1


Misc

ALS Vial: 12 Sample Multiplier: 1

Quant Time: Mar 04 09:29:02 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update : Wed Mar 03 15:03:00 2021

Quantitation Report (Not Reviewed)

The state of the s

2888.6

çad

0A.8FV.X

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 01301014.D

Acq On : 3 Mar 2021 Operator : MAH Sample : BBC0110-BLK1 4:50 pm

Misc

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 04 09:29:20 2021

Quant Time: Mar 04 05.25.20 2021
Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m
Quant Title: EPA 8270D - GC MSD4
QLast Update: Wed Mar 03 15:03:00 2021
Response via: Initial Calibration

Response via: Initial Calibration

Compound	R.T.	QIon Response	Conc U	nits Dev(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.741 9.334 11.136 14.353	150 25367891 164 34825981 188 53085416 240 43579985	20.00 20.00	ug/mL 0.00 ug/mL # 0.00 ug/mL # 0.00 ug/mL # 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.545 13.114	172 49202112 244 47925156 Recove	22.86	ug/mL 0.00 ug/mL 0.00 91.44%
Target Compounds				Qvalue

(#) = qualifier out of range (m) = manualcintegration (+) = signals summed

144 . . 25,000 . .

150,8 168

1.88.9

246 a

. 172 248 :

.361....

.....

. :

. 72 24 a . . .

1.5

78% 593

998

2%: 515 RUGE

ЭĽ,

3/11 . . . 1

Data Path: T:\Data1\MSD4\2021\MAR\03\

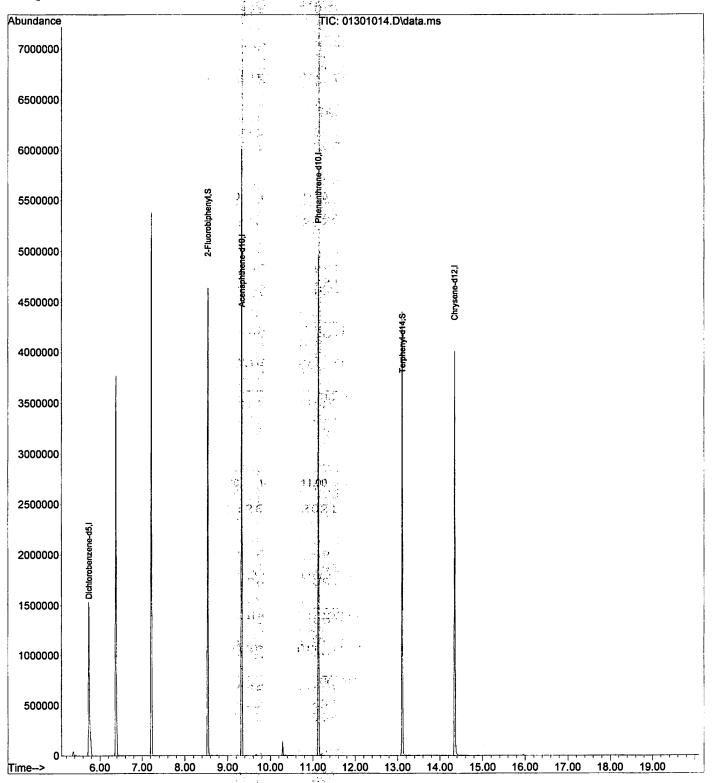
Data File : 01301014.D

: 3 Mar 2021 Acq On 4:50 pm

Operator : MAH

Sample : BBC0110-BLK1

Misc ALS Vial


: 13

Quant Time: Mar 04 09:29:20 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Sample Multiplier: 1

Quant Title : EPA 8270D - GC MSD4 QLast Update: Wed Mar 03 15:03:00 2021

CNave

a degine mark

pop.

24 14

704. 303 396

3.

65.

21.00

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 01401015.D

Acq On : 3 Mar 2021 Operator : MAH 5:17 pm

Sample : WBB0617-05

Misc

ALS Vial : 14 Sample Multiplier: 1

Quant Time: Mar 04 09:29:30 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03 15:03:00 2021

Response via: Initial Calibration 30.

Compound	R.T.	QIon: Response	Conc U	nits Dev(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.740 9.333 11.135 14.353	164 36087048 188 54753314	20.00 20.00	ug/mL 0.00 ug/mL # 0.00 ug/mL # 0.00 ug/mL # 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.543 13.115	** **	22.99	ug/mL 0.00 ug/mL 0.00 91.96%
Target Compounds		: 		Qvalue

(#) = qualifier out of range (m) = manual (integration (+) = signals summed

· .

113× TEMPLE

350 2

164 188₂ t

240 7 1 : .

2.72

244 1

Rec 4. and the same of the con-· Algainti 301. 50 4.00 1. 114341 1215 Ox. i tati 10,6 73 100. $\gamma_2 \sim 5/35_0$ 24D 8

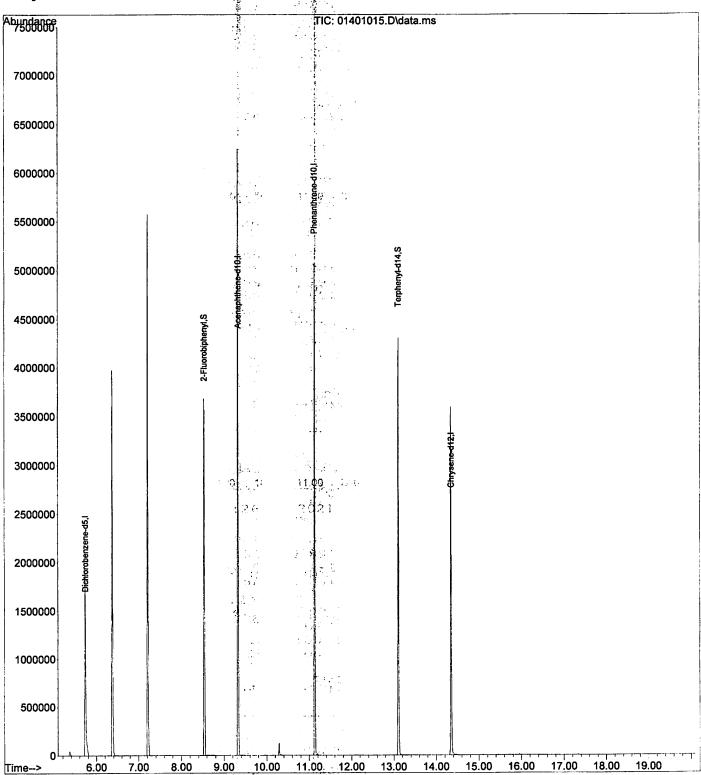
1. (1) (1) 264 -

Data File : 01401015.D

Acq On : 3 Mar 2021 5:17 pm

Operator : MAH

Sample : WBB0617-05


Misc

ALS Vial: 14 Sample Multiplier: 1

Quant Time: Mar 04 09:29:30 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update : Wed Mar 03 15:03:00 2021

Quantitation Report (QT Reviewed)

1) (4° E

. . · ·

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File: 01501016.D
Acq On: 3 Mar 2021
Operator: MAH
Sample: WBB0617-08
Misc: 5:44 pm

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 04 09:29:40 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

Compound	R.T.	QIon Response	Conc U	nits Dev(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12		150 24181390 164 30513193	20.00 20.00 20.00	ug/mL 0.00 ug/mL # 0.00 ug/mL # 0.00 ug/mL # 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.542 13.112	172 39109762 244 36803510 Recove	24.76	ug/mL 0.00 ug/mL 0.00 99.04%
Target Compounds				Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

an Gora

: 1 Toh;

. 150 2

164 . 1.88

240

4797

247

. diffar:

1 - W14 3/15 · . • . ·

530°C 1 8.4.

. . . t. . 60

.

1. 1

1

274

13

3

J. . . .

30 ...

976

351 $\mathbb{R}_{+}\subset$

.

2021

ţ ... · · 4 4 7

• •

600

3.7 5

acts.

Cardno0303.m Fri Mar 12 15:26:50 2021

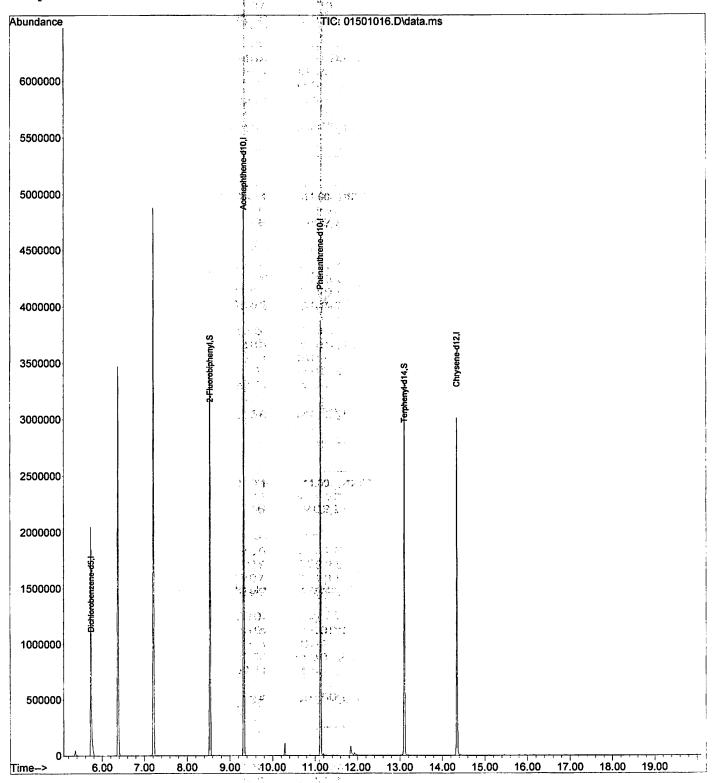
Page 125 of 144

Data File: 01501016.D

Acq On : 3 Mar 2021 5:44 pm

Operator : MAH

Sample : WBB0617-08


Misc

ALS Vial: 15 Sample Multiplier: 1

Quant Time: Mar 04 09:29:40 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update : Wed Mar 03 15:03:00 2021

5 (3) (3) (4) (6)

E

Data Path: T:\Data1\MSD4\2021\MAR\03\

Data File : 02101012.D

Acq On : 3 Mar 2021 3:56 pm

Operator : MAH

Sample : BBC0111-BS1

Misc

ALS Vial : 21 Sample Multiplier: 1

Quant Time: Mar 04 09:30:14 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4
QLast Update : Wed Mar 03 15:03:00 2021

Response via: Initial Calibration

Compound	R.T.	QIon Response	Conc U	nits De	v(Min)
Internal Standards					
1) Dichlorobenzene-d5	5.747	150 27535360	20.00	uq/mL	0.00
3) Acenaphthene-d10	9.335	1.64 37675143	20.00	ug/mL	# 0.00
5) Phenanthrene-d10	11.138	188059979689	20.00	ug/mL	# 0.00
8) Chrysene-d12	14.356	240 50319396		ug/mL	# 0.00
•				_	
System Monitoring Compounds					
2) 2-Fluorobiphenyl	8.546			ug/mL	0.00
9) Terphenyl-d14	13.115	244 54601292	22.55	ug/mL	0.00
Spiked Amount 25.000		Recove		90.20	ક
-					
Target Compounds				Q	value
4) Atrazine	10.854	200 1642033		ug/mL	93
Metolachlor	12.024	162 4245643	3.25	ug/mL	100
7) Chlorpyrifos	12.030	-1 19 ₹≈5 885938m	2.82	ug/mL	
		- Marie and American			

(#) = qualifier out of range (m) = manual integration (+) = signals summed

ာ်းလင်း $p_{i_1\cdots i_n}$ 150 % 1.64. 3 514

968 1.80, 5 240 E 939.

172 346 183 123. Kor.

200 203

5. 50. 1.62

14970 ----

> a, i J. 1 . **t**.

Sup Cons

5...

3.5

ag North Ma

0.0

1.72 : 2467.

200

- 1.87x

11 **4.** 13 H

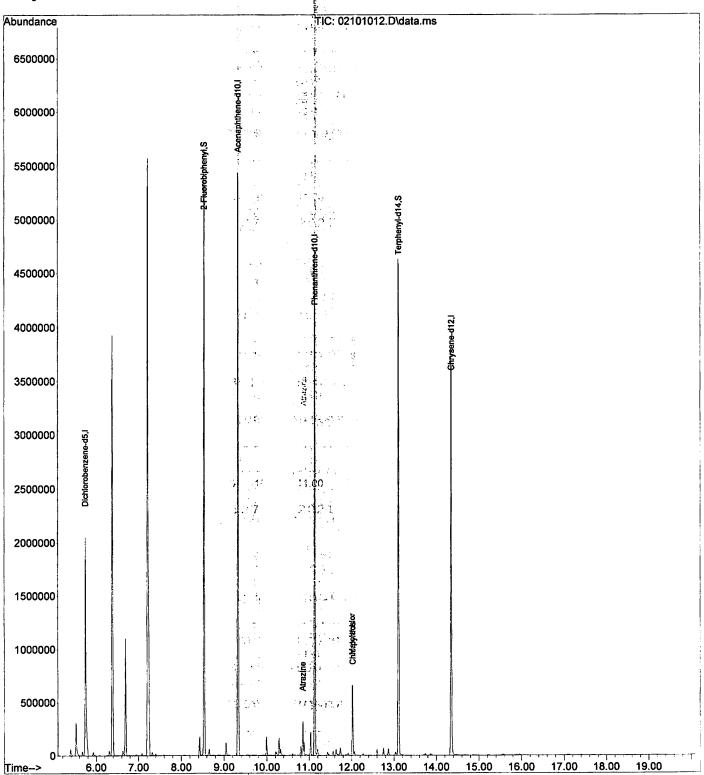
Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 02101012.D

3:56 pm : 3 Mar 2021 Acq On

: MAH Operator

: BBC0111-BS1 Sample


Misc

: 21 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 04 09:30:14 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update : Wed Mar 03 15:03:00 2021

And the

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 02101017.D

Acq On : 3 Mar 2021 6:11 pm

Operator : MAH

Sample : BBC0111-BS1

Misc

: 21 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 04 09:30:35 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03 15:03:00 2021

QLast Update: Wed Mar 03 15:03:0 Response via: Initial Calibration					
Compound	R.T.	QIon Response	Conc U	nits Dev	(Min)
Internal Standards					
 Dichlorobenzene-d5 	5.745	150 27819682	20.00	ug/mL	0.00
Acenaphthene-d10	9.335	164 37222514	20.00	ug/mL	# 0.00
5) Phenanthrene-d10	11.138	188-58085285	20.00	ug/mL	# 0.00
8) Chrysene-d12	14.357	240 46901164	20.00	ug/mL	# 0.00
System Monitoring Compounds					
2) 2-Fluorobiphenyl	8.545	172 57965516	22.98	ug/mL	0.00
9) Terphenyl-d14	13.114	244 54094844	23.97	ug/mL	0.00
Spiked Amount 25.000		Recove:	ry =	95.888	Š
Target Compounds				Qv	alue
4) Atrazine	10.853	200 1583175	3.39	ug/mL	96
6) Metolachlor	12.023	162 4150374	3.27	ug/mL	99
7) Chlorpyrifos	12.035	197:: 852209	2.80	ug/mL	98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

```
Oton...
            rion.
           . . .
  160 - 2
164 - 1
184 - 3
            9 . 30
            231
            528.
            1.7
   240 %
            . . .
  7.5
            5 5 5 7
            483
  244 E
            Roc
            3 - 1
200
            0.35
  152
            22%
1,123
----
\alpha^{\pm}
12.
  ----
            . . . . . .
            (3)(3)
  12.1
  1376
            21.3
  3 23 3. E
            100
  7 7 U - 4
            1 . . .
 11.13815
            1, 1
  4. A :
           1.0
```

Perc

3

9...

200

1.79 \$35 5

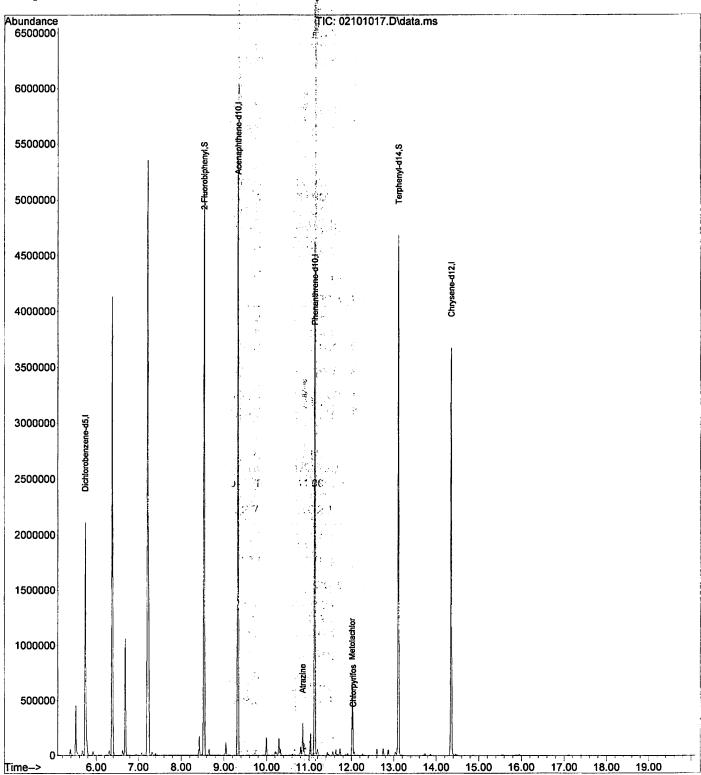
Data File : 02101017.D

Acq On : 3 Mar 2021 4 6:11 pm

Operator : MAH

Sample : BBC0111-BS1

Misc


ALS Vial : 21 Sample Multiplier: 1

Quant Time: Mar 04 09:30:35 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update : Wed Mar 03 15:03:00 2021

1.0

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 02201013.D

Acq On : 3 Mar 2021 Operator : MAH 4:23 pm

Sample : BBC0111-BSD1

Misc

ALS Vial : 22 Sample Multiplier: 1

Quant Time: Mar 04 09:30:43 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03 15:03:00 2021 300

Response via : Initial Calibration

Compound	R.T.	QIon: Response	Conc U	nits De	v(Min)
Internal Standards					
 Dichlorobenzene-d5 	5.745		20.00	ug/mL	0.00
Acenaphthene-d10	9.335	164 35158593	20.00	ug/mL	# 0.00
5) Phenanthrene-d10	11.137	188655868549	20.00	ug/mL	# 0.00
8) Chrysene-d12	14.357	240 47886027	20.00	ug/mL	# 0.00
System Monitoring Compounds					
2) 2-Fluorobiphenyl	8.545	172. 55308522	23.36	ug/mL	0.00
9) Terphenyl-d14	13.116	244 53092748	23.04	ug/mL	0.00
Spiked Amount 25.000		Recove	ery =	92.16	용
Target Compounds				Q	value
4) Atrazine	10.853	200 1501308	3.40	ug/mL	93
6) Metolachlor	12.023	162 3935831	3.23	ug/mL	100
7) Chlorpyrifos	12.035	1497 819343	2.80	ug/mL	97
					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

```
HOW
             bog.
   . . .
  (150 );
             4.50
             Line.
  164 E
             859.
 . 188. -
            654
   240 <
             602
             3111
  3.72 .
  244 5
             2 . .
             13:00
  1. 1 N/2
             1. . .
5. . .
  200
162
J. 197
             3030
 ----
  \{i^{2}_{1},i^{2}_{2}\}_{1:1}
             aLi
   1
             Q2000
  .....
   4.1 + 15
             apil
Otik
  1.64
   -2.0a s
            33.
   37.0
             60 17
```

173 1 234

1.67

v 97 😅

1800 .

