

Client: Stantec-GS Address: 737 Bishop St., Ste. 3050 Honolulu, HI 96813 Attn: Benjamin Berridge Work Order:WDJ1823Project:ADC Water Quality MonitoringReported:12/18/2023 07:51

Analytical Results Report

Sample Location: Lab/Sample Number: Date Received: Matrix:	WW-3 WDJ1823-01 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23 (09:30					
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier	
Inorganics									
TSS	73.0) mg/L			10/27/23 19:45	EAF	EPA 160.2		
Metals by ICP-MS									
Arsenic	0.0008	306 mg/L	0.000140	0.00100	12/5/23 17:37	JLG	EPA 200.8	J	
Mercury									
Mercury	<0.07	10 ug/L	0.0710	0.100	11/16/23 14:24	JLG	EPA 245.1		
Semivolatiles									
Atrazine	<0.0	5 ug/L	0.0500	0.100	11/20/23 22:42	MAH	EPA 625.1		
Chlorpyrifos	<0.0	5 ug/L	0.0500	0.100	11/20/23 22:42	MAH	EPA 625.1		
Metolachlor	<0.05	00 ug/L	0.0500	0.100	11/20/23 22:42	MAH	EPA 625.1		
Permethrin	<0.2	50 ug/L	0.250	0.500	11/20/23 22:42	MAH	EPA 625.1		
Surrogate: Terphenyl-d14		102%	25-13	5	11/20/23 22:42	МАН	EPA 625.1		
Diesel	<0.0!	52 mg/L	0.0520	0.0800	11/6/23 15:12	ARY	NWTPH-HCID		
Gasoline	<0.10	50 mg/L	0.160	0.400	11/6/23 15:12	ARY	NWTPH-HCID		
Lube Oil	0.072	26 mg/L	0.0460	0.0800	11/6/23 15:12	ARY	NWTPH-HCID	J	
Mineral Oil	<0.16	50 mg/L	0.160	0.400	11/6/23 15:12	ARY	NWTPH-HCID		
Surrogate: n-Hexacosane			50-150	 7	11/6/23 15:12	ARY	NWTPH-HCID		

Sample Location: Lab/Sample Number: Date Received: Matrix:	WW-6 WDJ1823-02 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23	09:45				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	400	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.0011	.6 mg/L	0.000140	0.00100	12/5/23 17:39	JLG	EPA 200.8	
Mercury								
Mercury	<0.071	l0 ug/L	0.0710	0.100	11/16/23 14:26	JLG	EPA 245.1	
Semivolatiles								
Diesel	<0.05	2 mg/L	0.0520	0.0800	11/6/23 16:07	ARY	NWTPH-HCID	
Gasoline	<0.16	0 mg/L	0.160	0.400	11/6/23 16:07	ARY	NWTPH-HCID	
Lube Oil	0.074	9 mg/L	0.0460	0.0800	11/6/23 16:07	ARY	NWTPH-HCID	J
Mineral Oil	<0.16	0 mg/L	0.160	0.400	11/6/23 16:07	ARY	NWTPH-HCID	
Surrogate: n-Hexacosane	68	3.9%	50-15	0	11/6/23 16:07	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	E-1 WDJ1823-03 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23	10:30				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	33.0	0 mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.001	.27 mg/L	0.000140	0.00100	12/5/23 16:55	JLG	EPA 200.8	
Mercury								
Mercury	<0.07	710 ug/L	0.0710	0.100	11/16/23 14:03	JLG	EPA 245.1	
Semivolatiles								
Atrazine	<0.0)5 ug/L	0.0500	0.100	11/20/23 23:09	MAH	EPA 625.1	
Chlorpyrifos	<0.0)5 ug/L	0.0500	0.100	11/20/23 23:09	MAH	EPA 625.1	
Metolachlor	<0.05	500 ug/L	0.0500	0.100	11/20/23 23:09	MAH	EPA 625.1	
Permethrin	<0.2	50 ug/L	0.250	0.500	11/20/23 23:09	MAH	EPA 625.1	
Surrogate: Terphenyl-d14		106%	25-13	5	11/20/23 23:09	МАН	EPA 625.1	
Diesel	<0.0	52 mg/L	0.0520	0.0800	11/6/23 17:03	ARY	NWTPH-HCID	
Gasoline	<0.1	60 mg/L	0.160	0.400	11/6/23 17:03	ARY	NWTPH-HCID	
Lube Oil	0.15	59 mg/L	0.0460	0.0800	11/6/23 17:03	ARY	NWTPH-HCID	
Mineral Oil	<0.1	60 mg/L	0.160	0.400	11/6/23 17:03	ARY	NWTPH-HCID	
Surrogate: n-Hexacosane	٤	39.9%	50-15	0	11/6/23 17:03	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	E-1 DUP WDJ1823-04 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23	10:35				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	15.3	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.0012	25 mg/L	0.000140	0.00100	12/5/23 17:02	JLG	EPA 200.8	
Mercury								
Mercury	<0.07	LO ug/L	0.0710	0.100	11/16/23 14:11	JLG	EPA 245.1	
Semivolatiles								
Atrazine	<0.05	5 ug/L	0.0500	0.100	11/20/23 23:36	MAH	EPA 625.1	
Chlorpyrifos	<0.05	5 ug/L	0.0500	0.100	11/20/23 23:36	MAH	EPA 625.1	
Metolachlor	<0.050	00 ug/L	0.0500	0.100	11/20/23 23:36	MAH	EPA 625.1	
Permethrin	<0.25	0 ug/L	0.250	0.500	11/20/23 23:36	MAH	EPA 625.1	
Surrogate: Terphenyl-d14	1	00%	25-13	5	11/20/23 23:36	МАН	EPA 625.1	
Diesel	<0.05	2 mg/L	0.0520	0.0800	11/6/23 19:48	ARY	NWTPH-HCID	
Gasoline	<0.16	0 mg/L	0.160	0.400	11/6/23 19:48	ARY	NWTPH-HCID	
Lube Oil	0.119) mg/L	0.0460	0.0800	11/6/23 19:48	ARY	NWTPH-HCID	
Mineral Oil	<0.16	0 mg/L	0.160	0.400	11/6/23 19:48	ARY	NWTPH-HCID	
Surrogate: n-Hexacosane	75	5.6%	50-15	0	11/6/23 19:48	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	D-2 WDJ1823-05 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23 (09:40				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	37.5	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.024	1 mg/L	0.000140	0.00100	12/5/23 17:05	JLG	EPA 200.8	
Mercury								
Mercury	<0.07	10 ug/L	0.0710	0.100	11/16/23 14:13	JLG	EPA 245.1	
Semivolatiles								
Diesel	<0.05	52 mg/L	0.0520	0.0800	11/6/23 20:43	ARY	NWTPH-HCID	
Gasoline	<0.16	50 mg/L	0.160	0.400	11/6/23 20:43	ARY	NWTPH-HCID	
Lube Oil	<0.046	60 mg/L	0.0460	0.0800	11/6/23 20:43	ARY	NWTPH-HCID	
Mineral Oil	<0.16	60 mg/L	0.160	0.400	11/6/23 20:43	ARY	NWTPH-HCID	
Surrogate: n-Hexacosane	7.	4.6%	50-150	0	11/6/23 20:43	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	D-3 WDJ1823-06 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23	09:22				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	51.0	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.0016	4 mg/L	0.000140	0.00100	12/5/23 17:07	JLG	EPA 200.8	
Mercury								
Mercury	<0.071	.0 ug/L	0.0710	0.100	11/16/23 14:34	JLG	EPA 245.1	
Semivolatiles								
Diesel	0.276	mg/L	0.0520	0.0800	11/6/23 21:38	ARY	NWTPH-HCID	
Gasoline	<0.16	0 mg/L	0.160	0.400	11/6/23 21:38	ARY	NWTPH-HCID	
Lube Oil	0.0578	3 mg/L	0.0460	0.0800	11/6/23 21:38	ARY	NWTPH-HCID	J
Mineral Oil	<0.16	0 mg/L	0.160	0.400	11/6/23 21:38	ARY	NWTPH-HCID	
Surrogate: n-Hexacosane	88	8.6%	50-15	0	11/6/23 21:38	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	D-4 WDJ1823-07 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23	09:03				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	17.0	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.0024	6 mg/L	0.000140	0.00100	12/5/23 17:09	JLG	EPA 200.8	
Mercury								
Mercury	<0.071	0 ug/L	0.0710	0.100	11/16/23 14:36	JLG	EPA 245.1	
Semivolatiles								
Diesel	<0.520) mg/L	0.0520	0.0800	11/7/23 3:07	ARY	NWTPH-HCID	
Gasoline	<0.160) mg/L	0.160	0.400	11/7/23 3:07	ARY	NWTPH-HCID	
Lube Oil	0.101	mg/L	0.0460	0.0800	11/7/23 3:07	ARY	NWTPH-HCID	
Mineral Oil	0.185	mg/L	0.160	0.400	11/7/23 3:07	ARY	NWTPH-HCID	J
Surrogate: n-Hexacosane	87	.0%	50-15	0	11/7/23 3:07	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	D-6 WDJ1823-08 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23 (09:45				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	27.3	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.0020	6 mg/L	0.000140	0.00100	12/5/23 17:12	JLG	EPA 200.8	
Mercury								
Mercury	<0.071	0 ug/L	0.0710	0.100	11/16/23 14:39	JLG	EPA 245.1	
Semivolatiles								
Diesel	<0.520) mg/L	0.0520	0.0800	11/7/23 4:02	ARY	NWTPH-HCID	
Gasoline	<0.160) mg/L	0.160	0.400	11/7/23 4:02	ARY	NWTPH-HCID	
Lube Oil	ND	mg/L	0.0460	0.0800	11/7/23 4:02	ARY	NWTPH-HCID	
Mineral Oil	<0.160) mg/L	0.160	0.400	11/7/23 4:02	ARY	NWTPH-HCID	
Surrogate: n-Hexacosane	71	.1%	50-150	0	11/7/23 4:02	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	D-7 WDJ1823-09 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23	09:30				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	131	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.0013	2 mg/L	0.000140	0.00100	12/5/23 17:14	JLG	EPA 200.8	
Mercury								
Mercury	<0.071	0 ug/L	0.0710	0.100	11/16/23 14:41	JLG	EPA 245.1	
Semivolatiles								
Diesel	<0.520) mg/L	0.0520	0.0800	11/7/23 4:56	ARY	NWTPH-HCID	
Gasoline	<0.160) mg/L	0.160	0.400	11/7/23 4:56	ARY	NWTPH-HCID	
Lube Oil	0.271	mg/L	0.0460	0.0800	11/7/23 4:56	ARY	NWTPH-HCID	
Mineral Oil	<0.16) mg/L	0.160	0.400	11/7/23 4:56	ARY	NWTPH-HCID	
Surrogate: n-Hexacosane	79	0.2%	50-15	0	<i>11/7/23 4:56</i>	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	D-8 WDJ1823-10 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23	09:15				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	36.0	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.0043	9 mg/L	0.000140	0.00100	12/5/23 17:16	JLG	EPA 200.8	
Mercury								
Mercury	<0.071	.0 ug/L	0.0710	0.100	11/16/23 14:44	JLG	EPA 245.1	
Semivolatiles								
Diesel	<0.52	0 mg/L	0.0520	0.0800	11/7/23 5:51	ARY	NWTPH-HCID	
Gasoline	<0.16	0 mg/L	0.160	0.400	11/7/23 5:51	ARY	NWTPH-HCID	
Lube Oil	<0.046	i0 mg/L	0.0460	0.0800	11/7/23 5:51	ARY	NWTPH-HCID	
Mineral Oil	0.212	mg/L	0.160	0.400	11/7/23 5:51	ARY	NWTPH-HCID	J
Surrogate: n-Hexacosane	66	5.1%	50-15	0	11/7/23 5:51	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	U-2/WW-5 WDJ1823-11 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23	10:30				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	422	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.0006	32 mg/L	0.000140	0.00100	12/5/23 17:19	JLG	EPA 200.8	J
Mercury								
Mercury	<0.07	10 ug/L	0.0710	0.100	11/16/23 14:46	JLG	EPA 245.1	
Semivolatiles								
Diesel	<0.52	.0 mg/L	0.0520	0.0800	11/7/23 6:46	ARY	NWTPH-HCID	
Gasoline	<0.16	i0 mg/L	0.160	0.400	11/7/23 6:46	ARY	NWTPH-HCID	
Lube Oil	<0.04	60 mg/L	0.0460	0.0800	11/7/23 6:46	ARY	NWTPH-HCID	
Mineral Oil	<0.16	i0 mg/L	0.160	0.400	11/7/23 6:46	ARY	NWTPH-HCID	
Surrogate: n-Hexacosane	50	8.0%	50-15	0	11/7/23 6:46	ARY	NWTPH-HCID	

Sample Location: Lab/Sample Number: Date Received: Matrix:	U-3/WW-4 WDJ1823-12 10/27/23 10:15 Water	Collect Date: Collected By:	10/24/23	10:15				
Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics								
TSS	36.0	mg/L			10/27/23 19:45	EAF	EPA 160.2	
Metals by ICP-MS								
Arsenic	0.0005	07 mg/L	0.000140	0.00100	12/5/23 17:21	JLG	EPA 200.8	J
Mercury								
Mercury	<0.07	10 ug/L	0.0710	0.100	11/16/23 14:49	JLG	EPA 245.1	
Semivolatiles								
Diesel	<0.52	20 mg/L	0.0520	0.0800	11/7/23 7:41	ARY	NWTPH-HCID	
Gasoline	<0.16	50 mg/L	0.160	0.400	11/7/23 7:41	ARY	NWTPH-HCID	
Lube Oil	<0.04	60 mg/L	0.0460	0.0800	11/7/23 7:41	ARY	NWTPH-HCID	
Mineral Oil	<0.16	60 mg/L	0.160	0.400	11/7/23 7:41	ARY	NWTPH-HCID	
Surrogate: n-Hexacosane	8	8.9%	50-15	0	11/7/23 7:41	ARY	NWTPH-HCID	

Authorized Signature,

Sattles Kathleen (1.