....

3001

1.5

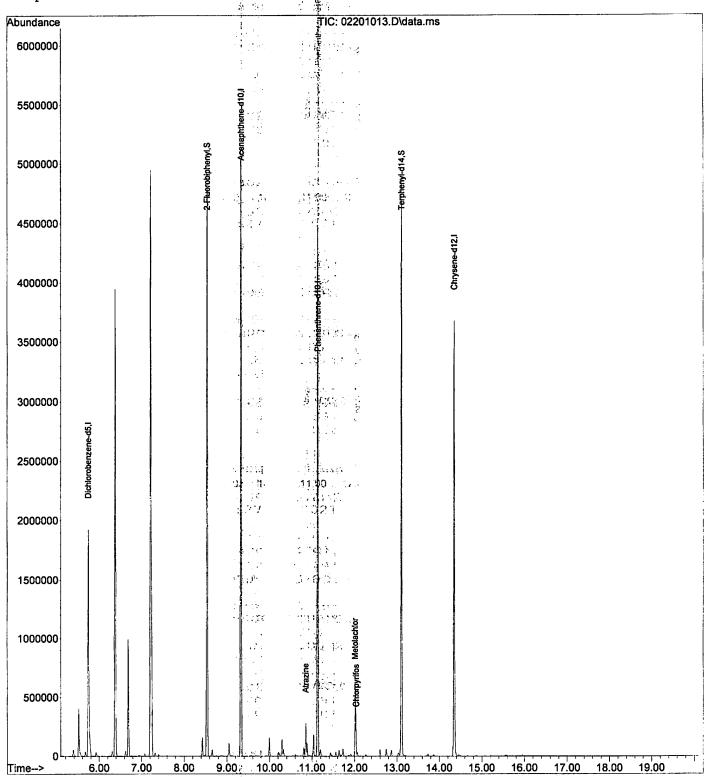
Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 02201013.D

4:23 pm : 3 Mar 2021 Acq On

Operator : MAH

Sample : BBC0111-BSD1


Misc

: 22 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 04 09:30:43 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update: Wed Mar 03 15:03:00 2021

Quantitation Report (Not Reviewed)

1.4

.....

Data Path : T:\Data1\MSD4\2021\MAR\03\ Data File : 02301019.D

Acq On : 3 Mar 2021 Operator : MAH 7:05 pm

: BBC0111-MS1 Sample :

Misc

ALS Vial : 23 Sample Multiplier: 1

Quant Time: Mar 04 09:31:23 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

QLast Update : Wed Mar 03 15:03:00 2021

Response via : Initial Calibration

•		z απ: Σβ:			
Compound	R.T.	QIon Response	Conc U	nits De	v(Min)
Internal Standards			·		
1) Dichlorobenzene-d5	5.745	150 23916728	20.00	ug/mL	0.00
Acenaphthene-d10	9.331	1.64 32903573	20.00	ug/mL	# 0.00
5) Phenanthrene-d10	11.135	188 50669607	20.00	ug/mL	# 0.00
8) Chrysene-d12	14.352	240 38140715	20.00	ug/mL	# 0.00
System Monitoring Compounds					
2) 2-Fluorobiphenyl	8.542	172 49911479	23.02	ug/mL	0.00
9) Terphenyl-d14	13.112	244 43293559	23.59	ug/mL	0.00
Spiked Amount 25.000		Recove	ry =	94.36	ક
		$\mathcal{F}_{\mathcal{G}}(\mathcal{F}_{\mathcal{G}})$. The $\mathcal{F}_{\mathcal{G}}(\mathcal{F}_{\mathcal{G}})$			
Target Compounds				Q	value
4) Atrazine	10.852	200 1402797		ug/mL	96
Metolachlor	12.023	162 3710827	3.34	ug/mL	100
7) Chlorpyrifos	12.035	19716 740001	2.79	ug/mL	100
					

(#) = qualifier out of range (m) = manual integration (+) = signals summed

1.1

```
Manager 19
              poë.
  रहे ग्री होते.
इ.स.च्या
   150 :
  164
              3:5
  188 8
              3 640
              075
   240
   -
  172
              t. 🤫
              35.50
1 244/11
              R_{\rm A} \simeq -
15.16.
              200
   152 -
              032
              305
   1937.
... .. ..
mal and
              plate.
  or ent
              . . .
              godi.
 of quarra
  ******
              ---
   15.4
              \dot{\beta}
   188 . ..
              (a (i ·
   1085
   . .
   112
```

Pager $x \in \{ y \in Y \mid y \in Y \}$

1.52

197...

ا مامرینورس داده داده

272

000

9:05

....

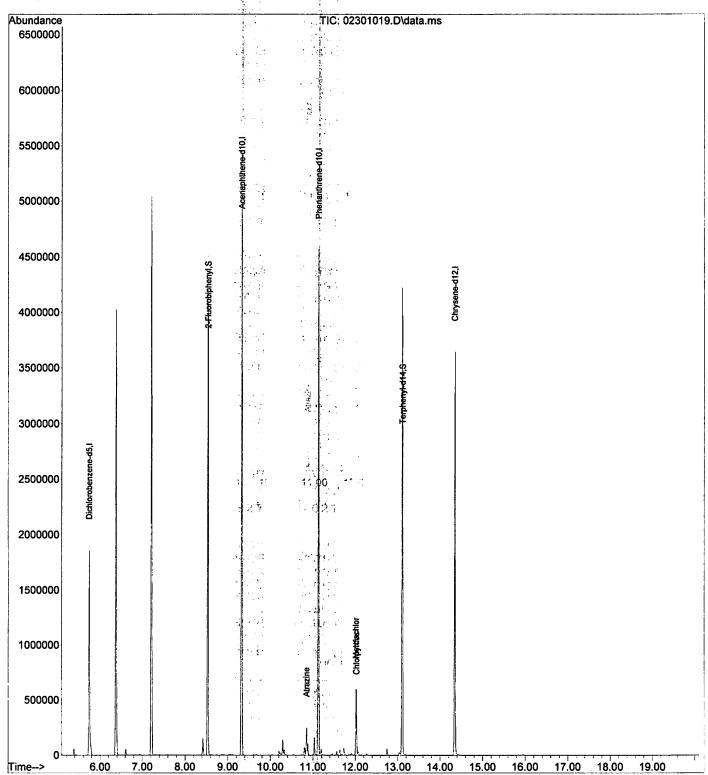
Data File : 02301019.D

: 3 Mar 2021 7:05 pm. Acq On

Operator : MAH

Sample : BBC0111-MS1

Misc


ALS Vial : 23 Sample Multiplier: 1

Quant Time: Mar 04 09:31:23 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03 15:03:00 2021

·

. .

3 3 1 £

S. S. 11/1/10

1 M () 1 M

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File: 02401020.D

Acq On : 3 Mar 2021 Operator : MAH 7:32 pm

Sample : BBC0111-MSD1

Misc

ALS Vial : 24 Sample Multiplier: 1

Quant Time: Mar 04 09:31:33 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03 15:03:00 2021
Response via: Initial Calibration

Compound	R.T.	QIon Response	Conc U	nits Dev	(Min)
Internal Standards					
 Dichlorobenzene-d5 	5.745	150 23419195	20.00	ug/mL	0.00
Acenaphthene-d10	9.332	164 33182429		ug/mL	# 0.00
5) Phenanthrene-d10	11.135	the second secon		ug/mL	# 0.00
8) Chrysene-d12	14.351			ug/mL	# 0.00
System Monitoring Compounds		i i			
2) 2-Fluorobiphenyl	8.542	172 48996076	23.08	ug/mL	0.00
9) Terphenyl-d14	13.113	* **		ug/mL	
Spiked Amount 25.000		Recove		_	
		La Barrier Commence			
Target Compounds				Q7	<i>r</i> alue
4) Atrazine	10.852	200 1390397	3.34	ug/mL	98
6) Metolachlor	12.023	162 3622184	3.22	ug/mL	98
7) Chlorpyrifos	12.035	197-: 742196	2.75	ug/mL	98

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

C (X) 1 $\Im \operatorname{Lah}_{1}^{(i)}$ oon -÷ . 7777 160 . 3 : . . 1.64 2 . 4. 188 5 53 2.40 380 178 4 607 244,7 623 R.30 200 039. 162 218 1975. 30 \$ ----ورنج له ٠ \mathcal{A} . \sim 17177 $A^{n-1}X$ 1.50 2... 164. S 10.00

100

5.23

. .

009 214

: Q

. . . .

12.2

344.

200

1.65 1.57

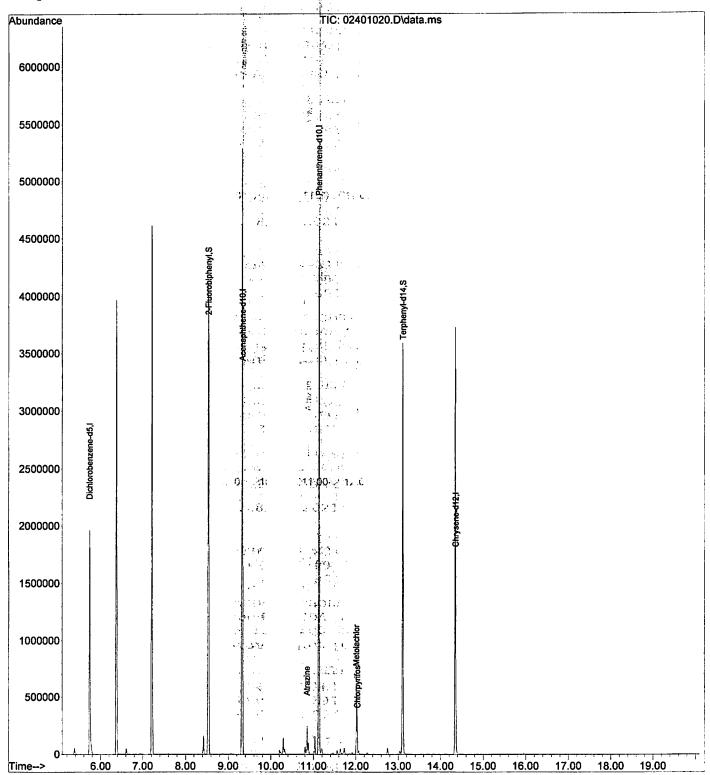
Data File : 02401020.D

: 3 Mar 2021 7:32 pm; Acq On

: MAH Operator

: BBC0111-MSD1 Sample

Misc


Sample Multiplier: 1 : 24 ALS Vial

Quant Time: Mar 04 09:31:33 2021

Quant Method : T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Z ...

Quant Title : EPA 8270D - GC MSD4 QLast Update : Wed Mar 03-15:03:00 2021

 $2M^2 / C$

, tik.

4.50.7.

• : . . .

7500

ъ. :i. 153

3.07

394

3.77

2090 620. X ...

Data Path : T:\Data1\MSD4\2021\MAR\03\

Data File : 02501021.D

Acq On : 3 Mar 2021 Operator : MAH mq 00:8

Sample : BBC0111-BLK1

Misc

ALS Vial : 25 Sample Multiplier: 1

Quant Time: Mar 04 09:31:42 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update: Wed Mar 03 15:03:00 2021

Response via : Initial Calibration

Compound	R.T.	QIon Response	Conc Ur	nits Dev(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.740 9.333 11.136 14.353	164 35768.609	20.00	ug/mL 0.00 ug/mL # 0.00 ug/mL # 0.00 ug/mL # 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.545 13.116	172 50202090 244 53526581 Recove	23.70	ug/mL 0.00 ug/mL 0.00 94.80%
Target Compounds		ार की विकास कर है। 		Qvalue

(#) = qualifier out of range (m) = manualCintegration (+) = signals summed

- 10 Oth

1... uch.

150 2 1.63

18460

240 %

172 5 244 5

. 2 10 2 10 75 m 1 1.00 $C = \mathbb{Z}_{p}$ 156 > 714.3 1.54 $f_{i}^{*}\mapsto f_{i}^{*}$ र विके 200 0 . No 9 200 32.75 · . . .

A ...

4.9

Page. Page 137 of 144 10,

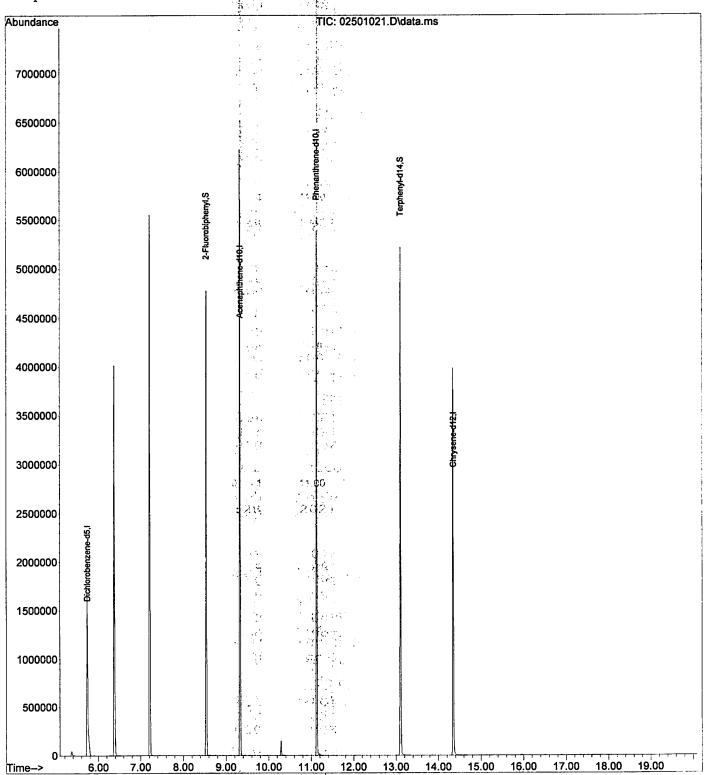
Data Path: T:\Data1\MSD4\2021\MAR\03\

Data File : 02501021.D

Acq On : 3 Mar 2021 \$ 8:00 pm

Operator : MAH

Sample : BBC0111-BLK1


Misc

ALS Vial : 25 Sample Multiplier: 1

Quant Time: Mar 04 09:31:42 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D GC MSD4
QLast Update : Wed Mar 03 15:03:00 2021

Quantitation Report (QT Reviewed)

The state of the s

. . .

3 1 1 1 1 1

ा अस्तिवृत्ति । स्टब्स्

Data Path : T:\Data1\MSD4\2021\MAR\03\
Data File : 02601022.D

Acq On : 3 Mar 2021 Operator : MAH Sample : BBC0111-DUP1 8:27 pm

Misc

ALS Vial : 26 Sample Multiplier: 1

Quant Time: Mar 04 09:32:04 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MS QLast Update : Wed Mar 03 15:03: Response via : Initial Calibrati	00 2021	1 (1) (1) (2) (4) (4) (4)	4 10 8 - 14 9.			
Compound	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.744 9.330 11.133 14.351	164 1880	24208361 32184406 46892632 35727402	20.00 20.00	ug/mL	0.00 # 0.00 # 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000			48766804 38725862 Recove	22.53	ug/mL ug/mL 90.12	0.00
Target Compounds					Q 	value

(#) = qualifier out of range (m) = manual dintegration (+) = signals summed

144**6** 1

ni, For كالشعو مصاد 150

164 .

240 ;

172

.....

in i (chaint

8 3

.64

. 7.46

. Sylling

. . . 244 3

1.887 0

p/: : -:

11. 4

800

4. .

200

776

6 500

Lesc:

24. 1

...