Kathleen Sattler, Laboratory Manager

J	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
M2	Matrix spike recovery was low; the associated blank spike recovery was acceptable. Potential matrix effect.
PQL	Practical Quantitation Limit
ND	Not Detected
MDL	Method Detection Limit
Dry	Sample results reported on a dry weight basis
*	Not a state-certified analyte
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Quality Control Data

Inorganics

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BDJ1039 - W Filtration									
Blank (BDJ1039-BLK1)				Prepared 8	Analyzed: 10	/27/2023			
TSS	<0.1		mg/L						
Blank (BDJ1039-BLK2)				Prepared 8	Analyzed: 10	/27/2023			
TSS	1.00		mg/L						
LCS (BDJ1039-BS1)				Prepared 8	Analyzed: 10	/27/2023			
TSS	93.0		mg/L	100		93.0	90-110		
Duplicate (BDJ1039-DUP1)	Source: V	VDJ1823-03		Prepared 8	Analyzed: 10	/27/2023			
TSS	29.0		mg/L		33.0			12.9	20
Matrix Spike (BDJ1039-MS1)	Source: V	VDJ1823-03		Prepared 8	Analyzed: 10	/27/2023			
TSS	120		mg/L	100	33.0	87.0	80-120		
Matrix Spike Dup (BDJ1039-MSD1)	Source: V	VDJ1823-03		Prepared 8	Analyzed: 10	/27/2023			
TSS	116		mg/L	100	33.0	83.0	80-120	3.39	20

Quality Control Data

Metals by ICP-MS

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BDL0048 - W 3010 Digest									
Blank (BDL0048-BLK1)			Pr	epared: 12/1	/2023 Analyzed	d: 12/5/202	3		
Arsenic	ND	0.00100	mg/L						
LCS (BDL0048-BS1)			Pr	epared: 12/1	/2023 Analyzed	d: 12/5/202	3		
Arsenic	0.0505	0.00100	mg/L	0.0500		101	85-115		
Matrix Spike (BDL0048-MS1)	Source:	WDJ1823-03	Pr	epared: 12/1	/2023 Analyzed	d: 12/5/202	3		
Arsenic	0.0570	0.00100	mg/L	0.0500	0.00127	111	70-130		
Matrix Spike (BDL0048-MS2)	Source:	WDJ1823-12	Pr	epared: 12/1	/2023 Analyzed	d: 12/5/202	3		
Arsenic	0.0502	0.00100	mg/L	0.0500	0.000507	99.4	70-130		
Matrix Spike Dup (BDL0048-MSD1)	Source:	WDJ1823-03	Pr	epared: 12/1	/2023 Analyzed	d: 12/5/202	3		
Arsenic	0.0554	0.00100	mg/L	0.0500	0.00127	108	70-130	2.94	20
Matrix Spike Dup (BDL0048-MSD2)	Source:	WDJ1823-12	Pr	epared: 12/1	/2023 Analyzed	d: 12/5/202	3		
Arsenic	0.0536	0.00100	mg/L	0.0500	0.000507	106	70-130	6.57	20

Quality Control Data

Mercury

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BDK0583 - W 245.1 Digest									
Blank (BDK0583-BLK1)				Prepared 8	& Analyzed: 11	/16/2023			
Mercury	ND	0.100	ug/L						
LCS (BDK0583-BS1)				Prepared 8	& Analyzed: 11	/16/2023			
Mercury	5.21	0.100	ug/L	5.60		93.0	85-115		
Matrix Spike (BDK0583-MS1)	Sour	ce: WDJ1779-08		Prepared 8	& Analyzed: 11	/16/2023			
Mercury	3.55 M2	0.100	ug/L	5.60	ND	63.4	70-130		
Matrix Spike (BDK0583-MS2)	Sour	ce: WDJ1823-03		Prepared 8	& Analyzed: 11	/16/2023			
Mercury	4.84	0.100	ug/L	5.60	<0.0710	86.4	70-130		
Matrix Spike Dup (BDK0583-MSD1)	Sour	ce: WDJ1779-08		Prepared 8	& Analyzed: 11	/16/2023			
Mercury	4.11	0.100	ug/L	5.60	ND	73.4	70-130	14.6	20
Matrix Spike Dup (BDK0583-MSD2)	Sourc	ce: WDJ1823-03		Prepared 8	& Analyzed: 11,	/16/2023			
Mercury	5.08	0.100	ug/L	5.60	<0.0710	90.7	70-130	4.84	20

Quality Control Data

(Continued)

Semivolatiles

Analyte	Result Q	Reporting ual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BDK0014 - SVOC Water									
Blank (BDK0014-BLK1)			Pre	pared: 10/31	/2023 Analyze	d: 11/20/20	23		
Metolachlor	ND	0.100	ug/L						
Atrazine	ND	0.100	ug/L						
Chlorpyrifos	ND	0.100	ug/L						
Surrogate: Terphenyl-d14		33.4	ug/L	30.0		111	25-135		
LCS (BDK0014-BS1)			Pre	pared: 10/31	/2023 Analyze	d: 11/20/20	23		
Metolachlor	4.69	0.100	ug/L	5.00		93.8	60-125		
Chlorpyrifos	4.63	0.100	ug/L	5.00		92.6	50-125		
Atrazine	4.61	0.100	ug/L	5.00		92.2	60-125		
Surrogate: Terphenyl-d14		29.5	ug/L	30.0		98.2	25-135		
LCS Dup (BDK0014-BSD1)			Pre	pared: 10/31	/2023 Analyze	d: 11/20/20	23		
Metolachlor	<0.0500	0.100	ug/L	5.00		100	60-125	6.60	25
Chlorpyrifos	4.92	0.100	ug/L	5.00		98.4	50-125	6.07	25
Atrazine	4.95	0.100	ug/L	5.00		99.0	60-125	7.11	25
Surrogate: Terphenyl-d14		31.9	ug/L	30.0		106	25-135		

Batch: BDK0109 - W TPH-Dx

Blank (BDK0109-BLK1)				Prepared: 11/3/2023 A	Analyzed: 11/6/202	23	
Lube Oil	ND	0.0800	mg/L				
Mineral Oil	ND	0.400	mg/L				
Gasoline	ND	0.400	mg/L				
Diesel	ND	0.0800	mg/L				
Surrogate: n-Hexacosane		35.8	mg/L	50.0	71.5	50-150	

Quality Control Data

(Continued)

Semivolatiles (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BDK0109 - W TPH-Dx (Cor	ntinued)									
LCS (BDK0109-BS1)				Pr	epared: 11/3	/2023 Analyze	d: 11/6/202	3		
Diesel	0.710		0.0800	mg/L	0.800		88.8	70-130		
Surrogate: n-Hexacosane			45.5	mg/L	50.0		91.0	50-150		
Matrix Spike (BDK0109-MS1)		Source: W	DJ1823-03	Pr	epared: 11/3	/2023 Analyze	d: 11/6/202	3		
Diesel	0.716		0.0800	mg/L	0.800	<0.052	89.5	70-130		
Surrogate: n-Hexacosane			37.4	mg/L	50.0		74.7	50-150		
Matrix Spike Dup (BDK0109-MSD1)		Source: W	DJ1823-03	Pr	epared: 11/3	/2023 Analyze	d: 11/6/202	3		
Diesel	0.805		0.0800	mg/L	0.800	<0.052	101	70-130	11.7	20
Surrogate: n-Hexacosane			42.5	mg/L	50.0		84.9	50-150		

	Anatek	وا تدريميون مير ⁽¹ روي ^{المر}	C I	ain	of	Cusi	tody	Re	cor	d)				Anatek
	Labs, Inc.	 1282 Alt 504 E Spr 	ague Ste D, S													Due: 11/10/23
Compa	any Name: Stant	ec GS (form. Cardn	o-GS)	Proje	ect Man	ager:			Be	njam	in B	errid	lge			Turn A
Addres	SS: 737 F	Bishop St Suite 305	0	Proje	ect Nan	ne & 1	#:		- Wa	ater (Juali	tv M	onit	orine	,	Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp
City:				Ema	il Addre	222	140.000									Dhana
	Honolulu	State: HI Zip:	96813					ijami	in.be	errid	ge@	card	no-g	js.co	m	Normal *All rush orderPhone Next Day* requests must beMail
Phone		(808) 476-0067		Purc	hase O	rder #	:							Sec. Ber		2nd Day* prior approvedFax
Fax:				Sam	pler Na	me &	phone	e:							5	Other*
Roamine B	Provide S	ample Description		1000		at 12 jai	List	Ana	lyse	s Re	ques	ted	and in the second	Here Bitte		Note Special Instructions/Comments
	an a				ervative:				1,000		1			1	-	**Please do not conduct TPH GRO
- 10 1 1 2 - 10 1 1 2 - 10	orm water samples		n an an an Anna Anna Anna Anna Anna Anna	Containers	Sample Volume	TSS EPA 160.2	TPH HCID - SW 846 MOD 8015	**TPH GRO SW846M8015	Arsenic EPA 200.8	Mercury d EPA 245.1	Pesticides CEPA 625 SIM	Glyphosate EPA 547	Permethrin EPA	aon Stafen	quat Dichloride	analysis until Cardno confirms it should be run.
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of	Sam	Ē	HH	- NS	ш		сĞ	9	αΞ		Paraquat EPA	
	WW-3	10-24-2023 / 08:30 HST	Water	7		х	x	х	x	x			x		х	
and the second	WW-6	10-24-2023 / 09:45 HST	Water	5		х	х	х	х	x						
State Prove	E-1	10-24-2023 / 10:30 HST	Water	7		х	x	х	X	X			Х		х	
MA .	E-1 DUP	10-24-2023 / 10:35 HST	Water	7		х	х	х	х	x			х		х	
Set.	E-1 MS/MSD	10-24-2023 / 10:40 HST	Water	7		X	х	х	Х	X			Х		Х	
San an	D-2	10-24-2023 / 09:40 HST	Water	5		х	х	х	X	х						
	D-3	10-24-2023 / 09:22 HST	Water	5		х	х	Х	х	х						
	D-4	10-24-2023 / 09:03 HST	Water	5		x	х	х	X	x						Inspection Checklist
String to the	D-6	10-24-2023 / 09:45 HST		5		х	х	х	Х	X				ļ		Received Intact? Y N
and a state of the	D-7	10-24-2023 / 09:30 HST		5		х	х	х	Х	х						Labels & Chains Agree? Y N
and the second	D-8	10-24-2023 / 09:15 HST		5		X	X	X	X	X			1 - 14 -	1. 2	3 - 194 1	Containers Sealed? Y N
Section Section	U-2/WW-5	10-24-2023 / 10:30 HST		5		X X	X	X	X X	X X						VOC Head Space? Y N
	U-3/WW-4	10-24-2023 / 10:15 HST ed Name S		5	L	^	X	-	pany		Provide Sales	Date		Time	stitute in	Hel the of D
Reling		n Berridge	Ki	B	4	>			antec	Contraction of the second	5.	10-2	5-23	14:0	0	Temperature (°C): 415 42.5 31.5
Receiv	ved by	oser Ropin	RY	7	YK	\wedge	N	17	may	re Vi	/	10/2	123	10	15	Preservative:
Relinq	uished by		\mathcal{O}			0					_					Date & Time:
	uished by															Inspected By:
Receiv	/ed by															