 $\alpha < 5$

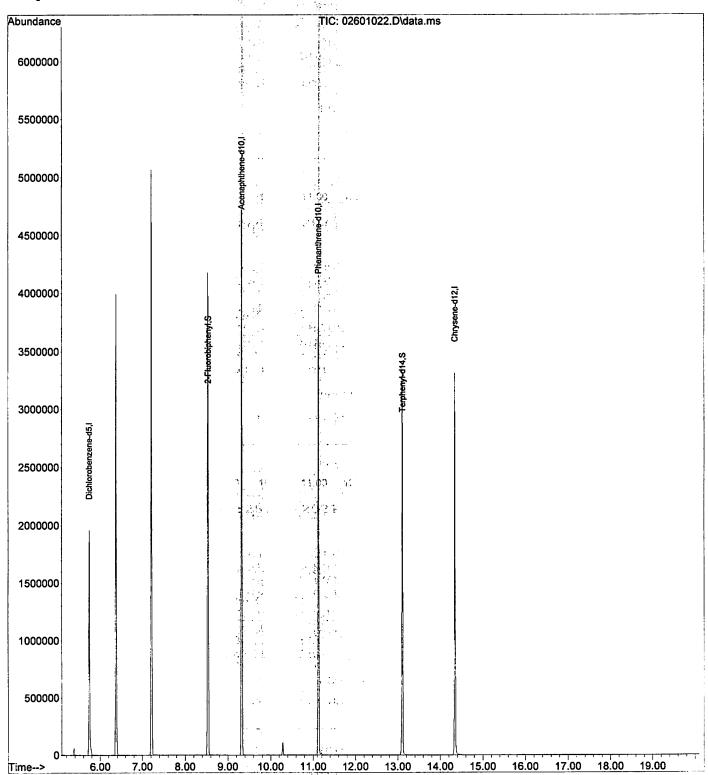
Page: Page 139 of 144

Data File : 02601022.D

: 3 Mar 2021 8:27 pm, Acq On

Operator : MAH

: MAH : BBC0111-DUP1 Sample


Misc

: 26 Sample Multiplier: 1 ALS Vial

Quant Time: Mar 04 09:32:04 2021

Quant Method : T:\Data1\MSD4\METHDDS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD QLast Update : Wed Mar 03 15:03:00 2021

Quantitation Report (Not Reviewed)

Data Path: T:\Data1\MSD4\2021\MAR\03\

Data File : 02701023.D

: 3 Mar 2021 8:54 pm Acq On

Operator : MAH

: WBB0717-05 Sample

Misc

ALS Vial : 27 Sample Multiplier: 1

Quant Time: Mar 12 15:32:56 2021 Quant Method: T:\Datal\MSD4\METHODS\2021\Cardno0303.m Quant Title: EPA 8270D - GC MSD4 QLast Update: Fri Mar 12 15:32:34 2021 Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.745 9.331 11.134 14.352	164 188	25179693 34150900 51406796 40764218	20.00 20.00	ug/mL ug/mL ug/mL ug/mL	0.00 # 0.00 # 0.00 # 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.541 13.112		51481888 44464230 Recove	22.67	ug/mL ug/mL 90.68	0.00 0.00 %
Target Compounds			_		Q	value

(#) = qualifier out of range (m) = manual integration (+) = signals summed

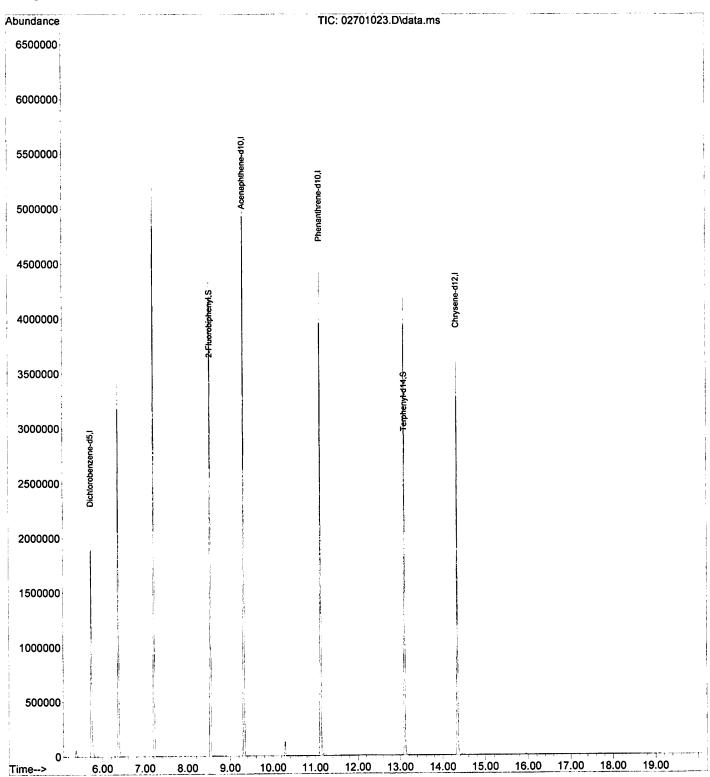
Data File : 02701023.D

Acq On : 3 Mar 2021 8:54 pm

Operator : MAH

Sample: WBB0717-05

Misc :


ALS Vial : 27 Sample Multiplier: 1

Quant Time: Mar 12 15:32:56 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4

QLast Update : Fri Mar 12 15:32:34 2021

Data File : 02801024.D

Acq On : 3 Mar 2021 Operator : MAH 9:21 pm

: WBB0717-08 Sample

Misc

ALS Vial : 28 Sample Multiplier: 1

Quant Time: Mar 04 09:33:09 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update : Wed Mar 03 15:03:00 2021

Compound	R.T.	QIon	Response	Conc U	nits Dev	y(Min)
Internal Standards 1) Dichlorobenzene-d5 3) Acenaphthene-d10 5) Phenanthrene-d10 8) Chrysene-d12	5.744 9.331 11.135 14.352	164 188	21031354 28899485 44169646 35121457	20.00 20.00	ug/mL ug/mL ug/mL ug/mL	0.00 # 0.00 # 0.00 # 0.00
System Monitoring Compounds 2) 2-Fluorobiphenyl 9) Terphenyl-d14 Spiked Amount 25.000	8.542 13.111		44856095 19962680 Recove	11.81	ug/mL ug/mL 47.24	0.00 0.00
Target Compounds						value

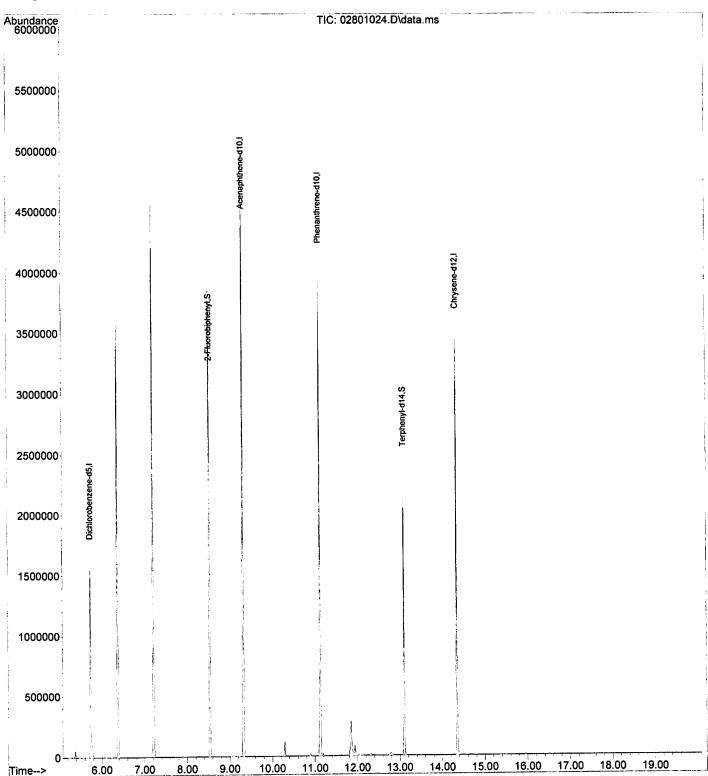
^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File: 02801024.D

3 Mar 2021 9:21 pm Acq On

Operator : MAH

: WBB0717-08 Sample


Misc

ALS Vial : 28 Sample Multiplier: 1

Quant Time: Mar 04 09:33:09 2021

Quant Method: T:\Data1\MSD4\METHODS\2021\Cardno0303.m

Quant Title : EPA 8270D - GC MSD4 QLast Update : Wed Mar 03 15:03:00 2021

Acute Toxicity Test Results for ADC Wet Weather Water Quality Monitoring

Monitoring Period: February 2021

Prepared for: Cardno

737 Bishop St., Suite 3050

Honolulu, HI 96734

Testing Lab: Enthalpy Analytical

> 4340 Vandever Avenue San Diego, CA 92120

Submitted: March 17, 2021

Data Quality Assurance:

- Enthalpy Analytical (formerly Nautilus Environmental) is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Department of Health Services Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- All results have met internal Quality Assurance Program requirements, unless otherwise noted in this report.

4340 Vandever Ave San Diego, CA 92120

858.587.7333

California

Data Verified by:

Laboratory Director

Introduction

Three samples were collected during a storm event for the ADC Kekaha Water Quality Monitoring. Samples were submitted by Cardno-GS. Testing was conducted at the Enthalpy Analytical Laboratory in San Diego, California. Pacific topsmelt (*Atherinops affinis*), inland silverside (*Menidia beryllina*), and mysid shrimp (*Americamysis bahia*) 96-hour acute survival tests were used for the DW-1/WW-1 sample received at a salinity level greater than 1 part per thousand (ppt). Fathead minnow (*Pimephales promelas*), water flea (*Ceriodaphnia dubia*), and freshwater amphipod (*Hyalella azteca*) 96-hour acute survival tests were used for the WW-2 and WW-3 samples, which were received below 1 ppt salinity.

Materials and Methods

Sample Information

Client: Cardno-GS

Project Name: ADC Kekaha Water Quality Monitoring

Sample IDs: DW-1/WW-1, WW-2, WW-3

Sample Collection Dates, Times^a: 2/20/2021, 14:00 to 19:45

Sample Receipt Dates, Times: 2/23/2021, 08:50

Sample Material: Stormwater sample

Sampling Method: Grab

Water Quality Parameters Measured upon Sample Receipt

Sample ID	рН	DO (mg/L)	Temp. (ºC)	Cond. (µS/cm)	Salinity (ppt)	Alkalinity (mg/L as CaCO₃)	Hardness (mg/L as CaCO3)	Total Chlorine (mg/L)
DW-1/WW-1	7.46	9.7	2.4	2,500	1.4	105	366	0.05
WW-2	5.83ª	9.5	2.9	513	0.2	7	50	<0.02
WW-3	5.79	9.4	3.3	90	0.1	13	34	nm

nm = not measured; sample too dark and opaque to measure on colorimeter.

Acute Toxicity Test Methods

Testing was conducted in accordance with methods published in US Environmental Protection Agency (USEPA) guidance (2002). Test specifications for all marine tests are summarized in Table 1, and test specifications for freshwater tests are summarized in Table 2.

^a Collection times adjusted to Pacific Standard Time from Hawaii Standard Time.

^a The pH of WW-2 was adjusted daily with sodium hydroxide to bring pH to USEPA required range of 6-9 to toxicity testing for freshwater tests The pH of sample WW-3 was above 6.0 when raised to test temperature and did not require manipulation for any tests.

Table 1. 96-hr Acute Survival Test Specifications - Marine Organisms

Pacific topsmelt test: 2/23, 15:25 to 2/27, 14:55	Species: <i>Atherinops affinis</i> . Source & Age: Aquatic Biosystems (Ft. Collins, CO), 13 days
Inland silverside test: 2/23, 16:40 to 2/27, 14:45	Species: <i>Menidia beryllina</i> . Source & Age: Aquatic Biosystems (Ft. Collins, CO), 8 days
Mysid shrimp test: 2/23, 15:35 to 2/27, 14:30	Species: <i>Americamysis bahia.</i> Source & Age: Aquatic Biosystems (Ft. Collins, CO), 3 days
Protocol Used:	Acute Manual (EPA/821/R-02/012), EPA 2002
Test Acceptability Criteria:	Control mean survival ≥ 90%
Test Concentration:	100% sample (DW-1/WW-1)
Sample Manipulation:	Artificial salts (Instant Ocean®) were added to bring the salinity of the sample to 30±1 parts per thousand (ppt)
Lab Control Water:	20-μm filtered seawater (Source: Scripps Institution of Oceanography [SIO] Intake); diluted to 30 ppt with deionized water
Salt Control:	Salt Control – 30 ppt artificial saltwater (Instant Ocean®)

Table 2. 96-hr Acute Survival Test Specifications – Freshwater Organisms

Fathead minnow test: 2/23, 13:50 to 2/27, 15:45	Species: <i>Pimephales promelas.</i> Source & Age: Aquatic Biosystems (Ft. Collins, CO), 6 days
Water flea test: 2/23, 13:40 to 2/27, 12:20	Species: <i>Ceriodaphnia dubia.</i> Source & Age: Internal culture, < 24 hours
FW amphipod test ^a : 2/24, 17:20 to 2/28, 15:20	Species: <i>Hyalella azteca.</i> Source & Age Aquatic Research Organisms (Hampton, NH), 13 days
Protocol Used:	Acute Manual (EPA/821/R-02/012), EPA 2002
Test Acceptability Criteria:	Control mean survival ≥ 90%
Test Concentration:	100% sample (WW-2 and WW-3)
Sample Manipulation:	WW-2 sample pH was adjusted with NaOH to above 6 (EPA required range for toxicity testing is 6-9). No adjustments were made to sample WW-3.
Lab Control Water:	Diluted mineral water (per EPA protocol)

^a The freshwater amphipod test was initiated out of holding time due to an organism shipping delay; see QA section.

Statistical analyses were conducted using EPA flowchart specifications as outlined in the test guidance manual (USEPA 2002). Organism performance in the sample was compared to that observed in the concurrent artificial salt control. Results were used to calculate whether a statistically significant effect was observed between the control and sample result. Comprehensive Environmental Toxicity Information SystemTM (CETIS) software by Tidepool Scientific Software, version 1.8.7.20.

Results

No statistically significant effects were observed to any of the marine species exposed the DW-1/WW-1 sample compared to the respective artificial salt control. The artificial salt control for the inland silverside resulted in 75 percent mean survival, below the test acceptability criterion (TAC) of 90 percent (see QA section for further details). The lab control for this species resulted in 87.5 percent mean survival, which is still below TAC. The DW-1/WW-1 sample (82.5 percent survival) also resulted in no statistically significant effect compared to the lab control. A summary of results for the marine species tests is presented in Table 3.

The freshwater lab controls for the fathead minnow and water flea test met TAC. However, the lab control for the freshwater amphipod test was below TAC (see QA section). The control for the amphipod test resulted in a mean survival of 67.5 percent while samples WW-2 and WW-3 resulted in 92.5 and 87.5 percent survival, respectively. None of the freshwater species tested resulted in statistically significant mortality, with the exception of the water fleas in the WW-3 sample test. Water flea mean survival in the WW-3 sample was 10 percent, compared to 100 percent in the lab control. The WW-3 sample was very opaque and turbid with a significant amount of fine silt present in the sample. The water flea species is known to have difficulty in these types of samples due to easy clogging of their filtering apparatus which is used for feeding. Further testing with this sample would need to be conducted to confirm whether the reduced survival of this species was due to a toxicant or a physical barrier due to turbidity. A summary of results for the freshwater tests is presented in Table 4.

Raw datasheets and complete statistical summaries for all tests are provided in Appendix A. Sample receipt information is provided in Appendix B, and a copy of the chain of custody form is presented in Appendix C.

Table 3. Summary of Marine 96-hr Acute Survival Results

Sample ID	Species	Salt Control Result	100% Sample Result	Statistically Significant Effect? (Yes/No)	Percent Effect
	Pacific topsmelt	90.0	100	No	-11
DW-1/WW-1	Inland silverside	75.0ª	82.5	No	-10
	Mysid shrimp	90.0	95.0	No	-5.6

^a The control did not meet minimum test acceptability criterion; see QA section.

Percent effect from control is calculated as: ((mean response in salt control - mean response in undiluted sample)/mean response in salt control) *100. A negative value results when organism performance in the sample is greater than that in the salt control.

Table 4. Summary of Freshwater 96-hr Acute Survival Results

Sample ID	Species	Lab Control Result	100% Sample Result	Statistically Significant Effect? (Yes/No)	Percent Effect
	Fathead minnow	97.5	93.3	No	4.3
WW-2	Water flea	100	100	No	0.0
	Freshwater amphipod	67.5ª	92.5	No	-37
	Fathead minnow	97.5	90.0	No	7.7
WW-3	Water flea	100	10.0*	Yes	90
	Freshwater amphipod	67.5ª	87.5	No	-30

^a The control did not meet minimum test acceptability criterion; see QA section.

Percent effect from control is calculated as: ((mean response in lab control - mean response in undiluted sample)/mean response in lab control) *100. A negative value results when organism performance in the sample is greater than that in the lab control.

Quality Assurance

The samples were received via overnight delivery service three days after collection. The samples were received slightly below the range of 0-6 degrees Celsius (°C) and had some ice crystals in the sample containers. The client was immediately notified and requested to proceed with testing. The samples were left at room temperature to completely thaw and were then homogenized before being poured out to measure water quality (including temperature) and for test preparation. The freshwater amphipod test was initiated outside of the 72-hour maximum allowable holding time (the samples were approximately 99 hours past collection) due to the initial order of test organisms being lost in transit. All other tests were initiated within the maximum allowable holding time of 72 hours.

Mean control responses met minimum acceptability criteria for all tests, except for the inland silverside and freshwater amphipod discussed below. Fish, mysid, and amphipod tests were initiated with continuous, light aeration in all sample replicates and the lab control to maintain adequate dissolved oxygen (DO) levels. DO was maintained at appropriate levels for the duration of all tests. Minor QA issues that were unlikely to have any bearing on the final test data, such as slight temperature deviations, are noted on the datasheets and a list of laboratory qualifier codes can be found in Appendix D.

The inland silverside test had a mean survival of 87.5 percent in the lab control and 75 percent in the artificial salt control, which is below the TAC of 90 percent. The lab control for the reference toxicant test initiated the following day resulted in 95 percent mean survival, indicating that the control failure for the DW-1/WW-1 test was likely due to the limited acclimation time allowed in order to initiate the sample test within 72 hours.

The freshwater amphipod lab control had a mean survival of 67.5 percent, which is both below the

^{*}Values with an asterisk indicate a statistically significant reduction from the lab control.

minimum acceptability criterion of 90 percent for mean control response. The lab control in the reference toxicant test for this species was 55 percent, indicating that the batch of organisms was not optimal for testing. The organisms were received during a severe ice storm in much of the country and though they are shipped in insulated boxes, excess shipping stress is suspected for this batch of organisms, which were received from an east coast supplier, whereas all other test species were either from an internal culture, or received from Colorado.

Reference Toxicant Testing

Results for reference toxicant testing used to monitor laboratory performance and test organism sensitivity are summarized in Table 5. The mean control response for the freshwater amphipod reference toxicant test was below the minimum test acceptability criteria of 90 percent. The amphipod mean control survival was 55 percent; the test showed a dose response and had sensitivity results that were within historical means. The reference toxicant tests for all other species tested met all acceptability criteria. Additionally, the median effect concentration value for these tests was within two standard deviations of the historical mean for all species tested, indicating typical organism sensitivity to copper. The control chart for the previous 20 reference toxicant tests is presented in Appendix E.