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 2

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

		WDJ1823	
Anatek Labs, Inc.	Sample Receipt and Preserv	Due: 11/10/23	
CK CK	(Candian Cas)		
Client Name: Stan tec	(Cavdro-GS) Project: (a	apply Anatek sample label here)	
TAT: Normal RUSH:	days		
Samples Received From: FedE	x UPS USPS Client Cour	er Other:	
Custody Seal on Cooler/Box: Ye	es No Custody Seals Inta	act: Yes No N/A	
Number of Coolers/Boxes:	Type of Ice: tce/	lce Packs, Blue Ice Dry Ice None	
Packing Material: Bubble Wrap	Bags Foam/Peanuts None	Other:	
Cooler Temp As Read (°C):	Cooler Temp Corrected (°C):	Thermometer Used:	
#145 AC	25 431.5 019-19	Comments:	
Samples Received Intact?	Yes No N/A		
Chain of Custody Present?	Yes No N/A		
Samples Received Within Hold Tir	me? Yes No N/A		
Samples Properly Preserved?	(Yes) No N/A		
VOC Vials Free of Headspace (<6mm)? Yes No N/A		
VOC Trip Blanks Present?	Yes No NA		
Labels and Chains Agree?	Yes No N/A		
Total Number of Sample Bottles R	2.2		
Chain of Custody Fully Completed	? Yes No N/A		
Correct Containers Received?	Yes No N/A		
Anatek Bottles Used?	Yes No Unknown		
Record preservatives (and lot num	bers, if known) for containers below:		
13 - P1000 1-	7- 31020 Hel 13 8250	-20-9:44 Het	
	7	35 26-400 249	
Hil 2300439-2		4-add Nathio	
pH2102074		4-944 Nathio 2203036	
		~~~ U 503N	
Notes, comments, etc. (also use t	his space if contacting the client - reco	rd names and date/time)	
$\bigcap$		at intrata	
Received/Inspected By:	Date/Time:	4 10/27/23	
6	7)		
Form F06.00 - Eff. 10 Nov. 202	21	Page 1 of 1	
		Page 18 of 8	84







503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Anatek Labs Inc 504 E Sprague Ave, Suite D Spokane, WA 99202 Report Number: P232696 Report Date: November 13, 2023 Client Project ID: [none]

## **Analytical Report**

Client Sample ID: W Matrix: water	VDJ1823-01			PAL Sample ID: P232696-01 Sample Date: 10/24/23 Received Date: 11/1/23	
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modif	fied EPA 549.2 (LC	C-MS/MS)			
11/07/23	11/7/23	Paraquat	ND	10 ug/L	
Client Sample ID: W Matrix: water	VDJ1823-03			PAL Sample ID: P232696-02 Sample Date: 10/24/23 Received Date: 11/1/23	
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modif	fied EPA 549.2 (LC	C-MS/MS)			
11/07/23	11/7/23	Paraquat	ND	10 ug/L	
Client Sample ID: W Matrix: water	VDJ1823-04			PAL Sample ID: P232696-03 Sample Date: 10/24/23 Received Date: 11/1/23	
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modif	fied EPA 549.2 (LC	C-MS/MS)			
11/07/23	11/7/23	Paraquat	ND	10 ug/L	

Richard & Just

Rick Jordan, Laboratory Director

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.







503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Anatek Labs Inc 504 E Sprague Ave, Suite D Spokane, WA 99202 Report Number: P232696 Report Date: November 13, 2023 Client Project ID: [none]

## **Quality Assurance**

Method Blank D	ata Ma	atrix: water				
Extraction Date 11/7/23	Analysis Date 11/7/23	Batch QC Sample # 23K0705-BLK1	<b>Analyte</b> Paraquat	% Recovery Not Detected	Expected % Recovery < 10 ug/L	Notes
Blank Spike Dat		atrix: water				
Extraction Date	Analysis Date	Batch QC Sample #	Analyte	% Recovery	Expected % Recovery	Notes
11/7/23	11/7/23	23K0705-BS1	Paraquat	131	60-140	
11/7/23	11/7/23	23K0705-BSD1	Paraquat	134	60-140	
Matrix Spike Da	ata M	atrix: water				
Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
11/7/23	11/7/23	23K0705-MS1	Paraquat	106	60-140	
11/7/23	11/7/23	23K0705-MSD1	Paraquat	104	60-140	

Ridal Spale

Rick Jordan, Laboratory Director

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

# TSS (SM2540D/EPA 160.2)-TS(SM 2540B)

Batch ID:	BDJ1039 Date:	10/27/2023	Time: 130	0 Initals:	EAF			
QC REQUIREMENTS:	Blank <1ppm, LFB %Rec= 90-110%, I	MS/MSD %Rec= 80-	120% Run a blank and lcs b	efore and after ev	ery 20 sample	s, plus dup and m	s/msd after 20 sa	mples.
TSS Reagents	<b>Std.</b> #	Amount Spiked	<b>Balance ID</b>	Oven	Temp	Filters	Thermometer	L
100ppm Cellulose TSS Soln.	2303019	100 ppm	BAL-06	3	115C	2301123	T-Oven 3	

Comments:

## Date/Time of Weigh: 10/27/23 173 10/27/23 1945

Sample Number	Sample ID	Dish ID	Filter Wt (g)	mLs used	Dry Weight #1	Dry Weight #2**	Dilution Factor	lResult (mg/L)	FResult (mg/L)	QC Date & Initials
BDJ1039-BLK1	Blank	56	0.1206	1000	0.1207	0.1206	0.1			
BDJ1039-BLK2	Blank	73	0.1201	1000	0.1203	0.1202	0.1	1.00	0.10	
BDJ1039-BS1	LCS	57	0.1198	100	0.1291	0.1292	1	93.00	93.00	
WDJ1823-01	WW-3	58	0.1206	100	0.1284	0.1279	1	73.00	73.00	
WDJ1823-02	WW-6	59	0.1201	50	0.1404	0.1401	2	200.00	400.00	
BDJ1039-DUP1	Duplicate WDJ1823-03	60	0.1201	100	0.123	0.123	1	29.00	29.00	
WDJ1823-03	E-1	61	0.1199	100	0.1232	0.1234	1	33.00	33.00	
WDJ1823-04	E-1 DUP	62	0.1202	150	0.1225	0.1225	0.66666667	23.00	15.33	
WDJ1823-05	D-2	63	0.1203	200	0.1279	0.1278	0.5	75.00	37.50	
WDJ1823-06	D-3	64	0.1199	100	0.125	0.125	1	51.00	51.00	
WDJ1823-07	D-4	65	0.1192	150	0.1209	0.1212	0.66666667	17.00	11.33	
WDJ1823-08	D-6	66	0.1194	75	0.1235	0.1237	1.33333333	41.00	54.67	
WDJ1823-09	D-7	67	0.1205	100	0.1304	0.1303	1	98.00	98.00	
WDJ1823-10	D-8	68	0.1203	100	0.1244	0.1239	1	36.00	36.00	
BDJ1039-MS1	Matrix Spike WDJ1823-03	69	0.1198	50	0.1258	0.1258	2	60.00	120.00	
BDJ1039-MSD1	Matrix Spike Dup WDJ182	70	0.1198	50	0.1257	0.1257	2	59.00	118.00	
WDJ1823-11	U-2/WW-5	71	0.1195	100	0.1407	0.1406	1	211.00	211.00	
WDJ1823-12	U-3/WW-4	72	0.1201	100	0.1238	0.1237	1	36.00	36.00	

Starting sequence Mon Nov 20 17:38:50 2023 Instrument Name: MSD4 Sequence File: T:\Data1\MSD4\SEQUENCES\2023\111623SD.s Comment: 625 8270 DCOI Operator: MAH Data Path: T:\DATA1\MSD4\2023\NOV\20CD\ Method Path: C:\MSDCHEM\1\METHODS\ Line Type Vial DataFile Method Sample Name _____ 1) Sample 1 00101001 SVOCT1 SYS 2) Sample 2 00201002 CARDSIM CARDNO 10 PPM

2) Samp⊥e	2	00201002	CARDSTW	CARDNO 10 PPM
3) Sample	3	00301003	CARDSIM	CARDNO 5 PPM
4) Sample	4	00401004	CARDSIM	CARDNO 2.5 PPM
5) Sample	5	00501005	CARDSIM	CARDNO 1 PPM
6) Sample	6	00601006	CARDSIM	CARDNO 0.5 PPM
7) Sample	7	00701007	CARDSIM	CARDNO 0.1 PPM
8) Sample	8	00801008	CARDSIM	CARDNO 0.05 PPM
9) Sample	11	01101009	CARDSIM	BDK0014-BS1
10) Sample	12	01201010	CARDSIM	BDK0014-BSD1
11) Sample	13	01301011	CARDSIM	BDK0014-BLK1
12) Sample	14	01401012	CARDSIM	WDJ1823-01
13) Sample	15	01501013	CARDSIM	WDJ1823-03
14) Sample	16	01601014	CARDSIM	WDJ1823-04

Sequence completed Mon Nov 20 23:56:49 2023

.

х^{.1}.

T:\DATA1\MSD4\2023\NOV\20CD\2023 Nov 20 1738 Quality Log.LOG T:\DATA1\MSD4\2023\NOV\20CD\2023 Nov 20 1738 Sequence Log .LOG A the second . . . . . 2.2. 20 10 1 • • ; • and a gradient state · . · · . . Sector Contraction 

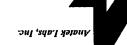
• • •



## QC Checklist for EPA 8270/625.1 - SOCs

Analysis Date:

11.	20-	23


PP Tune Check em Performance em Performance em Performance em Performance al Calibration mal Standard ogate Recovery	See SOP/Method DDT breakdown <20% Anthracene & phenanthrene baseline separated Benzo[a]anthracene & chrysene valley >75% Benzo(b/k)fluoranthenes - valley >50% of average of both peaks Peak tailing factors for benzidine & PCP <2 90% of compounds RRF RSD<20% 8270: True value within 30% See table on back of this checklist ±30% of CCV and ±50% of ICAL average	Every 12 hours Every 12 hours Each analysis batch Each analysis batch Each analysis batch Each analysis batch All samples	Include CCRF report ir packet
em Performance em Performance em Performance em Performance al Calibration	Anthracene & phenanthrene baseline separated Benzo[a]anthracene & chrysene valley >75% Benzo(b/k)fluoranthenes - valley >50% of average of both peaks Peak tailing factors for benzidine & PCP <2 90% of compounds RRF RSD<20% 8270: True value within 30% See table on back of this checklist ±30% of CCV and ±50% of ICAL average	Each analysis batch Each analysis batch Each analysis batch Each analysis batch	
em Performance em Performance em Performance al Calibration rnal Standard	baseline separated Benzo[a]anthracene & chrysene valley >75% Benzo(b/k)fluoranthenes - valley >50% of average of both peaks Peak tailing factors for benzidine & PCP <2 90% of compounds RRF RSD<20% 8270: True value within 30% See table on back of this checklist ±30% of CCV and ±50% of ICAL average	batch Each analysis batch Each analysis batch Each analysis batch	
em Performance em Performance al Calibration mal Standard	chrysene valley >75% Benzo(b/k)fluoranthenes - valley >50% of average of both peaks Peak tailing factors for benzidine & PCP <2 90% of compounds RRF RSD<20% 8270: True value within 30% See table on back of this checklist ±30% of CCV and ±50% of ICAL average	batch Each analysis batch Each analysis batch	
em Performance al Calibration mal Standard	valley >50% of average of both peaks Peak tailing factors for benzidine & PCP <2 90% of compounds RRF RSD<20% 8270: True value within 30% See table on back of this checklist ±30% of CCV and ±50% of ICAL average	batch Each analysis batch	
al Calibration	benzidine & PCP <2 90% of compounds RRF RSD<20% 8270: True value within 30% See table on back of this checklist ±30% of CCV and ±50% of ICAL average	batch	
nal Standard	RRF RSD<20% 8270: True value within 30% See table on back of this checklist ±30% of CCV and ±50% of ICAL average		
rnal Standard	this checklist ±30% of CCV and ±50% of ICAL average		
rnal Standard	$\pm 50\%$ of ICAL average	All samples	
ogate Recoverv			
	Per control chart	All samples	
/QCS	±30%, 50% at MRL	Each ICAL	
iks	No interferences	Each extraction batch	
1 - 8270	80-120% - 80% of analytes pass	Each analysis batch w/o an ICAL	ICAL
/ - 625	80-120% - all reported analytes must pass	Each analysis batch w/o an ICAL	2
MSD or LFB/LFB Dup	Per control chart	Every 20 samples	
		spil for	
ch Sheet Present	Standards/reagents noted		Pope and an
Prep Form Present	Standards/reagents noted		
		V. Sec.	
	MSD or LFB/LFB Dup	A = 02.5       analytes must pass         MSD or LFB/LFB Dup       Per control chart         Ch Sheet Present       Standards/reagents noted         Pren Form Present       Standards/reagents	7 - 625       80-120% - all reported analytes must pass       batch w/o an ICAL         MSD or LFB/LFB Dup       Per control chart       Every 20 samples         ch Sheet Present       Standards/reagents noted       standards/reagents noted         Prep Form Present       Standards/reagents noted       standards/reagents

Comments:	111
Analyst:	111
1. C.C	
Reviewed By:	

Checklist Completed Date: 12-7-23

Date:

Page 1 of 2



		10.0	bis(2-chloroisopropyl)ether
9.0	Pyrene	<i>L</i> .0	bis(2-Chloroethyl)ether
8.0	Phenol	6.0	bis(2-Chloroethoxy)methane
<i>L</i> .0	Phenanthrene	<i>L</i> .0	Benzo[k]fluoranthene
\$0.0	Pentachlorophenol	5.0	l3enzo[ghi]perylene
10.0	n-Nitrosodiphenylamine	<i>L</i> .0	Benzo[b]fluoranthene
5.0	n-Nitroso-di-n-propylamine	<i>L</i> .0	Benzo[a]pyrene
2.0	Nitrobenzene	8.0	Benzo[a]anthracene
L'0	Naphthalene	<i>L</i> .0	onilin∧
<b>7.</b> 0	Isophorone	6.0	Acenaphihylene
5.0	Indeno[1,2,3-cd]pyrene	6.0	Acenaphthene
6.0	Hexachloroethane	0.4	4-Chlorophenyl phenyl ether
\$0.0	Hexachlorocyclopentadiene	10.0	4-Chloroaniline
10.0	Hexachlorobutadiene	0.2	4-Chloro-3-methylphenol
1.0	Hexachlorobenzene	1.0	4-Bromophenyl-phenylether
6.0	Fluorene	10.0	4,6-Dinitro-2-methylphenol
9.0	Fluoranthene	10.0	3,3'-Dichlorobenzidine
10.0	Di-n-octyl phthalate	8.0	2-Chlorophenol
10.0	Di-n-butyl phthalate	8.0	2-Chloronaphthalene
10.0	Dimethyl phthalate	2.0	2,6-Dinitrotoluene
10.0	Diethyl phthalate	2.0	2,4-Dinitrotoluene
8.0	Dibenzofuran	10.0	2,4-Dinitrophenol
0.4	Dibenz[a,h]anthracene	0.2	2,4-Dimethylphenol
<i>L</i> .0	Chrysene	0.2	2,4-Dichlorophenol
10.0	Carbazole	2.0	2,4,6-Trichlorophenol
10.0	Butyl benzyl phthalate	2.0	2,4,5-Trichlorophenol
10.0	bis(2-Ethylhexyl)phthalate	10.0	2,3,4,6-Tetrachlorophenol
	PA Method 8270E - Table 4	Factors – E	Guidance Response

From Method 8270E, 11.3.4.2. Table 4 contains minimum RFs that may be used as

determined using specific ions and instrument conditions that may vary, it is neither determined uses if the system is behaving properly and as a check to see if

÷. •

.

 $(x,y) \in \{x,y\}$ 

5 of 7 of 5

ter Verst

.

expected nor required that all analytes meet these minimum RFs. The information is provided as guidance only.

Lorm OC17.06 - EL 24 Mar 2022

(1, 1, 1)

Sector (Astronomy) (Constrainty)

या के किंग्स के समय है। इस्टेन्स किंग्सिक के स्टिन्स इन्द्र के सिमिक कार्य हो ह

an Antani 1993, 199 Charlen (1997), 199 Charles (1997), 199

•

(4) 并可并指指约约

# Anatek Labs, Inc 1282 Alturas Drive Moscow, ID 83843

## 1,4-Dioxane Cal. Standard Prep. Form

## Method: EPA 625.1/8270D

## **IS/Surrogate Standards**

Standard	Reagent ID	Expiration	Concentration (ppm)
CLP B/N Surrogate	2303399	11/24	1000
CLP Internal Standard	2302846	9/24	2000

## Target Compound Standards

Standard	Reagent ID	Expiration	Concentration (ppm)
Chlorpyrifos	2302538	5/26	1000
Metolachlor	2302539	12/27	1000
Atrazine	2302537	10/27	1000

### **Calibration Dilution Template**

Desired Concentration (ppm)	Stock Concentration (ppm) **	uL Standard Added	Final Volume (uL)
10	100	100	1000
5	100	50	1000
2.5	100	25	1000
1.0	100	10	1000
0.5	100	5	.1000
0.1	100	1	1000
0.05	100	0.5	1000

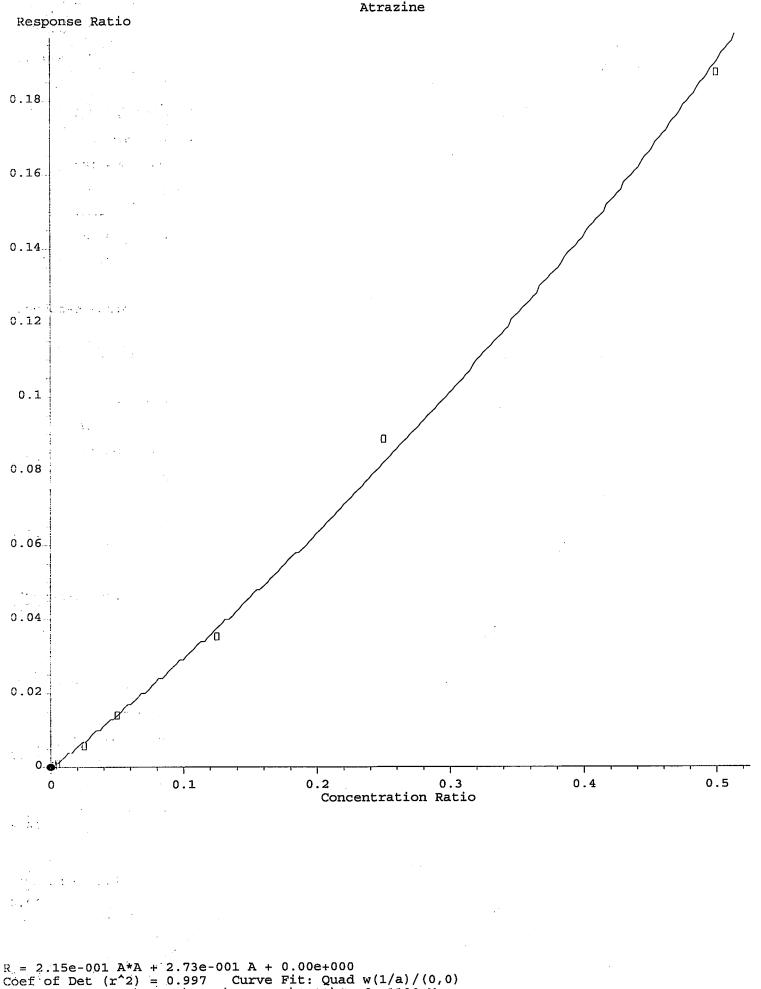
Calibration made from target compound standards in the table. 25 uL of surrogate and 10 uL of IS stock added to each standard point. Dilutions were made in MeCl₂ (2301678).

Form CS06.00 - Eff 9 Mar 2015

Analyst Initials: MAH Date of Preparation: 8/1/23

Page 1 of 1

Filmer & States and


Method Path : T:\Datal\MSD4\METHODS\2023\ Method File : Cardo-1120.M Title : EPA 8270D - GC MSD4 Last Update : Tue Nov 21 10:02:28 2023 Response Via : Initial Calibration

### Calibration Files

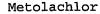
0.05=00801008.D 10 =00201002.D 5 =00301003.D 2.5 =00401004.D 1 =00501005.D 0.5 =00601006.D 0.1 =00701007.D

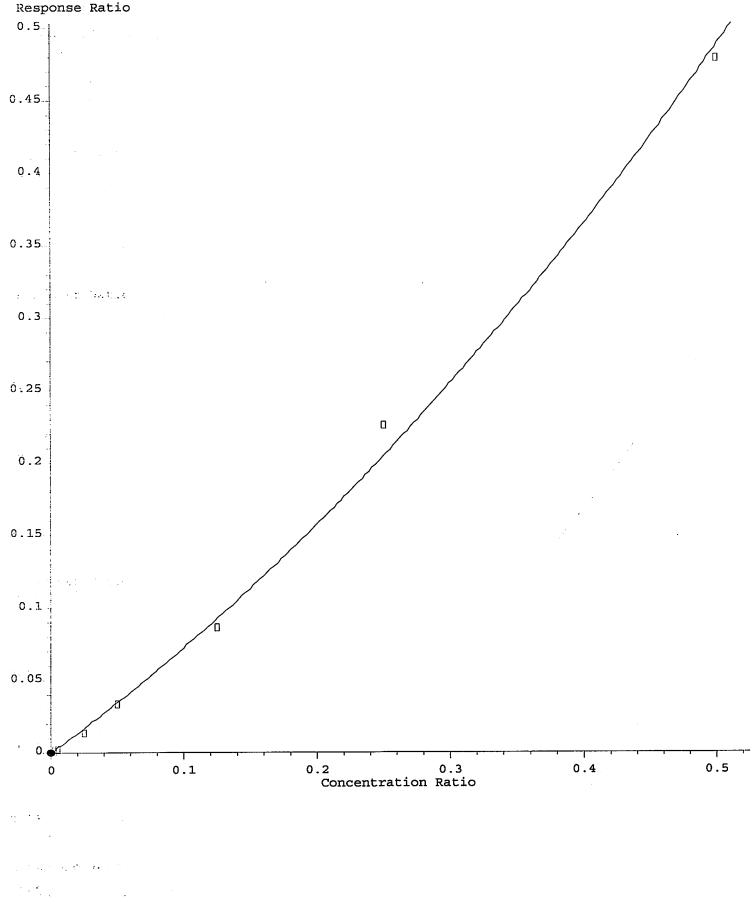
			0.05								%RSD
1) 2)	I	Dichlorobenzene-d 2-Fluorobiphenyl	5			ISTI	)				4.99
3) 4) 5) 6)	I	Acenaphthene-d10 Atrazine Metolachlor Chlorpyrifos	0.198 0.439	0.375 0.958	0.355 0.905	ISTI 0.283 0.692 0.171	0.282	0.234 0.549	0.178 0.421	0.272 0.662	27.46 31.93 19.71
7) 8)		Chrysene-d12 Terphenyl-d14				ISTI 0.896	=				1.58

(#) = Out of Range



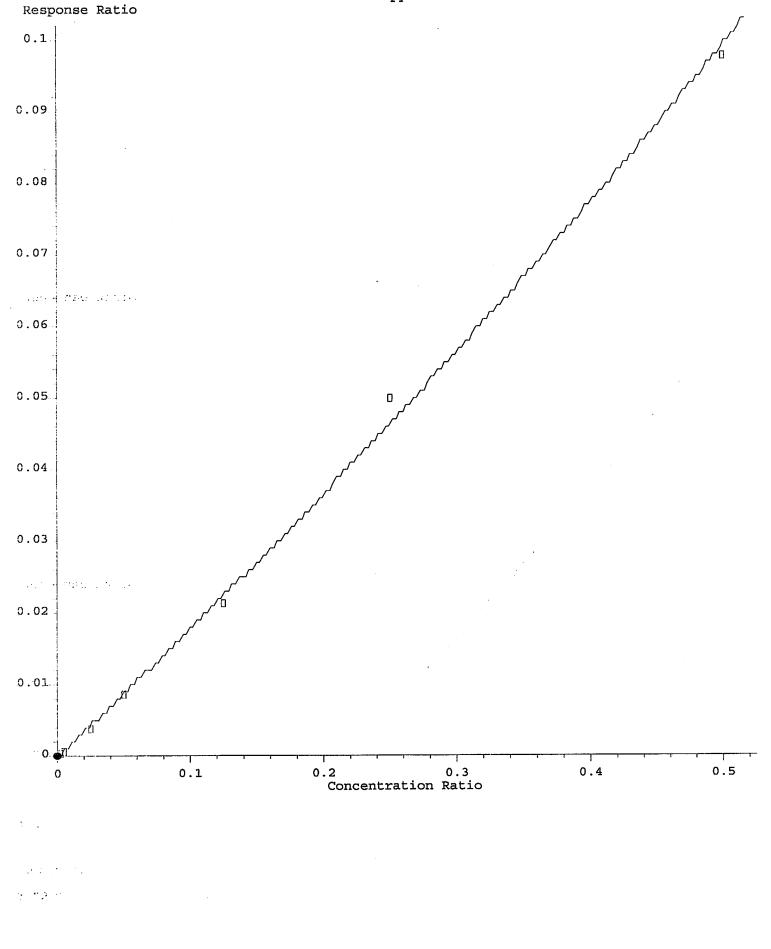
Coef of Det  $(r^2) = 0.997$  Curve Fit: Quad w(1/a)/(0,0)Method Name: T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Calibration Table Last Updated: Tue Nov 21 10:02:28 2023


Page 27 of 84


0-7 1

17 451 2 20

0. 5 Co 2. 5 Co 2.


internet and and the second second





Page 29 of 84

Chlorpyrifos



Page 30 of 84

# PREPARATION BENCH SHEET Organics BDK0014

Matrix: Water

한 사람님께서 집에 가지 수 있는 것이 없다.

Property unity, SMOC - SVOC Water

Prepared using: SVOC - SVOC Water

Analyses SVOC 625 MISC Spiking Solution(s) 2201385 Cardno Spk 100 
 Surrogate Solution(s)

 2300782
 CLP B/N 1000

 2301428
 CLP Acid Surr 2000

Analysis	Lab Number	Sample and Source ID	Date Due	Extract by	Prepared - By	Initial (mL)	Final (mL)	ul Spike	ul Surrogate	Extraction Comments
QC	BDK0014-BLK1	Blank			10/31/23 0:48 MAH	1000	1		30	
QC	BDK0014-BS1	LCS	. 9		10/31/23 0:48 MAH	1000	1	50	30	
QC	BDK0014-BSD1	LCS Dup	$-a_{i}^{2}=-a$		10/31/23 0:48 MAH	1000	1	50	30	
SVOC 625 MISC	WDJ1823-01	WW-3	11/08/2023	10/31/2023	10/31/23 0:48 MAH	1000	1		30	
SVOC 625 MISC	WDJ1823-03	E-1	11/08/2023	10/31/2023	10/31/23 0:48 MAH	1000	1		30	
SVOC 625 MISC	WDJ1823-04	E-1 DUP	11/08/2023	10/31/2023	10/31/23 0:48 MAH	1000	1		30	

leagents		
Standard	Description	LotNum
2000154	Acetone - GC grade	59074
2000155	H2SO4	58115
2301118	CLP I.S. Spike 2000	061422
2301808	Diazomethane	N/A

Batch Comments:

Acidic start/stop time: 3PM- 8AM Basic start/stop time: 8AM-3PM Instrument: 7890/5975 GCMS Ext. Method: 3520C liq-liq/Waste Dilution/Microextr TurboVap: 01 Balance: 04

1-20-23

Analyst:

Date

Run Date:

Date

Data Path	:	T: Data1 MSD4 2023 NOV 20CD
Data File	:	00101001.D
Acq On	:	20 Nov 2023 5:45 pm
Operator	:	МАН
Sample	:	SYS
Misc	:	
ALS Vial	:	1 Sample Multiplier: 1

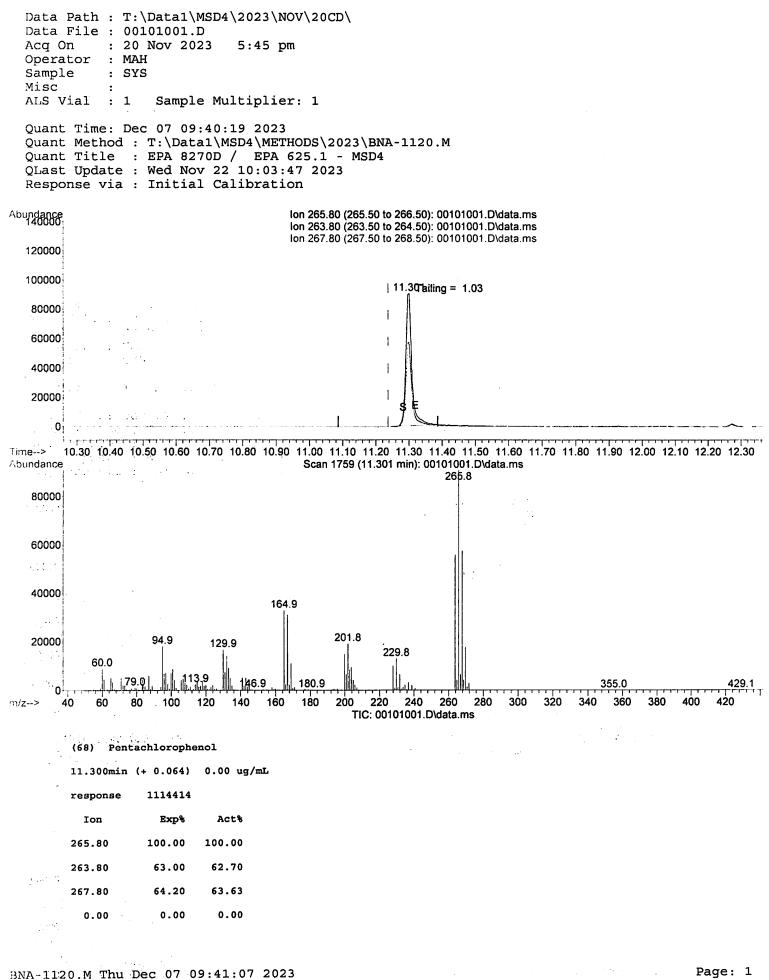
Integration File: autoint1.e

Method : T:\Data1\MSD4\METHODS\2023\BNA-1120.M Title : EPA 8270D / EPA 625.1 - MSD4 Last Update : Wed Nov 22 10:03:47 2023

AutoFind: Scans 1894, 1895, 1896; Background Corrected with Scan 1885 AUTOFIND via AUTOINTEGRATE

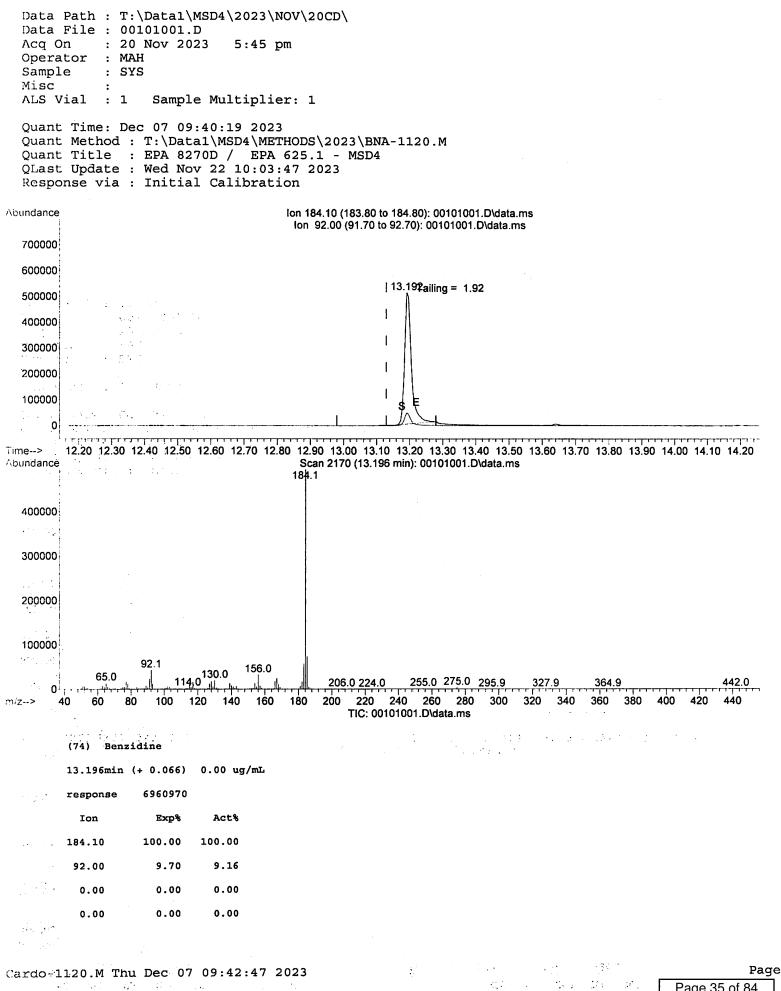
Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn*	Abn	Pass/Fail
51	198	30	60	35.8	38560	PASS
68	69	0.00	2	1.8	717	PASS
70	69	0.00	2	0.5	182	PASS
127	198	10	80	49.3	53069	PASS
197	. 198	0.00	2	0.0	0	PASS
198	198	. 100	100	100.0	107712	PASS
199	198	5	9	6.7	7184	PASS
275	198	10	60	30.6	33000	PASS
365	198	1	100	5.2	5553	PASS
441	443	0.01	150	78.3	22213	PASS
. 442	198	30	200	135.1	145491	PASS
443	44.2	15	24	19.5	28381	PASS

#### BNA-1120.M. Thu Dec 07 09:37:23 2023


	a di La companya di Santa di S		
			en e
•		· ·	· · ·
			•
•			
•			
2 <b></b>		•	•

(1, 0) = (1, 2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0) + (2, 0)

Page 32 of 84


Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 00101001.D Acq On : 20 Nov 2023 5:45 pm Operator : MAH Sample : SYS Misc : ALS Vial : 1 Sample Multiplier: 1 Integration Parameters: autoint1.e Integrator: ChemStation Method : T:\Data1\MSD4\METHODS\2023\BNA-1120.M Title : EPA 8270D / EPA 625.1 - MSD4 Signal : TIC: 00101001.D\data.ms peak R.T. first max last PK peak corr. corr. % of
 # min scan scan scan TY height area % max. total 1 13.417 2214 2218 2220 M3 11274 90815 0.40% 0.394% DDE 2 13.841 2306 2310 2318 M2 38621 539796 2.41% 2.341% DDD 3 14,204 2379 2389 2401 M2 1763340 22430803 100.00% 97.266% DDT% Breakdown nga senara series. Nga senara 11 C Sum of corrected areas: 23061413 BNA-1120.M Thu Dec 07 09:38:43 2023 n in the site of the best of and a second an an an an Arthrean an Arthrean Arthrean Arthrean an Arthrean Arthrean Arthrean an an the Award Maria and A Maria an Arganita an tao an Anna an tao an tao an tao an .: rina teo de la terra de la •

Page 33 of 84



A-1120.M 1Hu Dec 07 09:41:07 202.

Page 34 of 84



• `

Page 35 of 84

	, <b>1</b> , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					- <b>-</b> -			e e e e e e e e e e e e e e e e e e e
			А	natek Labs, Inc Mosco	w, iu				
				: : 					
	Internal Standard IC	Cal Average Responses	5	112023 CARDNO					
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			(method)	the state of the s	Sar, Weater		• • • • •	Martin Merri
	and a strategy state of the strategy of the st	1,4 Dichlorobenzene-d4	Naphthalene-d8	Acenaphthene-d10		Chrysene-d12			n an
يه ام معارد ديم م	0.05					23009461.41		<b>1</b>	
• • • • • • • • •	10			34912720.29		31894353.33			and the second
	.5			25469540.96		22382429.11		• · · · ·	• • • • •
	2.5		1	14826869.28		13699617.61		1	· · · · · · · · · · · · · · · · · · ·