Table 5. Summary of 96-hr Acute Survival Reference Toxicant Test Results

Species	NOEC (μg/L copper)	LC₅₀ (µg/L copper)	Historical LC ₅₀ ± 2 SD (μg/L copper)	CV (%)
Pacific Topsmelt	50	107	174 ± 119	34.2
Inland Silverside	100	218	183 ± 95.8	26.1
Mysid Shrimp	200	283	244 ± 70.9	14.5
Fathead Minnow	15	37.5	82.0 ± 62.4	38.0
Water Flea	10	12.8	21.1 ± 9.96	23.6
Freshwater Amphipod	100	106	132 ± 124	46.9

NOEC = the highest concentration tested that results in no observed effect

LC₅₀ = concentration expected to cause a lethal effect to 50 percent of the test organisms

Historical $LC_{50} \pm 2$ SD = the mean LC_{50} from the previous 20 tests performed by Enthalpy, plus or minus two standard deviations

CV = Coefficient of Variation

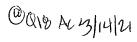
References

Tidepool Scientific Software. 2000-2013. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20.

USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition (EPA/821/R-02/012). US EPA Office of Water, Washington, DC.

Appendix A

Raw Data and Statistical Summaries


Report Date:

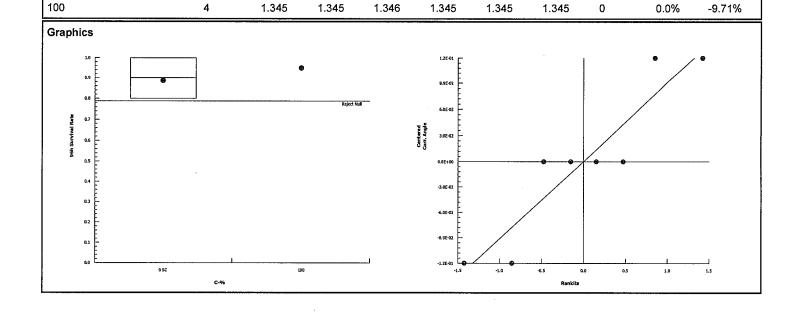
03 Mar-21 09:48 (p 1 of 1)

Test Code:

2102-\$172 | 05-1763-8751

Pacific Topsn	nelt 96-h Acute S	Survival	Test							Nautilu	s Environn	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	08-9898-2385 23 Feb-21 15:2 27 Feb-21 14:5 96h	5 F 5 S	est Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02- Atherinops affir Aquatic Biosyst	nis			Analyst: Diluent: Brine: Age:	Dilu	uted Natural : Applicable	Seawater	
•	17-1154-7235 20 Feb-21 19:4 : 23 Feb-21 08:5 68h (2.4 °C)	5 N	ode: Material: & Source: Station:	21-0225 Æffluent-Sample Cardno Hawaii DW-1/WW-1	=Storm	water		Client: Project:		dno Hawaii C Kekaha W	'Q Monitorir	ng
Comparison S	Summary				***************************************							
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	М	ethod			
03-4651-5893	96h Survival Ra	ite	100	>100	NA	12.4%	1	E	qual Va	riance t Two	-Sample Te	st
96h Survival I	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	S	td Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.9	0.7163	1	0.8	1	0.	05774	0.1155	12.83%	0.0%
0	Salt Control	4	0.9	0.7163	1	8.0	1	0.	05774	0.1155	12.83%	0.0%
100		4	1	1	1	1	1	0		0	0.0%	-11.11%
96h Survival I	Rate Detail											
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0	Lab Control	0.8	1	1	0.8							
0	Salt Control	8.0	1	0.8	1							
100		1	1	1	1							

Salt Control


4

1.226

1.007

Report Date: Test Code: 03 Mar-21 09:48 (p 1 of 1) 2102-S172 | 05-1763-8751

Pacific Topsmelt 96-h Acute Survival Test Nautilus Environmental (CA) Analysis ID: 03-4651-5893 Endpoint: 96h Survival Rate **CETIS Version:** CETISv1.8.7 Analyzed: 03 Mar-21 9:48 Analysis: Parametric-Two Sample Official Results: Yes **Data Transform** Zeta Alt Hyp Trials Seed **PMSD Test Result** Passes 96h survival rate Angular (Corrected) NA C > T NA NA 12.4% **Equal Variance t Two-Sample Test** Control ٧s C-% Test Stat Critical MSD DF P-Value P-Type Decision(a:5%) Salt Control 100 -1.732 1.943 0.134 6 0.9330 CDF Non-Significant Effect **ANOVA Table** Source **Sum Squares** Mean Square DF F Stat P-Value Decision(a:5%) 0.02835395 Between 0.02835395 1 3 0.1340 Non-Significant Effect Error 0.0567079 0.009451317 6 Total 0.08506185 7 **Distributional Tests** Attribute Test **Test Stat** Critical P-Value Decision(a:1%) Distribution Shapiro-Wilk W Normality 0.8489 0.6451 0.0929 Normal Distribution 96h Survival Rate Summary C-% **Control Type** Count Mean 95% LCL 95% UCL Median Min CV% %Effect Max Std Err 0 Salt Control 4 0.9 0.7163 1 0.9 0.8 1 0.05774 12.83% 0.0% 100 4 1 0.0% 1 1 1 1 1 0 -11.11% **Angular (Corrected) Transformed Summary** Std Err C-% **Control Type** Count Mean 95% LCL 95% UCL Median Min Max CV% %Effect

1.445

1.226

1.107

1.345

0.06874

11.21%

0.0%

Glient: Cardno	Test Species: A. affinis			Te	ch Init	ials	
Sample ID: ADC Kekaha Stormwater Monitoring	Start Date/Time: 2/23/2021 1525		0	24	48	72	96
Sample Log-in No.: 21-0225	End Date/Time: 2/27/2021 1458	Counts:) <i>^</i> ^	1/	TN	3	B/~
Test No.: 2102-5172		Readings:	D/M	D/¬	GH	6H	D/-
		Dilutions made by:	GH		TU		

Concentration (%)	Rep			ber o ganis	f Live sms	•		5	Salinit (ppt)	y			Ter Q ₁	nperat (°C) (Vì	ture Q	Q 2	Q5		ved C (mg/L		n			pH (units)	1	
		0	24(À48		96	0	24	48	72	96	0	24		72		0	24	48	72	96	0	24	48	72	96
Lab Control	Α	5	5	94	Ч	4	30.0	ንወ.ኅ	29.9	30 A	BOLG	70.C	19.2	19.7	19.7	19.0	スケ	7.2	23	713	7.6	7.U)	190	7.96	7.96	7.7
	В	5	5	5	5	5			304					zoo					72					7.86		
	С	5_	5	5	5	5																				
	D	5	5	5	5	4														7.1						
Salt Control	Α	5	5	5	5		30,1				31.0	20.1				19.9	73	21	7.4	84	74	8.12	8.05	8.14	8.13	8.0
	В	5	5	5	5	5			30,5					20.1					7.6	(9)				804	1	Ĺ
	С	5	4	4	4	4																				
	D	5	5	5	5	5																				
DW-1/WW ₂ 2	Α	5	5	5	5	5	30.5	30.5	30.4	30.N	31,0	20.8	19.5	19.8	198	19.9	7.1	<i>7</i> .1	7.9	7.2	7.3	290	01 K	7.88	8.31	3.2
100%	В	5	5	5	5	5			ই প্ট					50.5					5.2					ઝ.જ	<u> </u>	
	С	5.	5	5	5	5																				
	D	5	5	5	5	5																		li		
	Α				ļ														f .					f		
	В													<u>'</u>					<u>'</u>		-		1000	<u>'</u>		<u> </u>
	С			_	<u> </u>																			-		
	D			ļ		ļ			i i					i					i					i		
	Α	:			-				f					f					f					f		
	В				<u> </u>	-																-				-
	С				ļ	-															-					-
	D				-				i					li					i					i		+
	A		-		-	ļ			f					f					f					f		
	В			-	-							1														
	С				\vdash						-															
	D			-	-				i					i					i					i		-
	A			_	-				f					f					f					f		
	В				-							-														
	C				-	-								-												

	С																					
	D																					
Initial Counts QC'd by: Initiated by:		1	:					Envir	ronmen	tal Cha	mber: _	(,		_							
Animal Source/Date	Rece	eived:		185	12/2	3/:	Z_		Age	at Initi	ation:	13	da	<u>></u>					Fee	ding Ti	imes	
Animal Acclimation	Quali	fiers (circle al	that a	pply):				Q22) Q23	/ Q	24 1	fione at 15	RT	2/23(21	Α	0 M:	24 0849	48 0650	72 0310	96 S√O⊅
Comments:		i ≈ ini	tial readi	ng in fr	esh tes	t solu	ition, f =	final re	ading in	test ch	amber p	rior to r	enewal	(A) (a)	18 Ta 2	e/25/er	P	м: 174	0			
		Organ	nisms fed	l prior t	o initia	tion, c	circle on	<u>-</u> (y)	/ n)	<u> </u>	SPT	2	irep	(0)	Q18H	<u>(8 3/2/</u> 2	L)	1	3)	14/	21	
OC Charles	Arc	. 21	5/21													Final	Povio	147*	- ,			

QC Check: A(> 3/2/21

Report Date: Test Code: 14 Mar-21 14:26 (p 1 of 1) 2102-S173 | 01-2366-2479

								rest Code:		210	12-31/3 0	-2300-247
Inland Silvers	side 96-h Acute	Surviva	al Test							Nautilu	s Environm	ental (CA
Batch ID: Start Date: Ending Date: Duration:	17-4298-1308 23 Feb-21 16:4 27 Feb-21 14:4 94h	_	Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02- Menidia beryllii Aquatic Biosys	na			Analyst: Diluent: Brine: Age:	Diluted Not App 8d		Seawater	
-	18-9735-9997 20 Feb-21 19:4 : 23 Feb-21 08:5 69h (2.4 °C)		Code: Material: Source: Station:	21-0225 Stormwater Cardno Hawaii DW-1/WW-1				Client: Project:	Cardno ADC Ke		'Q Monitorir	ng
Comparison S	Summary							-				
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Meth	nod			
09-0700-8656	96h Survival R	ate	100	>100	NA	17.3%	1	Equa	al Variano	e t Two	-Sample Te	st
14-0842-3595	96h Survival R	ate	100	>100	NA	33.2%	1	Equa	al Variano	e t Two	-Sample Te	st
Test Acceptal	bility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lin	nits	Ove	rlap D	ecision		
09-0700-8656	96h Survival R	ate	Contro	ol Resp	0.875	0.9 - NL	······································	Yes	В	elow Ac	ceptability C	riteria 🕡
14-0842-3595	96h Survival R	ate	Contro	ol Resp	0.75	0.9 - NL		Yes	В	elow Ac	ceptability C	riteria 47
96h Survival I	Rate Summary											
C-%	Control Type	Cour	it Mean	95% LCL	95% UCL	Min	Мах	Std !	Err St	d Dev	CV%	%Effec
0	Lab Control	4	0.875	0.6748	1	0.7	1	0.062	292 0.	1258	14.38%	0.0%
0	Salt Control	4	0.75	0.3712	1	0.4	0.9	0.119	9 0.	238	31.74%	14.29%
100		4	0.825	0.6727	0.9773	0.7	0.9	0.04	787 0.	09574	11.61%	5.71%
96h Survival I	Rate Detail											
C-%	Control Type	Rep	l Rep 2	Rep 3	Rep 4							
0	Lab Control	0.7	1	0.9	0.9							
		0.4	0.0	0.8	0.9							
0	Salt Control	0.4	0.9	0.0	0.9							

Report Date: Test Code: 14 Mar-21 14:26 (p 1 of 2) 2102-S173 | 01-2366-2479

							Test	Code:	210	2-S173 01	I-2366-247
Inland Silve	side 96-h Acut	e Survival T	est						Nautilu	s Environn	nental (CA
Analysis ID: Analyzed:	09-0700-865 14 Mar-21 1		dpoint: 96h alysis: Par	Survival Ra		,		IS Version: ial Results		.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Corr	ected)	NA	C > T	NA	NA		17.3%	Passes 9	6h survival r	ate	
Equal Variar	ice t Two-Samp	ole Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	100		0.712	1.943	0.208 6	0.2516	CDF	Non-Sign	ficant Effect	t .	
ANOVA Tabl	е		, , , , , , , , , , , , , , , , , , , ,		•			, , , , , , , , , , , , , , , , , , ,			-
Source	Sum So	_l uares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.01161	802	0.0116180)2	1	0.507	0.5032	Non-Signi	ficant Effect	t	
Error	0.13749		0.0229163	35	6	····					
Total	0.14911	61			7						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
√ariances	Variand	e Ratio F		1.945	47.47	0.5985	Equal Var	iances			,
Distribution	Shapiro	o-Wilk W Nor	mality	0.9481	0.6451	0.6925	Normal D	istribution			
96h Survival	Rate Summar	,						*· · · · · · · · · · · · · · · · · · ·			
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.875	0.6748	1	0.9	0.7	1	0.06292	14.38%	0.0%
100		4	0.825	0.6727	0.9773	0.85	0.7	0.9	0.04787	11.61%	5.71%
Angular (Co	rrected) Transf	ormed Sumi	nary		•						
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.225	0.9485	1.502	1.249	0.9912	1.412	0.08699	14.2%	0.0%
100		4	1.149	0.9506	1.348	1.178	0.9912	1.249	0.06237	10.86%	6.22%
Graphics						2	-				•
1.0						2.至-01 ┌		4			
Ē						ŧ				/	_
0.9	777877	Z	777.007	~		1.85-01					w
0.8						1.2E-01					
6h Survival Rate	L		t	Reject Null	- -	t		•	•/	•	
o.6					Centered	₹ 5.9€-02 - Li					
Sh8					U	ŭ		•	,		

0.1

0 LC

C-%

100

-5.9E-02 -1.2E-01 -1.8E-01

-2.3E-01 -1.5

0.0

Rankits

0.5

Report Date:

14 Mar-21 14:26 (p 2 of 2)

Test Code: 2102-S173 | 01-2366-2479

							Test	Code:	210)2-S173 0°	1-2366-2479
Inland Silver	rside 96-h Acute	Survival T	est						Nautilu	s Environn	nental (CA)
Analysis ID: Analyzed:	14-0842-3595 03 Mar-21 9:3			Survival Ra				S Version		.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Corr	rected)	NA	C > T	NA	NA		33.2%	Passes 9	6h survival r	ate	
Equal Varian	nce t Two-Sampl	e Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	ι(α:5%)		
Salt Control	100		-0.5199	1.943	0.286 6	0.6891	CDF	Non-Sign	ificant Effec	t	
ANOVA Table	e					,					
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.011737	98	0.0117379	98	1	0.2703	0.6218	Non-Sign	ificant Effec	t	
Error	0.260595	6	0.0434326	31	6						
Total	0.272333	6			7						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F		4.582	47.47	0.2431	Equal Var	iances			
Distribution	Shapiro-	Wilk W No	rmality	0.8687	0.6451	0.1463	Normal D	stribution			
96h Survival	Rate Summary				· · · · · · · · · · · · · · · · · · ·						
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Salt Control	4	0.75	0.3712	1	0.85	0.4	0.9	0.119	31.74%	0.0%
100		4	0.825	0.6727	0.9773	0.85	0.7	0.9	0.04787	11.61%	-10.0%
Angular (Cor	rrected) Transfo	rmed Sumi	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Salt Control	4	1.072	0.6476	1.497	1.178	0.6847	1.249	0.1335	24.9%	0.0%
100		4	1.149	0.9506	1.348	1.178	0.9912	1.249	0.06237	10.86%	-7.14%
Graphics											
1.0 F						1.9€-01 ┌			ı	• (_
0.9		_				ţ			_		•
E	777777	 	///			9.7E-02			0 9		
0.8	///\$///	4				• [
o.7 L.			L		3	₽ 0.0E+00 -			/		_
96h Survival R					Centered	¥.		• /			
S496 0.5				Reject Null	-	-9.7E-02					
Ę				-		ŧ	_/				
0.4				-		-1.9E-01	•				
0.3						ţ					
0.2						-2.9E-01					
L									1		

0 SC

C-%

Marine Acute Bioassay Static-Renewal Conditions DM-001

Water Quality Measurements & Test Organism Survival

Tech Initials Client: Cardno Test Species: M. beryllina 48 Start Date/Time: 2/23/2021 1690 Sample ID: ADC Kekaha Stormwater Monitoring Counts: GH DM Sample Log-in No.: 21-0225 End Date/Time: 2/27/2021 1445 Test No.: 2102 - 5173 Dilutions made by: GH

Concentration (%)	Rep			ber o ganis	f Live sms	•		:	Salinit (ppt)				Ter	nperat	ture		Q5		lved C (mg/L	Oxyge)	n			pH (units)	
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	Α	10	7	7	7	7	30.2	30.8			ાં.ધ	24.3	24,2	25.3	24.7	24.2	6.6	6.4	69	6.4	6.6	8.७५	₹.00	7.94	7.98	797
	В	10	10		10	10			31.3					24.9					6.7					f 7.47		
	С	10	q	9	9	9																				
	D	10	9	9	9	9			0	31.3					٠,											
Salt Control	Α	10	4	4	4	4	30.1	30.8	30.3	34.3	3('&	24.4	245	i 25.Z	24.9	24.1	6.4	(q.)	ن. 6.6	6.3	6.3	જુ.()	8,14	8.17	8.9	70
	В	10	9	9	9	9			314					<i>35</i> 2					G.5				1	8.15		
	С	10		8	8	8																				
	D	10	9	9	q	9												(3)								
DW-1/WW-3/1	Α	10	9	9	9	9	70:1	30.9	i 30∙5	31.3	31.6	250	U.0	! 248	25,0	24.2	6,5	6.3	\$7.7	6.3	6.6	73-	8.27	7.94	8,52	7.3
100%	В	10	9	9	9	q			\$1.6	2000				f 25. <u>3</u>					6.5					ર્ફ ટવ		
	С	10	8	7	7	7																				
	D	10	10	9	9	8							111111	10000		G.										
	Α									,				i					i					i		
	В								f					f					f					f		
	С																									
	D																	177.00	100.00							
-	Α								i					i					i					j 		
	В								f					f					f					f		
	С														100											
	D																									
	Α								i					i					i					i		
	В								f					f					f					f		
	С																									
	D																									
	Α								i					i					i					i		
	В								f					f					f					f		
	С																									
	D												1								100					