	1			25309563.88		24310584.47			
	0.5			17524724.13		16468283.28			
	0.1			20994037.38		20356709.75	<u> </u>	4	
	Average	#DIV/0!	#DIV/0!	23430373	#DIV/0!	21731634	#DIV/0!	]	
	<u> </u>								

50%	· •	#DIV/0!	. ·	#DIV/0!	11715186	#DIV/0!	10865817	#DIV/0!
150%	19	#DIV/0!		#DIV/0!	35145559	#DIV/0!	32597451	#DIV/0!

Analyst:

MAH

Page 36 of 84

.

. . .

in a start a •

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 00201002.D Acq On : 20 Nov 2023 Operator : MAH 6:12 pm Sample : CARDNO 10 PPM Misc : ALS Vial : 2 Sample Multiplier: 1 Quant Time: Nov 21 09:55:05 2023 Ouant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Ouant Title : EPA 8270D - GC MSD4 OLast Update : Mon Nov 20 18:38:54 2023 Response via : Initial Calibration Compound R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Dichlorobenzene-d56.11815028810819m20.00ug/mL0.173) Acenaphthene-d109.72216434912720m20.00ug/mL0.167) Chrysene-d1214.75524031894353m20.00ug/mL0.16 System Monitoring Compounds 2) 2-Fluorobiphenyl8.92017264296571m25.20 ug/mL0.168) Terphenyl-d1413.49524434034293m21.58 ug/mL0.15Spiked Amount25.000Recovery=86.32% Target Compounds 4) Atrazine Qvalue 

 4) Atrazine
 11.219
 200
 6553545m
 10.82
 ug/mL

 5) Metolachlor
 12.392
 162
 16726713m
 10.08
 ug/mL

 6) Chlorpyrifos
 12.404
 197
 3413777m
 9.97
 ug/mL

 · __________ · · · (#) = qualifier out of range (m) = manual integration (+) = signals summed an produced Interview Control A control l de la completa branca de la Antony Granda (1911) - ana ya wa Chango a maga 1999 - Alexandra Alexandra 1999 - Alexandra Alexandra  $\{ f_{i}^{(1)}, f_{i}^{(2)}, \dots, f_{i}^{(d)} \}$ • .* and the second second • • . . Cardo-1120.M Thu Dec 07 09:52:10 2023

Page: 1 Page 37 of 84

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 00301003.D Acq On : 20 Nov 2023 Operator : MAH 6:39 pm Sample : CARDNO 5 PPM Misc : ALS Vial : 3 Sample Multiplier: 1 Quant Time: Dec 07 09:52:45 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QION Response Conc Units Dev(Min) Compound Internal Standards 1) Dichlorobenzene-d56.1191502202589320.00 ug/mL0.003) Acenaphthene-d109.7221642546954120.00 ug/mL# 0.007) Chrysene-d1214.7512402238242920.00 ug/mL# 0.00 System Monitoring Compounds 2) 2-Fluorobiphenyl8.9221724714598924.83 ug/mL0.008) Terphenyl-d1413.5002442430455124.92 ug/mL0.00Spiked Amount25.000Recovery = 99.68% Target Compounds Qvalue 4) Atrazine 11.220 200 2259070 5.36 ug/mL 97 12.400 162 5759798 5.43 ug/mL 97 12.412 197 1272290 5.36 ug/mL 91 5) Metolachlor 6) Chlorpyrifos _______ (#) = qualifier out of range (m) = manual integration (+) = signals summed • tanana Arana ang ang ang ang and the state of the 1994) - 1994) 1994 - 1994 - 1994 1994 - 1994 - 1994 in a star . · · · · · . . * 1 /

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 00401004.D Acq On : 20 Nov 2023 7:06 pm Operator : MAH Sample : CARDNO 2.5 PPM : Misc ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 07 09:53:29 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Compound _____ Internal Standards 1) Dichlorobenzene-d56.1201501304944820.00 ug/mL0.003) Acenaphthene-d109.7201641482686920.00 ug/mL# 0.007) Chrysene-d1214.7482401369961820.00 ug/mL# 0.00 7) Chrysene-d12 System Monitoring Compounds 2) 2-Fluorobiphenyl8.9211722789854424.80 ug/mL0.008) Terphenyl-d1413.4982441534769225.71 ug/mL0.00Spiked Amount25.000Recovery=102.84% Target Compounds 4) Atrazine Qvalue 11.216 200 524590 2.37 ug/mL 97 12.399 162 1283332 2.35 ug/mL 100 12.410 197 316279 2.39 ug/mL 95 5) Metolachlor 6) Chlorpyrifos (#) = qualifier out of range (m) = manual integration (+) = signals summed . i . . in in Prantidadmus a standard terretar ۰. anapresett • . . Later and states the second • • • • • • • • • • the second second : . a a na sa . • <u>.</u> . Cardo-1120.M Thu Dec 07 09:53:42 2023

Page: 1 Page 39 of 84

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 00501005.D Acq On : 20 Nov 2023 Operator : MAH Sample : CARDNO 1 PPM Misc : 7:33 pm Misc : ALS Vial : 5 Sample Multiplier: 1 Quant Time: Dec 07 09:54:10 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Compound _____ Internal Standards 1) Dichlorobenzene-d56.1201502145272720.00ug/mL0.003) Acenaphthene-d109.7211642530956420.00ug/mL#0.007) Chrysene-d1214.7512402431058420.00ug/mL#0.00 Chrysene-d12 2) 2-Fluorobiphenyl8.9221724714107225.49 ug/mL0.008) Terphenyl-d1413.5012442638630424.91 ug/mL0.00Spiked Amount25.000Recovery=99.64% Qvalue Target CompoundsQvalue4) Atrazine11.2162003573310.99ug/mL985) Metolachlor12.4001628173920.93ug/mL986) Chlorpyrifos12.4111972182800.99ug/mL92 Target Compounds <u>ne l'actualit incluent de la company de</u> (#) = qualifier out of range (m) = manual integration (+) = signals summed and a state of the second Stand and the state a such y character se a sisting sure • in the second a chu à du read and the second 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

Cardo-1120.M Thu Dec 07 09:54:27 2023

Page: 1 Page 40 of 84

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 00601006.D Acq On : 20 Nov 2023 Operator : MAH mg 00:8 Sample : CARDNO 0.5 PPM Misc : ALS Vial : 6 Sample Multiplier: 1 Quant Time: Dec 07 09:55:16 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QION Response Conc Units Dev(Min) Compound Internal Standards 1) Dichlorobenzene-d56.1191501431980420.00ug/mL0.003) Acenaphthene-d109.7181641752472420.00ug/mL#0.007) Chrysene-d1214.7482401646828320.00ug/mL#0.00 System Monitoring Compounds 2) 2-Fluorobiphenyl8.9191723283157526.60 ug/mL0.008) Terphenyl-d1413.4982441816649225.31 ug/mL0.00Spiked Amount25.000Recovery=101.24% Target Compounds
4) Atrazine Qvalue 

 4) Atrazine
 11.211 200 107804m 0.44 ug/mL

 5) Metolachlor
 12.392 162 246356m 0.42 ug/mL

 6) Chlorpyrifos
 12.410 197 66856 0.44 ug/mL

 92 (#) = qualifier out of range (m) = manual integration (+) = signals summed t Magazara a sector de tra . . • apatri tatang ita atau · . . . n - Stable - Angler Sta Stable - Sta Stable - Stable kana shi ƙa daya ƙwallon. ƙa 

### Cardo-1120.M Thu Dec 07 09:55:23 2023

in the second

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ 8:27 pm ALS Vial : 7 Sample Multiplier: 1 Quant Time: Dec 07 09:57:36 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) _____ 1) Dichlorobenzene-d56.1211502041539720.00ug/mL0.003) Acenaphthene-d109.7181642099403720.00ug/mL#0.007) Chrysene-d1214.7512402035671020.00ug/mL#0.00

System Monitoring Compounds 2) 2-Fluorobiphenyl8.9201723982126722.63ug/mL8) Terphenyl-d1413.4992442204211924.85ug/mL 8) Terphenyl-d14

Data File : 00701007.D Acq On : 20 Nov 2023 Operator : MAH

:

Compound

7) Chrysene-d12

Internal Standards

an an Artana an Ermitean ar 1

Misc

Sample : CARDNO 0.1 PPM

Spiked Amount 25.00	0		Recovery	=	99.40%	
Target Compounds					~	alue
4) Atrazine	11.215	200	18723	0.07	ug/mL#	80
5) Metolachlor	12.395	162	46040m	0.07	ug/mL	
6) Chlorpyrifos	12.407	197	12277m	0.07	ug/mL	

(#) = qualifier out of range (m) = manual integration (+) = signals summed 

· · · · and a start of the second s A start of the second , <u>Production and state</u> e and a second a a tala 1999. Na serie a tala 1999. . . . Cardo-1120.M Thu Dec 07 09:57:43 2023

0.00

0.00

Page: 1 Page 42 of 84

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 00801008.D Acq On : 20 Nov 2023 Operator : MAH 8:54 pm Sample : CARDNO 0.05 PPM Misc : ALS Vial : 8 Sample Multiplier: 1 Quant Time: Dec 07 09:58:29 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Compound Internal Standards 1) Dichlorobenzene-d56.1191502155769920.00ug/mL0.003) Acenaphthene-d109.7201642497515520.00ug/mL#0.007) Chrysene-d1214.7512402300946120.00ug/mL#0.00 7) Chrysene-d12 System Monitoring Compounds 2) 2-Fluorobiphenyl8.9201724601932924.76ug/mL0.008) Terphenyl-d1413.5002442487810124.81ug/mL0.00Spiked Amount25.000Recovery=99.24% 

 Target Compounds
 Quarter

 4) Atrazine
 11.215 200 12346 0.04 ug/mL# 81

 5) Metolachlor
 12.395 162 28307m 0.03 ug/mL

 6) Chlorpyrifos
 12.408 197 7714m 0.04 ug/mL

 (#) = qualifier out of range (m) = manual integration (+) = signals summed stational P The product of the ing the second sec ۰. . . 

Cardo-1120.M Thu Dec 07 09:58:37 2023

Page: 1 Page 43 of 84 Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 01101009.D Acq On : 20 Nov 2023 9:21 pm Operator : MAH Sample : BDK0014-BS1 Misc : ALS Vial : 11 Sample Multiplier: 1 Quant Time: Nov 21 10:15:18 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QION Response Conc Units Dev(Min) Compound Internal Standards 1) Dichlorobenzene-d56.1201502323646220.00ug/mL0.003) Acenaphthene-d109.7201643060078220.00ug/mL#0.007) Chrysene-d1214.7532402873196920.00ug/mL#0.00 System Monitoring Compounds 2) 2-Fluorobiphenyl 8.920 172 47042564 23.49 ug/mL 0.00 13.501 244 36878815 29.46 ug/mL 0.00 8) Terphenyl-d14 Spiked Amount 30.000 Recovery = 98.20% Target Compounds Qvalue 11.21720022774264.61ug/mL9812.39916258191564.69ug/mL9812.41019713087764.63ug/mL92 4) Atrazine 5) Metolachlor 6) Chlorpyrifos . (#) = qualifier out of range (m) = manual integration (+) = signals summed a sa tā data s and the case of the n anna 1997 anna 1997 1997 - Anna Anna Anna 1997 1997 - Anna Anna Anna 1997 a da ingenera per sa sa sa sa sa · · en die Synamie Deutscher der e de la tradeción de la composición de - - -- - -