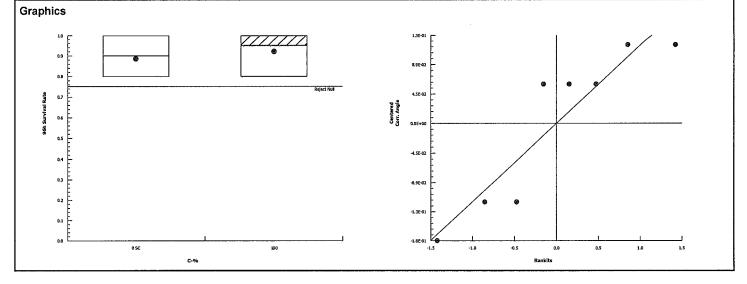
	c							
	D		14 (14 C)					
Initial Counts QC'd	by Acs	0m				•		
Initiated	by: <u>GH</u> '	Envi	ronmental Chamber:A					
Animal Source/Da	ite Received:	ABS / 2/23/21	Age at Initiation:	178 8d		Fee	ding Time	s
Animal Acclimatio	on Qualifiers (cir	rcle all that apply):	Q22) / Q23) / Q24 / no	one	0	24	48 7	2 96
					AM:	0845	1850 08	20,906
Comments:	i = initia	l reading in fresh test solution, f = final re	eading in test chamber prior to ren	ewal	PM: 174	0		
	Organis	ms fed prior to initiation, circle one		\$)018642/25/21 \$ \$18653/2/21		3	1 .	
		,	(E) (Q18AC3)14/21	1 816HS 312121		<u> </u>	14171	
QC Check:	A(5 3/	2/2\	(C) (SAC 3) 41 11	Final	Review:		•	

A(5 3/2/21 Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

QC Check:

Final Review:

Report Date: Test Code: 03 Mar-21 09:27 (p 1 of 1) 2102-S174 | 12-9254-5624


Mysid 96-h Acute Survival Test Nautilus Environmental (CA) 12-9241-1903 Batch ID: Test Type: Survival (96h) Analyst: Start Date: 23 Feb-21 15:35 Protocol: EPA/821/R-02-012 (2002) Diluent: Diluted Natural Seawater Ending Date: 27 Feb-21 14:30 Species: Americamysis bahia Brine: Not Applicable Duration: Source: Aquatic Biosystems, CO Age: 17-8906-8084 Sample ID: Code: 21-0225 Cardno Hawaii Client: Material 🙆 Effluent-Sample Stormwater Sample Date: 20 Feb-21 19:45 Project: ADC Kekaha WQ Monitoring Receive Date: 23 Feb-21 08:50 Source: Cardno Hawaii DW-1/WW-1 Sample Age: 68h (2.4 °C) Station: Comparison Summary Analysis ID **Endpoint** NOEL LOEL TOEL **PMSD** TU Method 100 16-3798-3384 96h Survival Rate >100 NA Equal Variance t Two-Sample Test 16.4% 1 **Test Acceptability** Analysis ID **Endpoint** Attribute Test Stat TAC Limits Overlap Decision Yes 16-3798-3384 96h Survival Rate Control Resp 0.9 0.9 - NL Passes Acceptability Criteria 96h Survival Rate Summary C-% **Control Type** Count 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect Mean 0 10.53% 0.0% Lab Control 4 0.95 0.7909 8.0 1 0.05 0.1 1 0 Salt Control 4 0.7163 8.0 1 0.05774 0.1155 12.83% 5.26% 0.9 1 100 0.0% 4 0.95 0.7909 8.0 1 0.05 0.1 10.53% 1 96h Survival Rate Detail C-% **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 Lab Control 0 1 1 0.8 1 0 Salt Control 0.8 1 1 0.8 100 1 1 0.8 1

@Q18AC3/14/21

Report Date: Test Code: 03 Mar-21 09:27 (p 1 of 1) 2102-S174 | 12-9254-5624

Mysid 96-h A	cute S	urvival Te	st								Nautilu	s Environn	nental (CA)
Analysis ID: Analyzed:		798-3384 Mar-21 9:27	7	Endp Analy		h Survival Ra rametric-Two				S Version: ial Results		.8.7	
Data Transfo	rm		Zeta		Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Corr	ected)		NA		C > T	NA	NA		16.4%	Passes 9	6h survi va l r	ate	
Equal Varian	ice t T	vo-Sample	e Test										
Control	vs	C-%			Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Salt Control		100			-0.6547	1.943	0.177 6	0.7315	CDF	Non-Sign	ificant Effe c t		
ANOVA Tabl	е												
Source		Sum Squ	ares		Mean Sq	uare	DF	F Stat	P-Value	Decision	(a:5%)		
Between		0.0070884	488		0.007088	488	1	0.4286	0.5370	Non-Sign	ificant Effect		
Error		0.0992388	B2		0.016539	8	6						
Total		0.1063273	3				7						
Distributiona	il Test	3	·										
Attribute		Test				Test Stat	Critical	P-Value	Decision(α:1%)			
Variances		Variance	Ratio F	=		1.333	47.47	0.8187	Equal Var	iances			
Distribution		Shapiro-\	Wilk W	Norma	ality	0.8283	0.6451	0.0570	Normal Di	stribution			
96h Survival	Rate S	Summary											
C-%	Cont	rol Type	Cour	nt	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Salt	Control	4		0.9	0.7163	1	0.9	0.8	1	0.05774	12.83%	0.0%
100			4		0.95	0.7909	1	1	0.8	1	0.05	10.53%	-5.56%
													

	•	ed Summa	AI y								
C-% Con	ntrol Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0 Salt	t Control	4	1.226	1.007	1.445	1.226	1.107	1.345	0.06874	11.21%	0.0%
100		4	1.286	1.096	1.475	1.345	1.107	1.345	0.05953	9.26%	-4.86%

Water Quality Measurements & Test Organism Survival

Tech Initials Client: Cardno Test Species: A. bahia 24 48 72 96 Sample ID: ADC Kekaha Stormwater Monitoring Start Date/Time: 2/23/2021 Sample Log-in No.: 21-0225 1430 D/10/10/ End Date/Time: 2/27/2021 Counts: 6H PM Test No.: 2102-5174 GH GH PA Readings: GH Dilutions made by

Concentration (%)	Rep			ber o ganis		•		;	Salini (ppt)		4		Tei	mpera (°C)	ture		a		lved ((mg/L		n			pH (units)	
		0	24	48	72	96	0	24		72		0	24		72		0	24	48	72		0				
Lab Control	Α	5	5	5	5	5	ર ૦.૧	30,8	29.3	304	30.5	24.3	24.6	253	ه. وح	24.0	6.7	6.5	6.8	6.2	62	298	Z.03	796	5.00	8.
	В	5	5	5	5	5			50.9					25.3					6.5					\$,00	\$2000 CONTRACTOR	
	С	5	5	5	4	4																				
	D	5	5	5	5	5													100		•					
Salt Control	Α	5	3	5	5	5	30.Z	31.2	i 30.3	314	31.7	24.7	24.7	25.3	25.1	1.42	6.3	6.4	10	6.3	6.4	8.1)	8.13	8.18	8.18	8.
	В	5	5	5	5	5			31.8	,				25.3	100				8.4					8.17		
	С	5	5	4	4	4																				
	D	5	4	4	4	4																				
DW-1/WW-20	Α	5	5	5	2	5	30,4	30.2	₹ υ.Υ	31.0	31.6	24.3	24.9	żs.o	25.0	24,2	6.6	6.4	2.3	6.3	6.4	7:85	₹.J.C	7.8	8.33	8.
100%	В	5	5	5	5	5			31.6					25.4					64					8.33		
	С	5	5	5	5	5																				
	D	5	5	4	4	4																				
	Α								i					İ .					ľ					i		
	В								f					f					f					f		
	С																									
	D																		200							
	Α								j L					j										i		
	В								f					f					f	1.5	100			f		L
	С																									
	D																									
	Α								_										i					ľ		
	В								f					f					f					f		
	С					<u> </u>																				
	D																							*	175.5	
	Α								i					i					i					i"		
	В								f					f					f					f		
	С																									
tial Counts QC'd by:	D																									

			25 (500)				Dec		
D									
Initial Counts QC'd by:				Λ					
Initiated by: GH	-		Environmental Chamber:	<u> </u>					
Animal Source/Date Received	: A135	12/23/21	Age at Initiation:	30		. [Fee	ding Times	
Animal Acclimation Qualifiers	(circle all that ap	pply):	Q22 / Q23 / Q24	/ none			0 24	48 72	
			_			AM:		0850 085	
Comments: <u>i = i</u>	nitial reading in fre	sh test solution, f =	final reading in test chamber pri	or to renewal	DQ18A75 3/2/21	PM:	(140 ₍₁₅₀₎	1840 1630	1-
Org	anisms fed prior to	initiation, circle one	(y) n)				Ny		
Δ.						_	7001	14/21	
QC Check: ATS 3	1/2/21				Final	Review:			

Report Date:

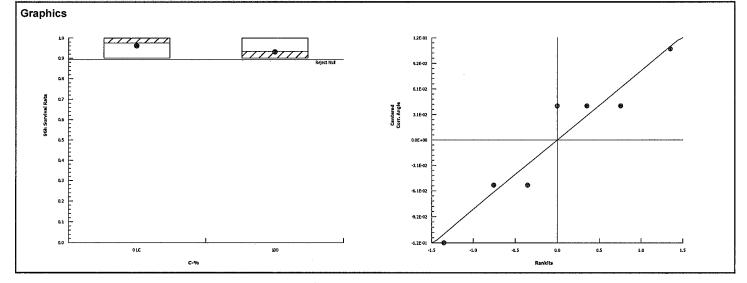
03 Mar-21 10:04 (p 1 of 1)

Test Code:

2102-S175 | 13-8567-2692

Fathead Minn	ow 96-h Acute S	urvival	Test				-		Nautilu	ıs Environn	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	15-4852-6876 23 Feb-21 13:5 27 Feb-21 15:4 4d 2h	0 F 5 S	Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02 Pimephales pr Aquatic Biosys	omelas			Analyst: Diluent: Brine: Age:	Diluted Mineral Not Applicable 6d	Water (8:2)	
Sample ID: Sample Date: Receive Date: Sample Age:		0 N	Code: Material: Source: Station:	21-0226 Stormwater Cardno Hawaii WW-2				Client: Project:	Cardno Hawaii ADC Kekaha V		ng
Comparison S	Summary										
Analysis ID 09-6027-0742	Endpoint 96h Survival Ra	ıte	NOEL 100	. LOEL >100	TOEL NA	PMSD 8.4%	TU	Meth Equa	od I Variance t Two	o-Sample Te	est
Test Acceptab	oility			· · · · · · · · · · · · · · · · · · ·							
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	nits	Over	lap Decision	1	
09-6027-0742	96h Survival Ra	ite	Contro	ol Resp	0.975	0.9 - NL		Yes	Passes A	cceptability	Criteria
96h Survival F	Rate Summary				-						
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	%Effect
0 100	Lab Control	4 3	0.975 0.933	0.8954 3 0.7899	1 1	0.9 0.9	1 1	0.025 0.033		5.13% 6.19%	0.0% 4.27%
96h Survival F	Rate Detail							-			
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Lab Control	1	1	0.9	1						
100		0.9	0.9	QB	1						

Ro replicate Spilled; excluded from analysis.


Report Date: Test Code: 03 Mar-21 10:04 (p 1 of 1) 2102-S175 | 13-8567-2692

Fathead Minn	now 9	6-h Acute Surviv	al Test							Nautilus Environmental (CA)
Analysis ID: Analyzed:		6027-0742 Mar-21 10:04	Endpoint: Analysis:		Survival Ra ametric-Two		е			IS Version: CETISv1.8.7 cial Results: Yes
Data Transfor	rm	Zeta	Alt F	łур	Trials	Seed			PMSD	Test Result
Angular (Corre	ected)	NA	Ç > T	-	NA	NA			8.4%	Passes 96h survival rate
Equal Varian	ce t T	wo-Sample Test								
Control	vs	C-%	Test	Stat	Critical	MSD	DF	P-Value	P-Type	Decision(α:5%)
Lab Control		100	1.025	5	2.015	0.134	5	0.1762	CDF	Non-Significant Effect
ANOVA Table)									
Source		Sum Squares	Mear	ı Squ	are	DF		F Stat	P-Value	Decision(α:5%)
Between		0.007904563	0.007	9045	63	1		1.05	0.3524	Non-Significant Effect
Error		0.03762572	0.007	75251	44	5				
Total		0.04553028		,		6		_		
Distributiona	l Test	\$								
Attribute		Test			Test Stat	Critics	ı	P-Value	Decision	(a:1%)

Diodribational	0000					
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)	
Variances	Variance Ratio F	1.333	49.8	0.7704	Equal Variances	
Distribution	Shapiro-Wilk W Normality	0.9203	0.5629	0.4717	Normal Distribution	

900 Survivai	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.975	0.8954	1	1	0.9	1	0.025	5.13%	0.0%
100		3	0.9333	0.7899	1	0.9	0.9	1	0.03333	6.19%	4.27%

Angular (C	Corrected) Transfor	med Sumn	nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.371	1.242	1.501	1.412	1.249	1.412	0.04074	5.94%	0.0%
100		3	1.303	1.07	1.537	1.249	1.249	1.412	0.05432	7.22%	4.95%

Report Date:

03 Mar-21 10:07 (p 1 of 1)

Test Code:

2102-S178 | 04-4674-5014

Fathead Minn	ow 96-h Acute \$	Surviva	l Test							Nautilu	s Environr	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	09-2651-1067 23 Feb-21 13:5 27 Feb-21 15:4 4d 2h	0 5	Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02- Pimephales pro Aquatic Biosyst	omelas			Analyst: Diluent: Brine: Age:		l Mineral oplicable	Water (8:2))
•	15-9661-4055 20 Feb-21 14:3 23 Feb-21 08:5 71h (3.3 °C)	0	Code: Material: Source: Station:	21-0227 Stormwater Cardno Hawaii WW-3				Client: Project:		o Hawaii (ekah a W	/Q Monitorii	ng
Comparison S	Summary			,								· · · · · · · · · · · · · · · · · · ·
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	od			
05-1803-6637	96h Survival Ra	ate	100	>100	NA	9.11%	1	Equa	al Varian	ice t Two	-Sample Te	est
Test Acceptat	oility		· · · · · · · · · · · · · · · · · · ·				(
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	nits	Over	lap [Decision		
05-1803-6637	96h Survival Ra	ate	Contro	ol Resp	0.975	0.9 - NL		Yes	F	Passes A	cceptability	Criteria
96h Survival F	Rate Summary	<u> </u>		,								
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	s Std I	Err S	Std Dev	CV%	%Effect
0	Lab Control	4	0.975	0.8954	1	0.9	1	0.02	5 0	0.05	5.13%	0.0%
100		4	0.9	0.7701	1	0.8	1	0.040	082 0	0.08165	9.07%	7.69%
96h Survival F	Rate Detail				·····	·· · · · · · · · · · · · · · · · · · ·			-			
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0 .	Lab Control	1	1	0.9	1						-	
100		0.9	1	0.9	0.8							

Report Date: Test Code: 03 Mar-21 10:07 (p 1 of 1) 2102-S178 | 04-4674-5014

							Test	Code:	210	2-\$178 0	4-4674-501
Fathead Min	now 96-h Acute	Survival Te	est				* *		Nautilu	s Environi	nental (CA
Analysis ID:	05-1803-6637	En	dpoint: 96h	n Survival Ra	ate		CET	IS Versior	: CETISv1	.8.7	
Analyzed:	03 Mar-21 10:	07 A n	alysis: Par	ametric-Two	Sample		Offic	ial Result	s: Yes		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Re	sult		
Angular (Corr	ected)	NA	C > T	NA	NA		9.11%	Passes	96h survival r	ate	
Equal Varian	ice t Two-Sampl	e Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decisio	n(α:5%)		
Lab Control	100		1.571	1.943	0.145 6	0.0836	CDF		nificant Effect		
ANOVA Table	e										
Source	Sum Squ	ıares	Mean Squ	uare	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	0.027359	02	0.0273590	02	1	2.468	0.1672	Non-Sig	nificant Effect		
Error	0.066502	59	0.0110837	76	6	_					
Total	0.093861	6			7						
Distributiona	al Tests								,		
Attribute	Test	٠		Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F		2.339	47.47	0.5035	Equal Var	iances			
Distribution	Shapiro-	Wilk W Nor	mality	0.9149	0.6451	0.3900	Normal D	istribution			
96h Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.975	0.8954	1	1	0.9	1	0.025	5.13%	0.0%
100		4	0.9	0.7701	1	0.9	8.0	1	0.04082	9.07%	7.69%
Angular (Cor	rected) Transfo	rmed Sumr	nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.371	1.242	1.501	1.412	1.249	1.412	0.04074	5.94%	0.0%
100		4	1.254	1.056	1.453	1.249	1.107	1.412	0.06231	9.94%	8.53%
Graphics											
10 E	777777	Z				1.6E-01 F			1		•
u.9 =				Reject Null	_	1.2E-01					
£ -				Reject Null		E					
8						7.9E-02			_		
					ğ				. /	_	
96h Survival Ra					Centered	3.9E-02				•	
0.5						0.05+00		9 9/			
0.4						. [
Ē						-3.9E-02					
0.3	:					-7.9E-02		•			
}						t t			1		

C-%

DF-006 Client: Cardno

Tech Initials Test Species: P. promelas Start Date/Time: 2/23/2021 | 350 Sample ID: ADC Kehaha Stormwater Monitoring End Date/Time: 2/27/2021 1545 Sample Log-in No's.: 21-0226 , 21-0227 PT TNON Counts: T~ Test No's.: 2102 - 5175 + - 5174 Readings: RETHH TW GH GH Dilutions made by: 6H

Sample ID (100%)	Rep			ber o gani	of Live sms	•			nduct nhos/				Ter	npera (°C)	ture		Ø.	Dissol	lved C (mg/L (요)나		n			pH (units)	
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48		96	0	24	48	72	96
Lab Control	Α	10	10	10	10	10	187,	00	187	197	201	ర్ముక	בינטו	94	199	20.0	8,6	810	8.5	9.0	જુ.વ	813	8,11	i B.OS	80S	82 <u>5</u>
	В	10	10	10	10	10			Zil					20.1				150	% 5	34.32		10.00	23.00	809		
	С	10	10	10	9	9				6								133							1 (1)	22350000
	D				10	+-											Q14							22413		
WW-2	Α	10	Q13	9	QIX		516	515	516	535	550	20.4	20.2	P .5	Z0.C	20.0	7.3	8.6	73	9.0	z .L	600	6.90	665	G.88	7.27
100%	В	10		9		9			528					20.2					8.8					693		
	С	10	Gi	-	Щ	1																				
	D	10	1		12	10											QIU	(ŝ	9:3							හ
WW-3	Α	10	Q13	313	013	9	90	108	41	95	99	19.9.	10.3	17.4	20.1	200	9.8	8.5	195	જ.૧	8.1	6.07	w.6	602	G:YS	بلين
100%	В	10			\coprod	(O			114					1959			014 9.8		8.9					649		
	С	10				9																				
	D	10	1	٧	*	3					661								ı					i	1775	<u> </u>
	A			ļ					f		100000000000000000000000000000000000000		R259838	f	56375.00				f	34332447				f		encikan.
· 	В			ļ	ļ														•					Regional		
	С							100-100	0.000																	
	D					<u> </u>			ı	38 33				i					ī					ī		10000
	Α_								f		20 Cars			f	6	TO SEC.			f		1000000	1000		ſ		
	В								10000																	
	С		<u> </u>		-																					
	D				╂—				i					i					i					î		
	A				-				f					f					f					f		
	В				-																					
	С				 		15																7			-
	D			-	┼	<u> </u>			i					i					i					i		
	В				├	 			f					f					f		yteese:			f		-
	С			-	┼	-																				
,	D				\vdash																5.00					
Initial Counts QC'd by:			L		<u></u>				1					<u> </u>												

						1		1000 M	1102													
	С																					
	D																					
Initial Counts QC'd	by: 2 -T								********		_											
In itiated	by: TN					Envi	ironment	al Cha	mber:		<u></u>											
Animal Source/Dat	e Received	ı: AB	5	2/23	/2(Age	at Initi	ation:	6	DA	٦_				1			Fee	ding T	imes	
Animal Acclimation	n Qualifiers	(circle all tha	at apply)):):			Q22 /	Q23	1 (Q24	no	ne						0	24	48	72	96
																	AM:		1	0558		1
Comments:	<u>i =</u>	initial reading	in fresh	test solu	ution, f =	final r	eading in	test ch	amber	prior	o rene	ewal					PM:		1		7-	
	Oı	ganisms fed p	rior to in	itiation, o	circle on	e/m	/ n)	<u> </u>	4.	36	sh,	ሊ (6)	vered	1								
	(ganisms fed p	~2/251	14 6) Q13 (OH 2	127/21		212					•					ħ	,		
QC Check:	Acs	3/2/21		_			• •								Fir	nal Re	view:		163	3/14	21	

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Report Date: Test Code: 03 Mar-21 10:19 (p 1 of 1)

2102-S176 | 14-4584-8267

Ceriodaphnia	96-h Acute Surv	ival Test							Nautilu	s Environ	mental (CA
Batch ID: Start Date: Ending Date: Duration:	14-2803-4336 23 Feb-21 13:40 27 Feb-21 12:20 95h	Pro	st Type: otocol: ecies: urce:	Survival (96h) EPA/821/R-02- Ceriodaphnia d In-House Cultur	ubia			Analyst: Diluent: Brine: Age:	Diluted Mineral Not Applicable <24h	Water (8:2	2)
Sample ID: Sample Date: Receive Date: Sample Age:	07-8038-3263 20 Feb-21 14:00 23 Feb-21 08:50 72h (2.9 °C)) Ma	de: iterial: urce: ation:	21-0226 Stormwater Cardno Hawaii WW-2				Client: Project:	Cardno Hawaii ADC Kekaha W	/Q Monitor	ing
Comparison S	Summary		-								
Analysis ID 10-5777-9973	Endpoint 96h Survival Ra	te	NOEL 100	. LOEL >100	TOEL NA	PMSD,	TU	Meth Wilco	od oxon Rank Sum	Two-Samp	le Test
Test Acceptab	oility			***							
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	its	Over	lap Decision		
10-5777-9973	96h Survival Ra	te	Contro	ol Resp	1	0.9 - NL		Yes	Passes A	cceptabilit	y Criteria
96h Survival F	Rate Summary				· · · · · · · · · · · · · · · · · · ·						
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	err Std Dev	CV%	%Effect
0 100	Lab Control	4 4	1 1	1	1	1	1 1	0	0 0	0.0% 0.0%	0.0% 0.0%
96h Survival F	Rate Detail					-					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
	Lab Control	1	1	1	1						
100		1	1	1	1						

Report Date: Test Code: 03 Mar-21 10:19 (p 1 of 1) 2102-S176 | 14-4584-8267

							Test	Code:	210)2-S176 <i>1</i>	14-4584-8267
Ceriodaphni	a 96-h Acute Sui	vival Test							Nautilu	s Environ	mental (CA)
Analysis ID: Analyzed:	10-5777-9973 03 Mar-21 10:			Survival Ra	ate Two Sample	9		S Version		.8.7	
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed			Test Res	ult		
Angular (Corr	ected)	NA	C > T	NA	NA			Passes 9	6h survival i	ate	
Wilcoxon Ra	nk Sum Two-Sa	mple Test									
Control	vs C-%		Test Stat	Critical	Ties DF	P-Value	P-Type	Decision	(a:5%)		
Lab Control	100		18	NA	1 6	1.0000	Exact	Non-Sign	ificant Effec	t	
ANOVA Table	9										
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0		0		1	65540	<0.0001	Significar	•		
Error	0		0		6						
Total	0				7	-					
96h Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	1	0	0.0%	0.0%
100		4	1	1	1	1	1	1	0	0.0%	0.0%
Angular (Cor	rected) Transfor	med Sumn	nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
100		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
Graphics											
_											
1.0	•		•			1.0E+00					
0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Centered	L					

2.5E-01

0.2

0 LC

Report Date: Test Code:

03 Mar-21 10:22 (p 1 of 1)

e: 2102-S179 | 21-2907-8955

Batch ID: 16-9753-0785 Test Type: Survival (96h) Analyst: Start Date: 23 Feb-21 13:40 Protocol: EPA/821/R-02-012 (2002) Diluent: Diluted Minera Ending Date: 27 Feb-21 12:20 Species: Ceriodaphnia dubia Brine: Not Applicable Duration: 95h Source: In-House Culture Age: <24h Sample ID: 07-5199-5424 Code: 21-0227 Client: Cardno Hawa Sample Date: 20 Feb-21 14:30 Material: Stormwater Project: ADC Kekaha Receive Date: 23 Feb-21 08:50 Source: Cardno Hawaii Sample Age: 71h (3.3 °C) Station: WW-3	e ii)
Start Date: 23 Feb-21 13:40 Protocol: EPA/821/R-02-012 (2002) Diluent: Diluted Mineral Brine: Not Applicable Duration: 95h Source: In-House Culture Age: <24h Sample ID: 07-5199-5424 Code: 21-0227 Client: Cardno Hawa Sample Date: 20 Feb-21 14:30 Material: Stormwater Project: ADC Kekaha Receive Date: 23 Feb-21 08:50 Source: Cardno Hawaii Sample Age: 71h (3.3 °C) Station: WW-3	e ii	
Sample Date: 20 Feb-21 14:30 Material: Stormwater Project: ADC Kekaha Receive Date: 23 Feb-21 08:50 Source: Cardno Hawaii Sample Age: 71h (3.3 °C) Station: WW-3 Comparison Summary	•	ng
Analysis ID Endpoint NOEL LOEL TOEL PMSD TU Method		
02-9979-0049 96h Survival Rate <100 100 NA 18.8% >1 Wilcoxon Rank Sun	Two-Sample	e Test
Test Acceptability		
Analysis ID Endpoint Attribute Test Stat TAC Limits Overlap Decisio	n	
02-9979-0049 96h Survival Rate Control Resp 1 0.9 - NL Yes Passes	Acceptability	Criteria
96h Survival Rate Summary		· · · · · · · · · · · · · · · · · · ·
C-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev	CV%	%Effect
0 Lab Control 4 1 1 1 1 1 0 0	0.0%	0.0%
100 4 0.1 0 0.4182 0 0.4 0.1 0.2	200.0%	90.0%
96h Survival Rate Detail		
C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4		
0 Lab Control 1 1 1 1		
100 0 0 0.4 0		

Report Date:

03 Mar-21 10:22 (p 1 of 1)

521167 111	ary trout i to	5011					Test	t Code:	210	02-S179 2 ⁻	1-2907-895
Ceriodaphnia	a 96-h Acute S	urvival Test							Nautilu	s Environn	nental (CA
Analysis ID: Analyzed:	02-9979-004 03 Mar-21 10		idpoint: 96h ialysis: Noi	n Survival Ra		e		IS Version: cial Results		1.8.7	
Data Transfo	rm	Zeta	Ait Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Corr	ected)	NA	Ç > T	NA	NA		18.8%	Fails 96h	survival rate	9	
Wilcoxon Ra	nk Sum Two-S	ample Test	-								
Control	vs C-%		Test Stat	Critical	Ties DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	100*		10	ÑA	0 6	0.0143	Exact	Significan	t Effect		
ANOVA Table	e										
Source	Sum Sc	quares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	2.01992	2	2.019922		1	76.63	0.0001	Significan	t Effect		
Error	0.15815	25	0.0263587	75	6	_					
Total	2.17807	4			7						
Distributiona	I Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Mod Le	vene Equali	ty of Variance	: 1	13.75	0.3559	Equal Va	riances			
Variances	Levene	Equality of '	Variance	9	13.75	0.0240	Equal Va	riances			
Distribution	Shapiro	o-Wilk W No	rmality	0.7065	0.6451	0.0027	Non-norn	nal Distributi	on		
96h Survival	Rate Summary	/									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	1	0	0.0%	0.0%
100		4	0.1	0	0.4182	0	0	0.4	0.1	200.0%	90.0%
Angular (Cor	rected) Transf	ormed Sumi	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
100		4	0.3403	-0.02503	0.7057	0.2255	0.2255	0.6847	0.1148	67.47%	74.7%
Graphics											
10 -						3.4E-01		1			•
Ē	•					F					
0.9						2.66-01					
0.8											
4 0.7 -					_	<u>.</u> ‡				/	/
Survival Rate					Centered	1.7E-01					
§ [8	+					
0.5						8.6E-02					
0.4						E					
E				- 1		0.0E+00		•			_

Rankits

96-hour Freshwater Acute Bioassay Static-Renewal Conditions

Water Quality Measurements & Test Organism Survival

DF-002

Concentration (%)	Rep			ber o ganis	f Live	•			nducti nhos/c				Ter	npera (°C)	ture		ହାଦ	Disso	lved C (mg/L ડોંગ (n			pH (units)	
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	0.0000000000000000000000000000000000000	000000000	1,0000000000000000000000000000000000000	96	0	24	48	72	96
Lab Control	Α	5	5	4	5	5	180	489	86	188	204	21.0	205	203	20.4	199	8.2	80	85	88	8.3	8.15	810	5.08	8.13	8.2
	В	5	5	5	5	5			196			274.		19.9					7.0					^f 8.14		
	ပ	5	5 5 5	5	5	5												10.000		ann an eo						
	D	5	5	5	5	5												2900		923477 24374						
WW-2	Α	. 5 .	5	<	5	5	516	514	513	517	532	z0.0	20.3	20.0	20.3	19.9	9.2	3.0	9.5	9.0	<i>5</i> .6	(O. 29	600	654	7.10	7.6
100%	В	5	5 5	5	5	5			506					199					45					138		
	С	5	5	5	5	5																				12
	D	5	5	4	5	5	96																		7/2 0/8	K
WW-3	Ą	5	Q13	0	Q13	0	80	avo	90	90	98	طً. 14	w:2	1 200	20.2	19.4	9.2	85	9,1	9.0	8.7	601	(p.1 ^C	607	GRS.	7.2
100%	В	5	1	3	1	0			96			,		199					8.5					દેલ ઉ	6.1	4
	ပ	5		3		2				#11999	715 113		11.11				5,70		all said		et) en len	130		11-1	15 to 100	
	D	5	V	ろ	.√	0																				
									i					i	÷				i					ì		
									f					f					f					f		
																						d y de sin				
			,																							
									i					i					i					i		
									f					f					f					f		
					-																					
									i i					i										i		
									f					f					f					f		
																									21.5	
									i					i					i					i		
									f					f					f					f		
														(11) (11)	100								10.0			
nitial Counts QC'd by: Initiated by:									F-		ma	d Che	nh			_										
milialed by:	1/1	/	•		_	١,	nal		7	A		ıl Chai				<u> </u>	٠ ١	_	-			[p. =		
nimal Source/Date	Receiv	ed:			ユ	~1e	1000	\/æ	1231	टा	Age a	at Initia	ation:			26	1 126	-ς				I	⊦ee	ding T	ımes	

Animal Source/Date Receiv			Feed	ding Ti	mes	
	(वर्षेत्रिका	0	24	48	72	96
Comments:	i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal	-		MI		-
	Organisms fed prior to initiation, circle one y / n)				>	

QC Check:

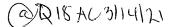
A(5 3/2/21

Final Review: AC3/14/2

Report Date: Test Code: 03 Mar-21 10:27 (p 1 of 1) 2102-S177 | 01-4759-0518

Acute Amphipod Survival Test Nautilus Environmental (CA) Analyst: Goast Filtered Water Dylwie Batch ID: 11-5232-2979 Test Type: Survival (96h) Start Date: EPA/600/R-99/064 (2000) 24 Feb-21 17:20 Protocol: Not Applicable Meneral Brine: Ending Date: 28 Feb-21 15:20 Species: Hyalella azteca Water **Duration:** Source: Aquatic Research Organisms, NH Age: 13d Sample ID: 11-8640-4152 Code: 21-0226 Client: Cardno Hawaii Sample Date: 20 Feb-21 14:00 Material: Stormwater Project: ADC Kekaha WQ Monitoring Receive Date: 23 Feb-21 08:50 Cardno Hawaii Source: Sample Age: 4d 3h (2.9 °C) WW-2 Station: **Comparison Summary** Analysis ID **Endpoint** NOEL LOEL TOEL **PMSD** TU Method 05-4075-0493 96h Survival Rate 100 >100 NΑ 38.3% 1 Equal Variance t Two-Sample Test **Test Acceptability** Analysis ID **Endpoint** Attribute Test Stat TAC Limits Overlap Decision 05-4075-0493 96h Survival Rate Control Resp 0.675 0.9 - NL Yes Below Acceptability Criteria 96h Survival Rate Summary C-% **Control Type** 95% LCL 95% UCL Min Std Dev CV% %Effect Count Mean Max Std Err 32.85% 0 4 0.9 0.0% Lab Control 0.675 0.3222 0.4 0.1109 0.2217 100 10.35% -37.04% 4 0.925 0.7727 1 8.0 1 0.04787 0.09574 96h Survival Rate Detail C-% **Control Type** Rep 1 Rep 3 Rep 4 Rep 2 0 8.0 Lab Control 0.4 0.6 0.9 100 0.9 8.0 1 1

@018 AC3714/DI


eport Date:	03 Mar-21 10:27 (p 1 of 1
st Code:	2102-S177 01-4759-051

							Test	Code:	210	2-S177 0°	1-4759-051
Acute Amphi	ipod Survival Te	est							Nautilu	s Environn	nental (CA
Analysis ID: Analyzed:	05-4075-0493 03 Mar-21 10			n Survival Ra				IS Version		.8.7	
Data Transfo		Zeta	, , , , , , , , , , , , , , , , , , , ,	Trials	Seed		PMSD	Test Res		· · · · · · · · · · · · · · · · · · ·	
Angular (Corr		NA NA	Alt Hyp	NA NA	NA		38.3%		6h survival r	ate	
			U - 1	14/1	11/1		00.070	1 45505 0	OII SUIVIVAIT		
Equal Varian	ice t Two-Samp	le Test									
Control	vs C-%		Test Stat	Critical		P-Value	P-Type	Decision	 		
_ab Control	100		-2.174	1.943	0.280 6	0.9636	CDF	Non-Sign	ificant Effect	!	
ANOVA Table	e										
Source	Sum Sq	uares	Mean Sq	uare	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.196325	5	0.196325	,	1	4.724	0.0727	Non-Sign	ificant Effect	t	
Error	0.249337		0.041556	31	6	_					
Total	0.445662	.9 —————			7						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
/ariances	Variance	Ratio F		2.849	47.47	0.4128	Equal Var				
Distribution	Shapiro	-Wilk W Noi	rmality	0.9512	0.6451	0.7229	Normal D	istribution			
96h Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.675	0.3222	1	0.7	0.4	0.9	0.1109	32.85%	0.0%
100		4	0.925	0.7727	1	0.95	8.0	1	0.04787	10.35%	-37.04%
Angular (Cor	rected) Transfo	rmed Sumi	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.9817	0.5871	1.376	0.9966	0.6847	1.249	0.124	25.26%	0.0%
100		4	1.295	1.061	1.529	1.331	1.107	1.412	0.07348	11.35%	-31.91%
Graphics						<u></u>			-		
10 E						3.0E-01 E		I			(
۵,9	Γ	٦	.//.			2.2E-01					•
QB -						Ē					
8 a7						1.5E-01				•	
Survival Ra	7779777	1			Centered	7.46-02					
28 ve					3	§ [
as E						0.0E+00			<u> </u>		
0.4				Reject Null	-	-7,4E-02					
0.3					•	Ē	,	*			
-						-1.5E-01					

C-46

Report Date: Test Code: 03 Mar-21 10:29 (p 1 of 1) 2102-S180 | 19-6241-0513

Acute Amphipod Survival Test Nautilus Environmental (CA) Analyst: @ Diluent: Batch ID: 04-6423-4557 Test Type: Survival (96h) Goast Filtered Water Start Date: 24 Feb-21 17:20 EPA/600/R-99/064 (2000) Protocol: Mineral Brine: Not Applicable Ending Date: 28 Feb-21 15:20 Species: Hyalella azteca water Aquatic Research Organisms, NH 13d Duration: Source: Age: Sample ID: 05-5743-4708 Code: 21-0227 Client: Cardno Hawaii Sample Date: 20 Feb-21 14:30 Material: Stormwater Project: ADC Kekaha WQ Monitoring Receive Date: 23 Feb-21 08:50 Source: Çardno Hawaii WW-3 Sample Age: 4d 3h (3.3 °C) Station: **Comparison Summary** Analysis ID TU **Endpoint** NOEL LOEL **TOEL PMSD** Method 17-2662-8913 96h Survival Rate 100 >100 NA 40.4% 1 Equal Variance t Two-Sample Test Test Acceptability Analysis ID **Endpoint** Attribute Test Stat **TAC Limits** Overlap Decision Below Acceptability Criteria 17-2662-8913 96h Survival Rate Control Resp 0.675 0.9 - NL Yes 96h Survival Rate Summary 95% UCL C-% **Control Type** Min Max CV% %Effect Count 95% LCL Std Err Std Dev Mean Lab Control 4 0.675 0.3222 0.4 0.9 0.1109 0.2217 32.85% 0.0% 1 -29.63% 100 4 0.875 0.6748 1 0.7 1 0.06292 0.1258 14.38% 96h Survival Rate Detail C-% **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 0 Lab Control 0.4 0.6 0.9 8.0 100 0.7 0.9 0.9 1