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 01201010.D Acq On : 20 Nov 2023 Operator : MAH 9:48 pm Sample : BDK0014-BSD1 Misc : ALS Vial : 12 Sample Multiplier: 1 Quant Time: Nov 21 10:16:12 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Compound Internal Standards 1) Dichlorobenzene-d56.1201502060855920.00ug/mL0.003) Acenaphthene-d109.7201642862369520.00ug/mL#0.007) Chrysene-d1214.7532402614332320.00ug/mL#0.00 System Monitoring Compounds 2) 2-Fluorobiphenyl 8.920 172 44172133 24.86 ug/mL 0.00 13.501 244 36296892 31.86 ug/mL 0.00 8) Terphenyl-d14 Recovery = 106.20% Spiked Amount 30.000 1.11. Target Compounds Qvalue 4) Atrazine 11.218 200 2312306 4.95 ug/mL 97 12.399 162 5884597 5.01 ug/mL 96 12.410 197 1304037 4.92 ug/mL 94 5) Metolachlor 6) Chlorpyrifos _____ (#) = qualifier out of range (m) = manual integration (+) = signals summed · · · · · · · · · · · · · ta da serie de la s . a strandard states at . ... and a specific t . . n an an Arran an Arran Arran an Arran Arran an Arran Arran Arran an BNA-1120.M Thu Dec 07 09:33:43 2023

۰,

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 01301011.D Acq On : 20 Nov 2023 10:15 pm Operator : MAH Sample : BDK0014-BLK1 Misc : ALS Vial : 13 Sample Multiplier: 1 Quant Time: Nov 21 10:17:02 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Ouant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Compound Internal Standards 1) Dichlorobenzene-d56.1201502184308220.00ug/mL0.003) Acenaphthene-d109.7201643181785220.00ug/mL#0.007) Chrysene-d1214.7522402538514720.00ug/mL#0.00 System Monitoring Compounds 

 2) 2-Fluorobiphenyl
 8.920
 172
 47430906
 25.19 ug/mL
 0.00

 8) Terphenyl-d14
 13.501
 244
 36932469
 33.39 ug/mL
 0.00

 Spiked Amount
 30.000
 Recovery
 =
 111.30%

 Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration (+) = signals summed n Turne Santair. Tair an Antair . in a star of the second se The second se The second se The second sec : : Andreas Martin States (1998)
 Andreas Martin States (1998)
 Andreas (1998)</l g y ji Artaur

(QT Reviewed)

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 01401012.D Acq On : 20 Nov 2023 10:42 pm Operator : MAH Sample : WDJ1823-01 Misc : ALS Vial : 14 Sample Multiplier: 1 Quant Time: Nov 21 10:17:36 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Compound _____ Internal Standards 1) Dichlorobenzene-d56.1201502364304520.00ug/mL0.003) Acenaphthene-d109.7191643009945620.00ug/mL#0.007) Chrysene-d1214.7542402565737220.00ug/mL#0.00 System Monitoring Compounds 2) 2-Fluorobiphenyl 8) Terphenyl-d14 Spiked Amount 30.000 8.919 172 43272603 21.23 ug/mL 13.500 244 34063525 30.47 ug/mL Recovery = 101.57% 0.00 0.00 Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration (+) = signals summed and the second sec 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 en e anglati A state of the second seco A state of the sta コード およせい いせい . . . 1 

BNA-1120.M Thu Dec 07 09:34:20 2023

· · ·

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 01501013.D Acq On : 20 Nov 2023 11:09 pm Operator : MAH Sample : WDJ1823-03 Misc Misc : ALS Vial : 15 Sample Multiplier: 1 Quant Time: Nov 21 10:18:45 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Compound Internal Standards 1) Dichlorobenzene-d56.1181502141578320.00ug/mL0.003) Acenaphthene-d109.7191642817195020.00ug/mL#0.007) Chrysene-d1214.7502402318456320.00ug/mL#0.00 System Monitoring Compounds 

 2) 2-Fluorobiphenyl
 8.917
 172
 40494705
 21.94
 ug/mL
 0.00

 8) Terphenyl-d14
 13.500
 244
 32251404
 31.92
 ug/mL
 0.00

 Spiked Amount
 30.000
 Recovery
 =
 106.40%

 Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration (+) = signals summed 1. . . . . and the second second n en l'estrette de la tradu Les regionnes de la tradución Standard Standard Contraction of the second and a standard Standard and a standard · · · · · . a congrata de la c e service de la companya de la comp 

### BNA-1120.M Thu Dec 07 09:35:02 2023

Data Path : T:\Data1\MSD4\2023\NOV\20CD\ Data File : 01601014.D Acq On : 20 Nov 2023 11:36 pm Operator : MAH Sample : WDJ1823-04 Misc : ALS Vial : 16 Sample Multiplier: 1 Quant Time: Nov 21 10:19:58 2023 Quant Method : T:\Data1\MSD4\METHODS\2023\Cardo-1120.M Quant Title : EPA 8270D - GC MSD4 QLast Update : Tue Nov 21 10:02:28 2023 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Compound Internal Standards 1) Dichlorobenzene-d56.1201501846413220.00ug/mL0.003) Acenaphthene-d109.7181642345062920.00ug/mL#0.007) Chrysene-d1214.7512402085344720.00ug/mL#0.00 System Monitoring Compounds 

 2) 2-Fluorobiphenyl
 8.918
 172
 35199048
 22.11
 ug/mL
 0.00

 8) Terphenyl-d14
 13.500
 244
 27283341
 30.02
 ug/mL
 0.00

 Spiked Amount
 30.000
 Recovery
 =
 100.07%

 Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration (+) = signals summed a da an Africa Nacional anna an Airdí Saoine an Airdíne Anna Airdíne Anna Airdíne a service a straight • • • • • • • • a di sedan di seconda Seconda di s Seconda di s en al constant de la Recentra de la constant de la constan Recentra de la constant de la consta . and the second . . . . and the second second

• •

BNA-1120.M Thu Dec 07 09:35:28 2023

PREPARATION BENCH SHEET Metals BDL0048

Matrix: Water

Prepared using: Metals - W 3010 Digest

			and the second				
Lab Number	Prepared - By	Initial (mL)	Final (mL)	Spike ID	Source ID	ul Spike	Comments
BDL0048-BLK1	12/01/23 15:42 - JLG	50	50				
BDL0048-BS1	12/01/23 15:42 - JLG	50	50				
BDL0048-MS1	12/01/23 15:42 - JLG	50	50		WDJ1823-03		
<b>BDL0048-MS2</b>	12/01/23 15:42 - JLG	50	50		WDJ1823-12		
BDL0048-MSD1	12/01/23 15:42 - JLG	50	50		WD11823-03		
BDL0048-MSD2	12/01/23 15:42 - JLG	50	50		WDJ1823-12		
WDJ1823-01 Analytes:	01 12/01/23 15:42 - JLG Analytes: Arsenic	50	50	Client: Stantec-GS	- Trager		
<b>WDJ1823-02</b> 12/01/23 Analytes: Arsenic	12/01/23 15:42 - JLG : Arsenic	50	50	Client: Stantec-GS	200,04		
WDJ1823-03 Analytes:	03 12/01/23 15:42 - JLG Analytes: Arsenic	50	50	Client: Stantec-GS			
<b>WDJ1823-04</b> 12/01/23 Analytes: Arsenic	12/01/23 15:42 - JLG : Arsenic	50	50	Client: Stantec-GS			
<b>WDJ1823-05</b> 12/01/23 Analytes: Arsenic	12/01/23 15:42 - JLG : Arsenic	50	50	Client: Stantec-GS	-1150		
WDJ1823-06 Analytes:	06 12/01/23 15:42 - JLG Analytes: Arsenic	20	50	Client: Stantec-GS	2000		
<b>WDJ1823-07</b> 12/01/23 Analytes: Arsenic	12/01/23 15:42 - JLG : Arsenic	50	50	Client: Stantec-GS			
<b>WDJ1823-08</b> 12/01/23 Analytes: Arsenic	12/01/23 15:42 - JLG : Arsenic	50	50	Client: Stantec-GS			
<b>WDJ1823-09</b> 12/01/23 Analytes: Arsenic	12/01/23 15:42 - JLG : Arsenic	50	50	Client: Stantec-GS			
<b>WDJ1823-10</b> 12/01/23 Analytes: Arsenic	12/01/23 15:42 - JLG : Arsenic	50	50	Client: Stantec-GS			
Batch Prepared By		Date		Analytical Run Date	bate Page 1 of 2	2	C:\Promium\Element\Print\bch_Metals_\s.rpt

Page 50 of 84

					(Continued)	(pan			
Matrix: Water							Ŀ	Prepared using: Metals - W 3010 Digest	Digest
Lab Number	Prepared - By	Initial (mL)	Final (mL)	Spike ID	Source ID	ul Spike	Comments		
<b>WDJ1823-11</b> 12/01/23 Analytes: Arsenic	12/01/23 15:42 - JLG Arsenic	50	50	Client: Stantec-GS					
<b>WDJ1823-12</b> 12/01/23 Analytes: Arsenic	12/01/23 15:42 - JLG Arsenic	50	50	Client: Stantec-GS					
Support Equipment:	W PT-04 W PT-23, W PT-21, W PT-27, BLKIB	33 W PT-2	21, W PT	-27, BLK1B		Keagent ID 2003793 2303108 2303320 2303351 2303483 2303483	Description         Metals UHP Helium         P. 1:1 HCI-metals         C. Internal Standard Mix         Nitric Acid         P. Metals Digestion Vials         C. 10 ppb Tune Solution	145PO0620A 59072 - 63076 102623 -	
Page 51 of 84		Date		Analytical Run Date	ate Page 2 of 2	of 2		C. Promium Element Print boh_Metals_Is rpt	letais_is.rpt

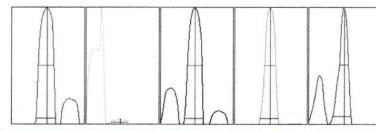
PREPARATION BENCH SHEET Metals BDL0048

### US EPA Tune Check Report

Operator Name	Metals
Acq/Data Batch	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023.b
Acq. Date-Time	2023-12-05 11:54:51
Report Comment	
Instrument Name	7800 JP17450949

### [No Gas]

### Sensitivity


Mass	Count	CPS	RSD%	RSD% (Required)	RSD% (Flag)
9	2146	21459.89	0.565	5.000	
24	8500	84995.00	2.105	5.000	
59	9034	90340.26	0.503	5.000	
115	8378	83778.52	0.725	5.000	
208	3210	32104.48	0.939	5.000	

Mass	Rep#1 Count	Rep#2 Count	Rep#3 Count	Rep#4 Count	Rep#5 Count
9	2153	2138	2164	2138	2137
24	8386	8303	8758	8589	8461
59	8979	9024	9052	9014	9100
115	8332	8408	8337	8341	8471
208	3169	3243	3200	3203	3237

Integration Time [sec]

0.1

### Resolution/Axis



Mass	Peak Height	Axis	Axis (Required)	Axis (Flag)	W-5%	W-5% (Required)	W-5% (Flag)
9	3443.21	9.00	8.90 - 9.10		0.787	0.900	
24	13369.20	23.95	23.90 - 24.10		0.743	0.900	
59	15628.35	58.95	58.90 - 59.10		0.770	0.900	
115	17803.82	115.00	114.90 - 115.10		0.750	0.900	
208	7707.70	208.00	207.90 - 208.10		0.747	0.900	

Integration Time [sec] = 0.1

Acquisition Time [sec] = 168.5

### **Tune Parameters**

### Plasma Parameters

Plasma Mode	НМІ	Nebulizer Gas	0.36 L/min	Dilution Gas	0.63 L/min
RF Power	1600 W	Option Gas		Auxiliary Gas	0.90 L/min
RF Matching	1.20 V	Nebulizer Pump	0.10 rps	Plasma Gas	15.0 L/min
Sample Depth	10.0 mm	S/C Temp	2 °C		

Y Axis =

Linear

2023-12-05 11:54 AM

# US EPA Tune Check Report

	Lens Parameters						
	Extract 1	0.0 V	Omega Lens	8.1 V	Deflect	12.8 V	
	Extract 2	-170.0 V	Cell Entrance	-30 V	Plate Bias	-35 V	
	Omega Bias	-95 V	Cell Exit	-50 V			
	Cell Parameters						
	Use Gas	No	3rd Gas Flow		Energy Discrimination	5.0 V	
	He Flow	0.0 mL/min	OctP Bias	-8.0 V			
	H2 Flow		OctP RF	200 V			
	QP Parameters						
	Mass Gain	168	Axis Gain	1.0041	QP Bias	-3.0 V	