Report Date:

03 Mar-21 10:29 (p 1 of 1) 2102-S180 | 19-6241-0513

Test Code:

							1031	Oue.		2 0 .00	7-02-11-00-10
Acute Amphi	ipod Survival Te	st							Nautilu	s Environn	nental (CA)
Analysis ID: Analyzed:	17-2662-8913 03 Mar-21 10:2		•	Survival Ra ametric-Two				IS Version: cial Results		.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Corr	ected)	NA	C > T	NA	NA		40.4%	Passes 9	6h survival r	ate	
Equal Varian	ce t Two-Sample	e Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Lab Control	100		-1.608	1.943	0.294 6	0.9205	CDF		ificant Effect		
ANOVA Table	e										
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.118651	1	0.1186511		1 2.585		0.1590	Non-Sign	ificant Effect		
Error	0.2753662		0.0458943	7	6	_					
Total	0.394017	3			7						
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance			2.032	47.47	0.5751	Equal Var				
Distribution	Shapiro-\	Nilk W No	rmality	0.9568	0.6451	0.7787	Normal D	istribution			
96h Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.675	0.3222	1	0.7	0.4	. 0.9	0.1109	32.85%	0.0%
100		4	0.875	0.6748	1	0.9	0.7	1	0.06292	14.38%	-29.63%
Angular (Cor	rected) Transfor	med Sum	ma r y								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.9817	0.5871	1.376	0.9966	0.6847	1.249	0.124	25.26%	0.0%
100		4	1.225	0.9485	1.502	1.249	0.9912	1.412	0.08699	14.2%	-24.81%
Graphics				·							
70 -						3.06-01					_
E											•
0.9			7.7.6			2.2E-01					
a.s =-						1.5E-01			,	*	
£ 0.7	7//8///		<u> </u>		.	<u>.</u>			•/		
Surviva Ex					Centere	7.4E-02					
\$ 0.5					ŭ	0.0E+00			<u>/</u>		
E						ļ					
0.4				Reject NuT	=	-7.4E-02					
0.3						-1.5E-01	/				
0.2											
a1 =						-2.2E-01	/ •				
E					J	-3.0E-01					_
0.0	orc		100		-	-3.0E-01	-1.0	-0.5 Q.0	0.5	1.0	1.5
		C-%						Rankits			

96-hour Freshwater Acute Bioassay **Static-Renewal Conditions**

Water Quality Measurements & Test Organism Survival

Tech Initials Client: Cardno Test Species: H. azteca Start Date/Time 2/2/2021 1720 Sample ID: ADC Kehaha Stormwater Monitoring End Date/Time: 2/2//2021 /5 20 Sample Log-in No's.: 21 - 0226 , 21 - 0227 Dr Counts: Test No's.: 2102-5177 - 5180

Sample ID (100%)	Rep			ber o		•			nducti nhos/				Ter	npera (°C)	ture		Q?		lved ((mg/L	Oxyge .)	n			pH (units)	
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	Α	10	ìo	4	4	4	(40	193	188	203	199	w9	如	19.3	20.1	20.3	8.0	8.5	8.7	90	8.1	8.81	SUC	8.21	8,25	&.
	В	10		7	6	6			198					203					8.8					8.16		
	C	10	10	61	39	9																				
	D	10			ક	8											Q14		914		/>					<i>(</i> a)
WW-2	Α	10	63	Giz	20	10	GÓG	516	518	540	523	20,8	20:4	19.0	20.0	201	95	8.6	9.8	9.0	80	0.03	690	629	7.49	3.7
100%	В	10		03	П	9			531					50.1					8.5		7.9			7.54		775
	С	10		03		8																				
	D	10	1	9	4	10											O14		4							
WW-3	Α	10	Q13	थउ	Q۱۶	7	90	93	કુંલ	97	96	10.9	20:5	<u> </u> 9.2	20.1	202		84	4.5	9.0	7.9	o.01	664	630	6.81	6.7
100%	В	10	13	Ì	1	9			45					20.3				20.00V 20.00V	\$.6					7:29		
	С	10	П	П		10																				
	D	10	V	J	4	٩										. 5. 5.										
	Α								i					i					ì					i		
	В								f					f		E Y			f					f		
	С								10,7										- 15.15							
	D																									
	Α	,							i					i					i					i		
	В	-							f					f				E.v.	f					f		
	С																									
	D																									
	Α								i					i					i					i		
	В								f		e Mari			f					f					f		
	С										8.2												10.00			
	D																				range.					
	Α								i					i					i					i		
	В								f					f					f					f		
	С																							2		
	D																	2.55						437		
Initial Counts QC'd by: Initiated by:	-	1	- - -		•				En	viron	menta	al Chai	mber:		(\overline{C}							50.3450 to 2000C			*******
nimal Source/Date Received: ARO 2/24/21 Age at Initiation: 13 Hays												Feed	ding Ti	imes												
nimal Acclimation C	tualifie	ers (d	circle	all th	•		- (Q		Q23		224	6	<u> </u>	J					0	24	48	72	96
																			-		AM:			6575	ي. ا	-
mments:	-	i = ir	nitial r	eading	j in fre	esh te	st solu	tion, f	= final	readi	ng in t	est cha	amber	prior t	o rene	wai					PM:			-12		

(8) 000 8 1/2/21 Final Review: +23/14/2/ A(5 3/2/2) QC Check:

Appendix B

Sample Check-In Information

Enthalpy Analytical 4340 Vandever Avenue San Diego, CA 92120

Client: (arcino		Tests Performed:	Acute S	WVIVA	Sample Description	ns:			
Project: ADC Kekaha St		Test ID No.(s):	2102-5172	to 5180	21 15 MIN - 1 01	ilo one	andles.	nan	nearly debits
Sample ID:	1) DW-1/400-	2) WW-2	3 WW-3	4)	3) days assings	mye si	JIII 3	odo	Clight debi
Log-in No. (21-xxxx):		6226	0227		4)	- (VV 'Y)	V I II	V	dubn's debi
Sample Collection Date & Time:			1 / 1 / 1111			\sim			
Sample Receipt Date & Time:		3/23/21 0850	723/21 0850		COC Complete?	(Y)) N		
Number of Containers & Container Type:		2 41 cubi	2 4L cubi						
Approx. Total Volume Received (L):		MI	~86		Filtration? Y	(N)			
Check-in Temp (°C)	24	2.9	7.3		Initials: 1)	2)	3)	4)	
Temperature OK? ¹	Ŷ N	Ý N	Ý N	YN	Pore Size:				
DO (mg/L)	9.7	9.5	9.4		Organism	s o	r	Debris	3
pH (units)	7.46	5.83	5.79						
Conductivity (μS/cm)	1500	513	90						
Salinity (ppt)	1.4	0.2	0.1		pH Adjustment?	<u>y (N)</u>			
Alkalinity (mg/L) ²		7	13			l 2	3 4	5	6
Hardness (mg/L) ^{2, 3}	366	50	34		Initial pH:				
Total Chlorine (mg/L)	0.05	60.02	(A)		Amount of HCI added:				
Technician Initials	HH	HH	TH		Final pH:				
Freshwater Tests:							_		
Control/Dilution Water Source: 8:2	Culligan Othe	er:	Alkalinity: 90	Hardness: <u>& \$</u>	Cl₂ Adjustment?	<u> Y</u>	(M)	·	
Additional Control? Y N	=		Alkalinity:	Hardness:	F	1 2	3 4	5	6
Marine Tests:					Initial Free Cl _{2:}				
Control/Dilution Water Source: LAB SW	ART SW Ot		Alkalinity: 175	Salinity: 30POT	STS added:				
Additional Control? YN	= Lab Sn	<u> </u>	Alkalinity: 112	_ Salinity: <u>30 P</u> P	Final Free Cl ₂ :				
Sample Salted w/ artificial salt? Y N	If yes, target ppt and	source?	_		Sample Aeration?	Y	(B)		
Sample salted w/brine? Y N	If yes, target ppt?					1 2	3 4	5	6
					Initial D.O.				
Notes ¹ Temperature for sample mus	t be 0-6°C if received >2	4 hours past collection ti	me.		Duration & Rate				
² mg/L as CaCO3, ³ Meas	ured for freshwater sa	mples only, NA = Not	Applicable		Final D.O.				
Additional Comments (A) VIST VILEON	sured du	Subsamples For Additional Chemistry Required? YN NH3 Other							
QC Check: A(5 3 2/2)					Tech Initials _. Final	Review:	AC 3	1141	121

Appendix C

Chain-of-Custody Form

Enthalpy Analytical - Environmental Toxicology

21-0225 to -022

4340 Vandever Avenue San Diego, CA 92120 Phone 858.587.7333 infoSD@enthalpy.com

Date__2/22/2021__ Page_1_ of _1_ Sample Collection By: **ANALYSES REQUIRED** Enthalpy Matrix Same as Report to Report to: Invoice To: Codes: Receipt Temperature (°C) Company Company Cardno-GS G = Grab **Address** Address 737 Bishop St Suite 3050 C = Compositepromelas 96-hr Acute Survival Survival Survival 96-hr Acute Survival City/State/Zip City/State/Zip Honolulu, HI 96734 Survival dubia 96-hr Acute Survival FW = Freshwater Contact Contact Benjamin Berridge SW = Seawater berylina 96-hr Acute Phone 808-476-0067 Phone Sed = Sediment affinis 96-hr Acute bahia 96-hr Acute Email Email benjamin.berridge@cardno-gs.com STRM = Stormwater GW = Groundwater azteca SAMPLE MATRIX CODE Container WW = Wastewater SAMPLE ID COMMENTS (FW, SW, Sed, Type Date Time Qty Type Σ. 4 STRM, GW, WW, O) σ, Ú ĭ. O = Other (specify) (G or C) Marine Species 17:45 HST Х Х Х DW-1/WW-1 G 2.5 Gal Plastic 2/20/21 2/20/21 WW-2 12:00 HST G STRM 2.5 Gal Plastic Χ Χ Χ Freshwater Species WW-3 2/20/21 12:30 HST G STRM 2.5 Gal Plastic Х Χ Χ Freshwater Species 2) RECEIVED BY (COURIER) **PROJECT INFORMATION** SAMPLE RECEIPT 1) RELINQUISHED BY (CLIENT) (Signature) **ADC Water Quality** Total No. of Containers **Project Name:** 14:00 Monitoring 0 (Printed Name) (Date) PO No.: Received Good Condition? 2-22-2021 (Company) Shipped Via: **Matches Test Schedule?** SPECIAL INSTRUCTIONS/COMMENTS: 4) RECEIVED BY (LABORATORY) 3) RELINQUISHED BY (COURIER) -ramples received partially frozen a temps measured in sungate cup after thawed. (Signature) (Date) (Printed Name)

Company)

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted.

Shaded areas are for lab use only

10

Report turn-around-time varies depending on length of test; please inquire with your project manager.

http://enthalpy.com/environmental-toxicology-2/

Appendix D

Qualifier Code Glossary

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test organisms received at a <u>temperature</u> greater than 3°C outside the recommended test temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15

Appendix E

Reference Toxicant Test Control Charts

Report Date:

03 Mar-21 13:44 (1 of 1)

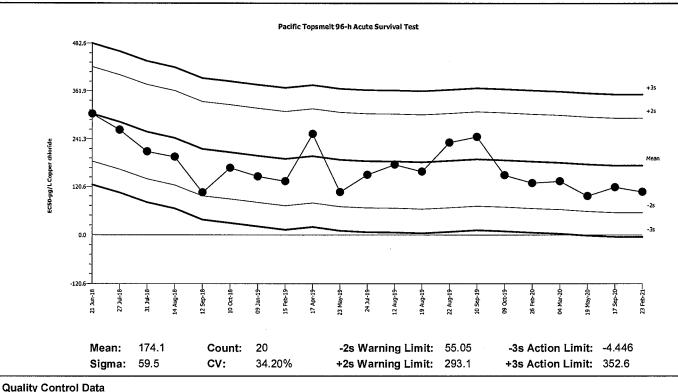
Pacific Topsmelt 96-h Acute Survival Test

Nautilus Environmental (CA)

Test Type: Survival (96h)

Organism: Atherinops affinis (Topsmelt)

Material:


Copper chloride

Protocol: EPA/821/R-02-012 (2002)

Endpoint: 96h Survival Rate

Source:

Reference Toxicant-REF

	Quality Control Data										
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2018	Jun	21	17:15	304.1	130	2.184	(+)		01-0576-9762	09-0246-7639
2		Jul	27	15:45	263.9	89.8	1.509			14-8822-7369	11-4350-5971
3			31	16:30	209.6	35.49	0.5965			19-5107-0005	20-6864-5330
4		Aug	14	16:00	196.4	22.28	0.3745			15-6494-9229	17-8173-7294
5		Sep	12	14:00	105.6	-68.48	-1.151			16-1211-7168	05-2683-6884
6		Oct	10	16:55	168.2	-5.921	-0.09951			03-4460-7421	02-8297-4115
7	2019	Jan	9	16:00	146.4	-27.69	-0.4654			16-8541-8400	01-0716-9806
8		Feb	15	16:10	134	-40.1	-0.674			08-0425-5661	18-0762-3864
9		Apr	17	17:50	253.5	79.45	1.335			05-1475-1452	18-1058-7085
10		May	23	15:30	106.6	-67.47	-1.134			03-2154-6851	19-3512-2662
11		Jul	24	16:25	150.4	-23.69	-0.3982			02-4547-9337	03-4444-2456
12		Aug	12	16:15	176.5	2.373	0.03988			05-6999-0080	19-2452-0933
13			19	19:30	158.7	-15.36	-0.2581			00-1616-6988	16-4823-3084
14			22	16:45	232	57.93	0.9735			14-6253-4066	09-6589-6472
15		Sep	10	11:15	246.2	72.13	1.212			01-3190-7470	00-5901-5932
16		Oct	9	15:40	149.6	-24.5	-0.4118			12-2483-9958	16-7314-6828
17	2020	Feb	26	15:20	129.7	-44.42	-0.7465			04-4275-3329	19-1366-8841
18		Mar	4	17:15	134.1	-40.02	-0.6726			09-0186-0501	09-2347-5750
19		May	19	17:20	96.59	-77.51	-1.303			09-8977-8612	01-6220-7123
20		Sep	17	14:25	118.9	-55.18	-0.9274			07-7701-0607	03-4458-7869
21	2021	Feb	23	16:10	107.2	-66.92	-1.125			15-2183-5128	00-7227-8818

CETIS QC Plot Report Date: 01 Mar-21 12:07 (1 of 1)

Inland Silverside 96-h Acute Survival Test

Sigma:

47.88

CV:

26.10%

Nautilus Environmental (CA)

Test Type: Survival (96h)

Protocol: EPA/821/R-02-012 (2002)

Organism: Menidia beryllina (Inland Silverside)

Endpoint: 96h Survival Rate

Material: Copper chloride

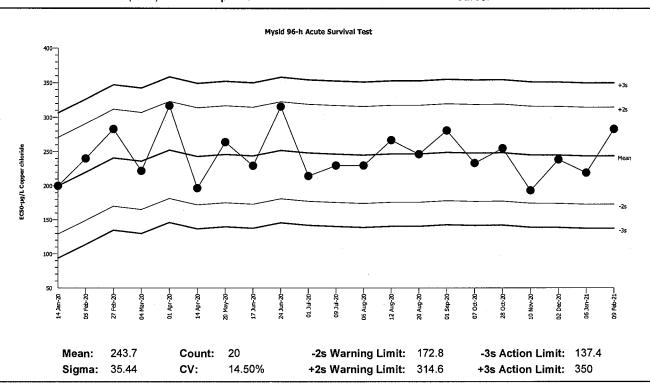
Reference Toxicant-REF Source:

+3s Action Limit: 326.8

Quality Control Data											
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2018	Feb	22	17:20	266.7	83.51	1.744			21-2244-9573	15-2512-9013
2		Mar	7	16:25	189.3	6.15	0.1284			06-3891-7579	03-5981-6406
3			28	17:15	141.4	-41.78	-0.8726			18-3798-9831	05-5342-2351
4		Jun	14	14:35	200	16.8	0.3509			01-9952-0614	00-3575-1747
5		Jul	17	14:30	214.4	31.15	0.6507			11-1445-3115	12-3693-5336
6		Aug	22	16:25	237.8	54.64	1.141			08-6172-7555	12-4329-0617
7	2019	Jan	3	16:50	207.9	24.65	0.5149			16-0506-4055	11-1190-1934
8		Feb	21	16:05	143.5	-39.72	-0.8296			10-4228-2556	08-7111-9529
9			27	16:25	135.8	-47.43	-0.9906			14-0947-0420	00-4247-8099
10		May	9	19:10	263.9	80.7	1.685			03-9779-6453	09-3747-7536
11		Jun	4	14:50	177.8	-5.445	-0.1137			00-2136-1210	01-4264-5145
12		Jul	1	15:55	223.6	40.42	0.8441			04-4319-5710	17-4098-1084
13		Oct	30	14:45	114.9	-68.33	-1.427			05-0159-0485	07-6888-5964
14		Dec	11	16:30	156.9	-26.28	-0.5489			11-0566-6524	14-4935-0865
15	2020	Feb	27	17:15	136.4	-46.84	-0.9784			00-2639-4829	10-5059-8408
16		Aug	6	16:00	254.9	71.71	1.498			13-3377-6823	09-5433-0150
17			12	15:20	148.4	-34.84	-0.7277			02-5307-3356	11-5066-6205
18		Sep	2	15:25	141.4	-41.78	-0.8726			09-8373-9144	18-7650-2455
19			17	14:45	172	-11.24	-0.2348			07-8442-4358	02-9347-5784
20		Oct	28	16:35	136.6	-46.6	-0.9732			10-9446-3954	10-4215-8111
21	2021	Feb	24	17:30	218.2	34.99	0.7308		•	11-4316-4077	02-1492-4727

+2s Warning Limit:

278.9


Report Date: 15 Feb-21 09:26 (1 of 1)

Mysid 96-h Acute Survival Test

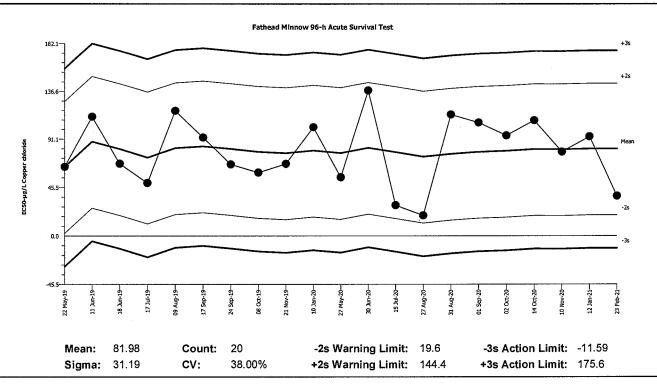
Nautilus Environmental (CA)

Test Type: Survival (96h) Organism: Americamysis bahia (Opossum Shri Material: Copper chloride

Protocol: EPA/821/R-02-012 (2002) Endpoint: 96h Survival Rate Source: Reference Toxicant-REF

Quality Control Data											
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2020	Jan	14	17:10	200	-43.7	-1.233			09-3242-6322	15-8924-0479
2		Feb	5	15:10	239.9	-3.754	-0.1059			06-4700-0567	16-3509-2167
3			27	17:10	282.8	39.14	1.104			16-4090-2608	06-8726-8298
4	•	Mar	4	16:40	221.9	-21.79	-0.6147			08-2404-4838	16-3243-0975
5		Apr	1	14:40	316.8	73.13	2.063	(+)		01-5241-6442	08-6803-0408
6			14	15:50	196.6	-47.14	-1.33			05-8944-6740	12-4161-6662
7		May	20	15:18	263.9	20.2	0.57			17-7816-4145	16-8137-5941
8		Jun	17	17:00	229.4	-14.3	-0.4036			17-4088-0296	03-9150-0813
9			24	16:50	315.6	71.86	2.028	(+)		18-0749-6976	17-0667-6625
10		Jul	1	15:25	214.4	-29.35	-0.828			18-2892-4402	15-7918-7101
11			9	17:20	229.7	-13.96	-0.3939			03-4895-5452	20-8273-1437
12		Aug	6	16:45	229.7	-13.96	-0.3939			12-3621-4083	04-5216-6972
13			12	15:00	266.7	23.01	0.6492			09-6865-4747	15-4661-4894
14			20	15:10	246.2	2.529	0.07136			11-8933-3936	07-7149-7380
15		Sep	1	17:40	280.9	37.21	1.05			15-1725-8445	02-3217-4494
16		Oct	7	16:50	233.3	-10.39	-0.2933			10-9302-4751	10-8015-5811
17			28	17:30	254.9	11.21	0.3164			05-5138-7579	10-2662-3199
18		Nov	10	16:15	193.2	-50.51	-1.425			18-2802-6809	21-3845-2247
19		Dec	2	16:15	238.4	-5.252	-0.1482			05-6239-9486	13-2389-5949
20	2021	Jan	6	15:40	219.1	-24.6	-0.6942			03-0517-8333	01-7272-9774
21		Feb	9	16:35	282.8	39.14	1.104			18-0066-8687	07-5637-1896

Report Date: 03 Mar-21 12:18 (1 of 1)


CETIS QC Plot

Fathead Minnow 96-h Acute Survival Test

Nautilus Environmental (CA)

Test Type: Survival (96h) Organism: Pimephales promelas (Fathead Minn Material: Copper chloride

Protocol: EPA/821/R-02-012 (2002) Endpoint: 96h Survival Rate Source: Reference Toxicant-REF

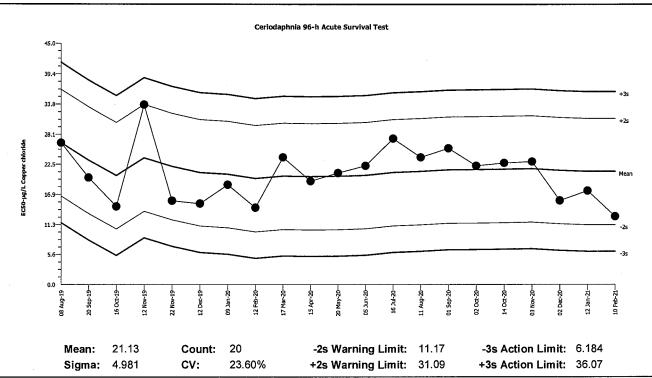
Quality Control Data											
Poin	t Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2019	May	22	15:55	64.79	-17.19	-0.551	,		02-1759-3419	15-3388-9003
2		Jun	11	17:20	112.3	30.35	0.9732			16-3477-7401	15-3155-7444
3			18	16:00	67.74	-14.24	-0.4566			19-9791-9157	01-4134-1153
4		Jul	17	16:00	49.72	-32.26	-1.034			03-2107-5289	02-7115-7044
5		Aug	9	16:05	118	36	1.154			14-8182-5304	09-2863-4324
6		Sep	17	16:35	92.53	10.55	0.3383			08-1980-7492	14-4713-0442
7			24	16:50	67.15	-14.83	-0.4754			08-2287-5941	02-7891-5321
8		Oct	8	16:00	59.44	-22.54	-0.7226			04-9867-1678	19-8711-6972
9		Nov	21	16:35	67.63	-14.35	-0.46			04-2957-0529	12-8998-8134
10	2020	Jan	10	17:05	102.3	20.28	0.6503			16-9789-6682	06-6624-2910
11		May	27	16:35	55.05	-26.93	-0.8634			16-5231-1352	08-0130-7710
12		Jun	30	16:25	137.6	55.57	1.782			20-8582-5673	01-3539-9114
13		Jul	15	16:00	28.87	-53.11	-1.703			02-8717-8563	15-0846-2862
14		Aug	27	11:55	19.21	-62.77	-2.012	(-)		21-1958-4827	04-0829-1325
15			31	12:20	114.5	32.52	1.043			04-4264-5870	08-1199-0475
16		Sep	1	18:00	106.8	24.84	0.7964			05-5925-4870	11-8222-6308
17		Oct	2	14:35	94.56	12.58	0.4033			10-6788-7581	10-0094-1709
18			14	15:55	108.9	26.93	0.8634			16-9476-4319	04-8332-8963
19		Nov	10	15:50	79.05	-2.93	-0.09394			10-0925-3953	05-0925-4459
20	2021	Jan	12	16:10	93.54	11.56	0.3706			10-2818-5435	19-4959-1498
21		Feb	23	16:00	37.5	-44.48	-1.426			00-7897-7348	07-5099-8101

Report Date:

15 Feb-21 09:38 (1 of 1)

Ceriodaphnia 96-h Acute Survival Test

Nautilus Environmental (CA)

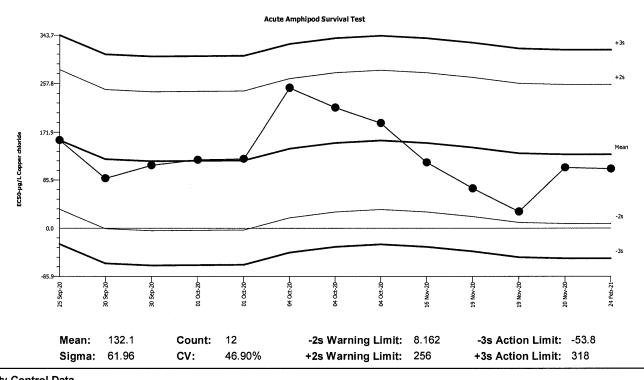

Test Type: Survival (96h)
Protocol: EPA/821/R-02-012 (2002)

Organism: Ceriodaphnia dubia (Water Flea)

Endpoint: 96h Survival Rate

Material: Copper chloride

Source: Reference Toxicant-REF



Quality Control Data											
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2019	Aug	8	14:50	26.54	5.412	1.086			16-9025-1148	02-0239-3729
2		Sep	20	18:20	20	-1.13	-0.2269			02-2453-0660	18-4748-7978
3		Oct	16	16:25	14.64	-6.489	-1.303			20-8293-2680	01-2609-4806
4		Nov	12	15:30	33.64	12.51	2.511	(+)		08-1275-5287	19-9898-2932
5			22	15:30	15.69	-5.438	-1.092			09-3327-8139	04-3248-6422
6		Dec	12	15:55	15.16	-5.973	-1.199			07-4521-5396	10-7315-8492
7	2020	Jan	9	15:20	18.66	-2.469	-0.4958			09-5261-4370	19-5681-9900
8		Feb	12	16:30	14.4	-6.734	-1.352			18-8330-6387	13-9776-1421
9		Mar	17	14:55	23.78	2.654	0.5329			18-8008-6095	05-6082-0450
10		Apr	15	16:10	19.32	-1.811	-0.3636			12-1338-7947	04-4538-1629
11		May	20	13:45	20.84	-0.2905	-0.05832			11-5303-0354	09-0756-9549
12		Jun	5	16:00	22.19	1.061	0.2131			14-1156-1724	03-6374-7457
13		Jul	16	12:45	27.32	6.191	1.243			07-7357-5721	02-9542-5069
14		Aug	11	14:10	23.78	2.654	0.5329			10-2942-2946	03-2270-9930
15		Sep	1	16:40	25.49	4.361	0.8756			08-0309-6057	08-6836-5081
16		Oct	2	13:20	22.19	1.061	0.2131			17-6681-3422	06-7614-6503
17			14	14:35	22.72	1.594	0.32			16-2893-4303	19-0938-0140
18		Nov	3	15:55	22.97	1.844	0.3702			21-1104-6548	14-3781-8992
19		Dec	2	15:10	15.69	-5.438	-1.092			05-6044-5446	17-1353-5910
20	2021	Jan	12	15:20	17.51	-3.618	-0.7264			04-7387-5530	19-1299-4588
21		Feb	10	13:55	12.75	-8.384	-1.683			08-3148-4658	06-6989-2045

CETIS QC PlotReport Date: 03 Mar-21 13:56 (1 of 1)

Acute Amphipod Survival Test Test Type: Survival (96h) Organism: Hyalella azteca (Freshwater Amphip Material: Copper chloride

Protocol: EPA/821/R-02-012 (2002) Endpoint: 96h Survival Rate Source: Reference Toxicant-REF

Quality Control Data											
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2020	Sep	25	13:40	157.9	25.76	0.4158			16-9081-6764	18-6814-9087
2			30	15:15	88.77	-43.33	-0.6993			07-1981-4343	10-9026-6931
3			30	15:50	112.2	-19.85	-0.3204			11-9201-5159	11-6178-4756
4		Oct	1	14:50	122.2	-9.881	-0.1595			12-4287-6345	20-3445-2394
5			1	15:30	123.9	-8.17	-0.1319			17-5501-7242	20-6772-8270
6			4	14:00	250.3	118.2	1.907			13-1530-9745	13-5170-9478
7			4	14:35	215.4	83.32	1.345			16-7937-3453	09-9493-0420
8			4	15:15	188.3	56.16	0.9063			02-7905-1968	09-8618-9853
9		Nov	16	14:55	117.6	-14.55	-0.2348			05-7327-2673	01-8079-7741
10			19	16:00	70.71	-61.39	-0.9908			00-8858-0066	12-7185-4398
11			19	16:40	29.55	-102.6	-1.655			01-8113-8271	17-2113-7551
12			20	15:10	108.2	-23.9	-0.3858			08-5954-7214	01-8663-5204
13	2021	Feb	24	18:28	105.9	-26.15	-0.4221			17-5815-0110	10-9701-1209

000-089-187-3 CETIS™ v1.8.7.20

CLIENT: Cardno-GS

737 Bishop Street, Suite 3050

Honolulu HI 96813

ATTENTION: Benjamin Berridge

Benjamin.Berridge@cardno-gs.com

FILE No.:

1494

REPORT DATE:

02/24/2021

PAGE:

1 of 1

AECOS REPORT OF RESULTS

SAMPLE TYPE:

Stormwater

AECOS LOG No.:

41960

DATE SAMPLED: 02/20/2021 DATE/TIME RECEIVED: 02/22/2021

SAMPLER: B. Berridge

ANALYTE (UNITS)	Total Suspended Solids (mg/L)		
Analysis Date/ Analyst ID ⇨	02/22-23/2021 ml		
SAMPLE ID ₽			
DW-3	9.2		
U-3 / WW-4	44.3		
D-3	28.2		
DW-2	20.0		
D-6	32		
U-1 / WW-7	1210		
D-8	22		
D-7	940		
DW-1 / WW-3	89.4		
I-1	42.8		
D-2	8.4		
E-2	9.8		
D-4	24.8		
D-5	11		
WW-2	184		
WW-3	2000		
W-1	0.8		
W-2	1.0		
WW-3 Dup	2100		
U-2 / WW-5 WET	77		

J. Mello, Laboratory Director

AECOS, Inc.

45-939 Kamehameha Highway Suite 104 Kaneohe, Oahu, HI 96744 Tel: (808) 234-7770 Fax: 234-7775

 1
041960
LOG NUMBER

CHAIN OF CUSTODY FORM

	P
Ben Berideya	800-04 HO -008
•	
CONTACT:	PHONE No.:

Purchase Order No.:

also,	
Belli	
A S	١

RUSH	☐ SEE REVERSE	SPECIAL INSTRUCTIONS
		_

			CAMPI ED	ED				1
	Ď	CAT III TO TAKE	OTT A CT	TIME	SAMPLE TYPE	CONTAINER(S)	PEOTIESTED ANALYSES	PRESERVATION
	Σ	M. SAIMITHE ID	DAID	-		(~)	INTEGRATION THE THEORY	
_	7	S-MO	2/20/21	51:11	N	N. R. C.	7357	
7	>	V-3/00111-24		Shihl		,		
က	>	6-3		15:10				
4	>	2-MG		15:30				
ю	>	9-0		16:00				
ဗ		F-WW/1-0		18.30				
7	>	8-9		16.50				
8	5	£-Q		17:30				
6	>	DW-1/2014-3		54.41				
10	>	1-1		18:30		Od Sv MaOd aixod v aix	A DATED SIGNATURE OF PERSON COLLECTING THE	ING THE
CLIE. SAME	VIS PE	CLIENTS PROVIDING SAMPLES TO THE LABORATORY SHOULD COMPLETE AS SAMPLE MUST BE ENTERED BELOW 4. INFORMATION REQUESTED IN SEADE	ABORATORY S NFORMATION	ROULD COM	IN SHADED BOXES A	ED BOXES ABOVE TO BE FILLED IN BY THE LABORATORY. DATE DATE	TODA MODUL	DATE

DATE 2/22 SAMPLED BY: Gen Gental RELINQUISHED COMMENTS: PRINT NAME. SIGNATIORE

TIME DATE SIGNATURE SHOWATURE OF INITIALS RELINQUISHED: RECEIVED BY:

	TIME 08 5.C.	200		
. { 	DATE		TIME	
RECEIVED FOR LABORATORY.	Agin Normania	KELLINGUISHEU.	SIGNATURE OR INITIALS	DISPOSAL:

return sample to client \square

PRECAUTIONS:

USE (BLACK) INK

ノールート

PROJECT FILE No. LOG NUMBER [1	1
	_			4
			Q a	
	1		1190	٢
PROJECT FILE No. LOG NUMBER [A C	
PROJECT FILE No. LOG NUMBER			9	
	PROJECT	FILE No.	LOG NUMBER	

CHAIN OF CUSTODY FORM

	45-939 Kamehameha Highway Suite 104	PROJECT FILE No.	
	Kaneone, Oanu, III <i>9</i> 0/44 Tel: (808) 234-7770 Fax: 234-7775	LOG NUMBER	[@ 41960]
			ba Zafd
LIENT:	CONTACT:		RUSH
DDRESS:	CALL DA PHONE No.: 1		☐ SEE REVERSE
	Purchase Order No.:		SPECIAL INSTRUCTIONS
	SAMPLED		T. C. Ditty at 1 control of 100 cont

ES SAMPLE ID DATE TIME SAMPLE TYPE CONTAINEES REQUESTED ANALYSES PRESENTED ON	_																
DATE	PRESERVATION										THU STANK		447 48	000 000 000 000 000 000 000 000 000 00		Ħ	
DATE TIME SAMPL. 2/20/21 10:40 11:30 11:30 11:30 12:00 12:30 13:35 14:00 12:30 14:00 12:30 14:00 12:30 15:30 15:30 15:30 16:3	FED ANALYSES	382									SASSES OF DEPOSITION OF DEPOSION COLLEGE	AND DATED SIGNALONE OF LARGON OF	ECEIVED FOR LABORATORY:				DISPOSAL:
DATE TIME SAMPL. 2/20/21 10:40 11:30 11:30 11:30 11:30 12:30												POSSIBLE, NOTE IN BY THE LABOR	ATE SOME SE	WE		11	
DATE TIME SAMPL. 2/20/21 10:40 11:30 11:30 11:30 11:30 12:30	CONTAINER(S)	AKOBI I										BOVE FORM AS I	ľΩ		, i		
ET SAMPLE ID DATE TIME		7										PLETE AS MUCH OF THE A IN SHADED BOXES ABOVI	RECEIVED BY:		ELINQUISHED:	chapure or intracs	RECAUTIONS:
SAMPLE ID DATE	TIME	04:01	11:00	11:30	07:11	12:00	08:21	13'15	13:30	12.30	14:00	OULD COM	h-l-1	V Sartas			
SAMPLE ID \(\lambda \) \(\l	DATE	2/20/21	a managam									LABORATORY SH INFORMATION R	DATE 7/22	7 > 02	DATE NOS	TIME 8:50	
AMPLE NA CONTINE		ŀ	2-3	H-Q .	5-0	11111-2	WW-3	1-8	2-19		U-2/ww-swet	PROVIDING SAMPLES TO THE I	ED BY:	•		大人大人	
- 1 - 10 10 10 10 10 10 16 16 16 16 16 16 16 16 16 16 6 6 6	Ŋ	>	2	3	4	2	9	>	> 8	>	10 /	LIENTS	AMPL	RENT NAM	SELING	GNATURE	MMO

USE (BLACK) INK

RETURN SAMPLE TO CLIENT