	Mass Offset	124	Axis Offset	0.03			
۲	ardware Settings						
	Torch						
	Torch H	0.4 mm	Torch V	-0.2 mm			
	EM						
	Discriminator	3.7 mV	Analog HV	2286 V	Pulse HV	1775 V	

	R Va	Sample	Data File	Acq. Date-Time	îme /	ime / Type		Туре	Type Level Sample Name	Type Level
-1		٦	001CALB.	2023-12-05 16:05:00		CalBlk	CalBlk 1	CalBlk 1 Blank	<b>1</b>	<b>1</b>
+ 2		ব	002CALB.	2023-12-05 16:07:20	-	CalBlk	CalBlk 1		1	1
• 3		ব	003CALB.	2023-12-05 16:09:38	Са	CalBlk	IBIk 1		1	1
+ 4			004CALS.	2023-12-05 16:11:56	CalStd	Std	Std 2		2	2
ភ		٦	005CALS.	2023-12-05 16:14:14	CalStd	Std	Std 3		3	3
6		٦	006CALS.	2023-12-05 16:16:32	CalStd	Std	Std 4		4	4
7			007CALS.	2023-12-05 16:18:51	CalStd	ă	std 5		5	5
8			008CALS.	2023-12-05 16:21:11	CalStd	ťđ	td 6		6	6
9		П	009_RIN.d	2023-12-05 16:32:39	RINSE	m	m	E Rinse		
10		٦	010_ICV.d	2023-12-05 16:34:57	ICV			ICV- 40ppb	ICV- 40ppb	ICV- 40ppb 1.0000
11			011_LDR.d	2023-12-05 16:37:15	LDR			Daily LDR- 500pp	Daily LDR- 500pp	Daily LDR- 500pp 1.0000
12		٦	012_RIN.d	2023-12-05 16:39:35	RINSE	m	m	E Rinse		
13			013_RIN.d	2023-12-05 16:41:53	RINSE	m	m	Rinse		
14			014_RIN.d	2023-12-05 16:44:11	RINSE	ш	m	E Rinse		
15			015_RIN.d	2023-12-05 16:46:31	RINSE	m		E Rinse		
16			016_Blk.d	2023-12-05 16:48:50	Blank			BDL0048-BLK1		
17			017LICV.d	2023-12-05 16:51:08	LLICV			BDL0048-MRL1		
18			018_LCS.d	2023-12-05 16:53:29	LCS			BDL0048-BS1	BDL0048-BS1	BDL0048-BS1 1.0000
19	2		019_ARF.d	2023-12-05 16:55:49	AllRef	-		f WDJ1823-03		
• 20	2		020_LFM.d	2023-12-05 16:58:07	LFM			BDL0048-MS1	BDL0048-MS1	BDL0048-MS1 1.0000
+ 21	2		021LFMD.	2023-12-05 17:00:28	LFMDup	Oup	Oup	Dup BDL0048-MSD1		
• 22	2		022SMPL.	2023-12-05 17:02:46	Sample	ole	ole	ple WDJ1823-04		
• 23	2	٦	023SMPL.	2023-12-05 17:05:05	Sample	ple	ple	ple WDJ1823-05		
24		٦	024SMPL.	2023-12-05 17:07:26	Sample	ple	ple	ple WDJ1823-06		
25		٦	025SMPL.	2023-12-05 17:09:47	Sample	ple	ple	ple WDJ1823-07		

		•	•	•••••••	÷	••••••	•	÷	Ð	•	÷	•	•	•	•	•	•	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•	•••••••••••••••••••••••••••••••••••••••	•	•••••	•	•
		26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Sample	R																				2	*	2	4	1	4
ple	Rjct										٦		٦													٦
	Data File	026SMPL.	027SMPL.	028SMPL.	029SMPL.	030_ARF.d	031_LFM.d	032LFMD.	033_RIN.d	034_CCV.	035_CCB.	036_RIN.d	037SMPL.	038SMPL.	039_Blk.d	040_LCS.d	041_RIN.d	042_CCV.	043_CCB.	044_RIN.d	045_ARF.d	046_LFM.d	047LFMD.	048SMPL.	049SMPL.	050_RIN.d
	Acq. Date-Time	2023-12-05 17:12:06	2023-12-05 17:14:27	2023-12-05 17:16:45	2023-12-05 17:19:04	2023-12-05 17:21:25	2023-12-05 17:23:43	2023-12-05 17:26:02	2023-12-05 17:28:23	2023-12-05 17:30:41	2023-12-05 17:32:59	2023-12-05 17:35:20	2023-12-05 17:37:38	2023-12-05 17:39:57	2023-12-05 17:42:18	2023-12-05 17:44:47	2023-12-05 17:47:05	2023-12-05 17:49:25	2023-12-05 17:51:43	2023-12-05 17:54:02	2023-12-05 17:56:22	2023-12-05 17:58:40	2023-12-05 18:00:59	2023-12-05 18:03:20	2023-12-05 18:05:38	2023-12-05 18:07:56
	Туре	Sample	Sample	Sample	Sample	AllRef	LFM	LFMDup	RINSE	CCV	ССВ	RINSE	Sample	Sample	Blank	LCS	RINSE	CCV	ССВ	RINSE	AllRef	LFM	LFMDup	Sample	Sample	RINSE
	Level	•																								
	Sample Name	WDJ1823-08	WDJ1823-09	WDJ1823-10	WDJ1823-11	WDJ1823-12	BDL0048-MS2	BDL0048-MSD2	Rinse	CCV	ССВ	Rinse	WDJ1823-01	WDJ1823-02	BDL0048-BLK1	BDL0048-BS1	Rinse	CCV	ССВ	Rinse	WDJ1823-03	BDL0048-MS1	BDL0048-MSD1	WDJ1823-04	WDJ1823-05	Rinse
	Comment																									
	Total Dil.	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	t Total Dil. Vial Number	3201	3202	3203	3204	3205	3206	3207	4	1106	1101	5	3104	3105	3208	3209	4	1106	1101	5	3106	3107	3108	3109	3110	4

A STREET, STRE	+		:	+	+	+	+	+ (P	+ -
	51	52	53	54	55	56	57	85	59
Sample Rjc	4	*	*	4	R	4	*	*	4
nple Rjct		٦		٦	٦			٦	٦
Data File	051_CCV.	052_CCB.	053_RIN.d	054_RIN.d	055_CCV.	056_CCB.	057_RIN.d	058_RIN.d	059_RIN.d
Acq. Date-Time	2023-12-05 18:10:16	2023-12-05 18:12:34	2023-12-05 18:14:53	2023-12-05 18:17:13	2023-12-05 18:19:31	2023-12-05 18:21:49	2023-12-05 18:24:10	2023-12-05 18:26:28	2023-12-05 18:28:46
Туре	CCV	ССВ	RINSE	RINSE	CCV	ССВ	RINSE	RINSE	RINSE
Level									
Sample Name	CCV	ССВ	Rinse	Rinse	CCV	ССВ	Rinse	Rinse	Rinse
Comment									
Total Dil.	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Comment Total Dil. Vial Number	1106	1101	5	4	1106	1101	5	5	5

Sample Name	BDL0048-BLK1
File Name	016_Blk.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 16:48:50
Sample Type	Blank
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	0.047	He	0.047	72	9.9	0.06	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2482337,50	1.0	92.4	2685743
Ge	72	He	644643.50	0.8	89.1	723375.993333333
Ge	72	HEHe	303712.54	0.9	90.3	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Ho	165	No Gas				0
Но	165	He				0

Agilent Technologies

2023-12-06 9:13 AM

Sample Name	BDL0048-MRL1
File Name	017LICV.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 16:51:08
Sample Type	LLICV
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	0.933	He	0.933	72	1.5	1	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2551653.25	1.9	95.0	2685743
Ge	72	He	667621.00	1.4	92.3	723375.993333333
Ge	72	HEHe	311885.72	1.6	92.8	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Ho	165	No Gas				0
Но	165	He				0

2023-12-06 9:13 AM

Sample Name	BDL0048-BS1
File Name	018_LCS.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 16:53:29
Sample Type	LCS
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	50.471	He	50.471	72	0.7	50	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2484818.25	1.1	92.5	2685743
Ge	72	Не	639805.88	0.3	88.4	723375.993333333
Ge	72	HEHe	301541.11	2.0	89.7	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Ho	165	He				0

2023-12-06 9:13 AM

Sample Name	WDJ1823-03
File Name	019_ARF.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 16:55:49
Sample Type	AliRef
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Fail
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	1.271	Не	1.271	72	2.4	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	1471112.29	1.1	54.8	2685743
Ge	72	Не	452720.38	2.1	62.6	723375.993333333
Ge	72	HEHe	210851.85	1.1	62.7	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Ho	165	No Gas				0
Но	165	He				0

2023-12-06 9:11 AM

Sample Name	BDL0048-MS1
File Name	020_LFM.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 16:58:07
Sample Type	LFM
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Fail
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	57.011	He	57.011	72	2.2	100	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	1523381.71	0.4	56.7	2685743
Ge	72	He	471087.74	1.8	65.1	723375.993333333
Ge	72	HEHe	206886.07	1,1	61.5	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

2023-12-06 9:11 AM

Sample Name	BDL0048-MSD1
File Name	021LFMD.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:00:28
Sample Type	LFMDup
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Fail
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	55.361	He	55.361	72	0.9	20	1

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	1500356.91	0.3	55.9	2685743
Ge	72	He	453919.10	1.2	62.8	723375.993333333
Ge	72	HEHe	202553.01	1.8	60.2	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

2023-12-06 9:11 AM

Sample Name	WDJ1823-04
File Name	022SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:02:46
Sample Type	Sample
Total Dilution	1.0000
Comment	***
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Fail
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	1.252	He	1.252	72	2.7	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas	-			0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	1557136.63	1.0	58.0	2685743
Ge	72	He	448300.36	0.2	62.0	723375.993333333
Ge	72	HEHe	213824.84	0.8	63.6	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

Agilent Technologies

2023-12-06 9:10 AM

Sample Name	WDJ1823-05
File Name	023SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:05:05
Sample Type	Sample
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Fail
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	24.117	He	24.117	72	1.7	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas			_	0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	1580784.46	1,1	58.9	2685743
Ge	72	He	472006.04	1.1	65.3	723375.993333333
Ge	72	HEHe	213804.88	1.3	63.6	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

Sample Name	WDJ1823-06
File Name	024SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:07:26
Sample Type	Sample
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	1.638	He	1.638	72	3.2	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2440419,58	1.2	90.9	2685743
Ge	72	He	667848.62	0.8	92.3	723375.993333333
Ge	72	HEHe	301636.42	1.7	89.7	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

Agilent Technologies

2023-12-06 9:09 AM

Sample Name	WDJ1823-07
File Name	025SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:09:47
Sample Type	Sample
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	2.456	He	2.456	72	1.5	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2331584.58	4.5	86.8	2685743
Ge	72	He	657510.70	0.2	90.9	723375.993333333
Ge	72	HEHe	299212.39	0.5	89.0	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Ho	165	He				0

2023-12-06 9:09 AM

Sample Name	WDJ1823-08
File Name	026SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:12:06
Sample Type	Sample
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	2.060	He	2.06	72	2.3	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2205283.83	1.4	82.1	2685743
Ge	72	He	605355.95	1.0	83.7	723375.993333333
Ge	72	HEHe	272950.62	0.8	81.2	336257.34
Rh	103	No Gas				0
Rh	103	Не				0
Но	165	No Gas				0
Ho	165	He				0

2023-12-06 9:09 AM

Sample Name	WDJ1823-09
File Name	027SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:14:27
Sample Type	Sample
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	1.321	Не	1.321	72	2.1	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2302699.83	0.5	85.7	2685743
Ge	72	Не	641200.77	0.5	88.6	723375.993333333
Ge	72	HEHe	300974.17	5.4	89.5	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

2023-12-06 9:08 AM

Sample Name	WDJ1823-10
File Name	028SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:16:45
Sample Type	Sample
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	4.386	He	4.386	72	0.8	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Lì	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2278895.42	1.0	84.9	2685743
Ge	72	Не	636139.89	0.5	87.9	723375.993333333
Ge	72	HEHe	294499.85	1.2	87.6	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

2023-12-06 9:08 AM

Sample Name	WDJ1823-11
File Name	029SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:19:04
Sample Type	Sample
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	0.632	He	0.632	72	4.6	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2321570.33	1.2	86.4	2685743
Ge	72	He	636188.60	0.5	87.9	723375.993333333
Ge	72	HEHe	303416.30	1.8	90.2	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Ho	165	No Gas				0
Но	165	He				0

2023-12-06 9:07 AM

Sample Name	WDJ1823-12
File Name	030_ARF.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:21:25
Sample Type	AllRef
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	0.507	He	0.507	72	3.3	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2364445.75	2.4	88.0	2685743
Ge	72	He	649834.42	1.2	89.8	723375.993333333
Ge	72	HEHe	297203.07	2.3	88.4	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0



2023-12-06 9:07 AM

Sample Name	BDL0048-MS2
File Name	031_LFM.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:23:43
Sample Type	LFM
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	50.210	He	50.21	72	1.6	100	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He			4	0
Ge	72	No Gas	2322619.17	0.5	86.5	2685743
Ge	72	He	654313.17	1.0	90.5	723375.993333333
Ge	72	HEHe	304607.31	1.2	90.6	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

Agilent Technologies

2023-12-06 9:07 AM

BDL0048-MSD2
032LFMD.d
D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
2023-12-05 17:26:02
LFMDup
1.0000
001CALB.d
Pass
Pass
JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	53.622	He	53.622	72	0.9	20	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2284969.58	0.2	85.1	2685743
Ge	72	He	639182.79	0.6	88.4	723375.993333333
Ge	72	HEHe	291895.58	2.0	86.8	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

Agilent Technologies

1 of 1

2023-12-06 9:06 AM

Sample Name	CCV
File Name	034_CCV.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:30:41
Sample Type	CCV
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	51.684	He	51.684	72	0.1	50	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	Не				0
Ge	72	No Gas	2314693.33	0.4	86.2	2685743
Ge	72	He	648329.35	0.2	89.6	723375.993333333
Ge	72	HEHe	295199.82	1.4	87.8	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

2023-12-06 9:05 AM

Sample Name	ССВ
File Name	035_CCB.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:32:59
Sample Type	ССВ
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	0.032	He	0.032	72	5.2	0.06	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2314219.08	1.6	86.2	2685743
Ge	72	He	641867.46	0.2	88.7	723375.993333333
Ge	72	HEHe	294908.03	1.2	87.7	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

Agilent Technologies

2023-12-06 9:05 AM

Sample Name	WDJ1823-01
File Name	037SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:37:38
Sample Type	Sample
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	0.806	He	0.806	72	4.4	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2206569.83	1.0	82.2	2685743
Ge	72	He	582058.14	0.4	80.5	723375.993333333
Ge	72	HEHe	266910.71	2.0	79.4	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0



2023-12-06 9:04 AM

Sample Name	WDJ1823-02
File Name	038SMPL.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:39:57
Sample Type	Sample
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	1.164	He	1.164	72	4.7	1000	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2157583,50	2.1	80.3	2685743
Ge	72	He	581448.10	1.1	80.4	723375.993333333
Ge	72	HEHe	269102.53	1.2	80.0	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

2023-12-06 9:04 AM

BDL0048-BLK1
039_Blk.d
D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
2023-12-05 17:42:18
Blank
1.0000
001CALB.d
Pass
Pass
JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	<0.000	He	-0.062	72	14.8	0.06	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2236777.00	1.0	83.3	2685743
Ge	72	He	597747.30	1.4	82.6	723375.993333333
Ge	72	HEHe	273166.99	1.1	81.2	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

1 of 1

Sample Name	BDL0048-BS1
File Name	040_LCS.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:44:47
Sample Type	LCS
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	55.583	He	55.583	72	0.6	50	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2215279.83	2.3	82.5	2685743
Ge	72	He	604059.89	0.8	83.5	723375.993333333
Ge	72	HEHe	274293.65	1.6	81.6	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Ho	165	He				0

2023-12-06 9:03 AM

Sample Name	CCV
File Name	042_CCV.d
Data Path Name	D:\Agilent\ICPMH\1\DATA\Method Batches\RXN\Sequences\12052023 HIGH As.b
Acq Time	2023-12-05 17:49:25
Sample Type	ccv
Total Dilution	1.0000
Comment	
ISTD Ref FileName	001CALB.d
Sample QC Pass/Fial	Pass
ISTD QC Pass/Fail	Pass
Operator	JLG

#### QC Analyte Table

Mass	Name	Conc.	Tune	Raw Conc.	ISTD	CPS RSD	LDR	QC Flag
75	As	53.129	He	53.129	72	0.1	50	

QC ISTD Table

Name	Mass	Tune Mode	CPS	CPS RSD	ISTD Recovery %	ISTD Ref CPS
Li	6	No Gas				0
Sc	45	No Gas				0
Sc	45	He				0
Ge	72	No Gas	2233967.75	0.5	83.2	2685743
Ge	72	He	621932.79	1.2	86.0	723375.993333333
Ge	72	HEHe	282351.18	1.1	84.0	336257.34
Rh	103	No Gas				0
Rh	103	He				0
Но	165	No Gas				0
Но	165	He				0

2023-12-06 9:02 AM

 Report Generated By Teledyne CETAC QuickTrace

 Analyst:
 Mercury

 Worksheet file:
 C:\Users\Public\Documents\Teledyne CETAC\QuickTrace\Worksheets\11162023 Hg A.wszf

 Creation Date:
 11/16/2023 11:27:37 AM

 Comment:
 Image: Comment image: Certac im

## Results

Sample	Name		Туре	Date/Ti	ime	Conc (ug/L)	µAbs	%RSD	Residual Flag	gs % Recovery
Calibratio	on Blank		STD	11/16/2	3 01:10:58 pm	0.000	-58	174.66	-83.54	N/A
	Replicates	66.6	-24.9	-108.0	-164.0					
Standard	d #1 (0.5 ug/L)		STD	11/16/2	3 01:13:29 pm	0.500	9246	1.54	-74.08	N/A
	Replicates	9420.4	9299.6	9163.3	9101.6					
Standard	d #2 (1 ug/L)		STD	11/16/2	3 01:16:00 pm	1.000	18448	1.20	-70.23	N/A
	Replicates	18725.9	18512.3	18334.0	18218.6					
Standard	d #3 (2.0 ug/L)		STD	11/16/2	3 01:18:32 pm	2.000	39872	1.24	102.90	N/A
	Replicates	40515.9	39976.8	39617.5	39376.3					
Standard	d #4 (5.0 ug/L)		STD	11/16/2	3 01:21:05 pm	5.000	97703	0.97	269.60	N/A
	Replicates	98934.7	97910.5	97194.3	96771.6					
Standard	d #5 (10.0 ug/L)		STD	11/16/2	3 01:23:37 pm	10.000	181449	1.07	-144.65	N/A
	Replicates	183969.0	181871.9	180401.5	179553.4					
Calibra	ation									
Equ R2:	0.99	1467.956 + 9834	18262.265C		ano	150,000 - 100,000 -				
		4.0480			hAbsor	50,000	•			
		4.0480			hAbsor	-		4 5 entration		9 10
Flag			ICV	11/16/2	3 01:28:25 pm	50,000				9 10
Standard # Standard # Standard # Standard # Standard # Standard # Calibratio Equati R2: SEE: Flags: ICV CCV (95-10 R CCB BLANK R LCS R WDJ1701-0		87298.8	ICV 87787.8	11/16/2 88223.0		50,000 0 0 1	Conc	entratio		
Flag	gs: Replicates			88223.0	3 01:28:25 pm	50,000 0 0 1 4.730	Conc	entratio		
Flag	gs: Replicates		87787.8	88223.0	3 01:28:25 pm 88230.0	50,000 0 0 1 4.730	Conc 87885	entration 0.51	ו (ug/L)	118.30
Flag ICV CCV (95-	Replicates	87298.8	87787.8 OPR	88223.0 11/16/2 97090.5	3 01:28:25 pm 88230.0 3 01:30:58 pm	50,000 0 0 1 4.730	Conc 87885	entration 0.51	ו (ug/L)	118.30
Flag ICV CCV (95-	Replicates	87298.8	87787.8 OPR 97847.7	88223.0 11/16/2 97090.5	3 01:28:25 pm 88230.0 3 01:30:58 pm 96661.7	50,000 0 0 1 4.730 5.270	Conc 87885 97649	0.51 1.06	ו (ug/L)	118.30
Flag ICV CCV (95- CCB	Replicates -105%) Replicates	87298.8 98995.3	87787.8 OPR 97847.7 CCB	88223.0 11/16/2 97090.5 11/16/2 91.5	3 01:28:25 pm 88230.0 3 01:30:58 pm 96661.7 3 01:33:29 pm	50,000 0 0 1 4.730 5.270 -0.072	Conc 87885 97649	0.51 1.06	ו (ug/L)	118.30 105.33 N/A
Flag ICV CCV (95- CCB	Replicates -105%) Replicates	87298.8 98995.3	87787.8 OPR 97847.7 CCB 192.6	88223.0 11/16/2 97090.5 11/16/2 91.5	3 01:28:25 pm 88230.0 3 01:30:58 pm 96661.7 3 01:33:29 pm 0.6	50,000 0 0 1 4.730 5.270 -0.072	Conc 87885 97649 150	0.51 1.06 10.20	ו (ug/L)	118.30
Flag ICV CCV (95- CCB BLANK	Replicates -105%) Replicates Replicates	87298.8 98995.3 313.5	87787.8 OPR 97847.7 CCB 192.6 MB	88223.0 11/16/2 97090.5 11/16/2 91.5 11/16/2 16.4	3 01:28:25 pm 88230.0 3 01:30:58 pm 96661.7 3 01:33:29 pm 0.6 3 01:36:00 pm	50,000 0 0 1 4.730 5.270 -0.072	Conc 87885 97649 150 59	0.51 1.06 10.20 2.93	n (ug/L) Q	118.30 105.33 N/A N/A
Flag CV CCV (95- CCB BLANK	Replicates -105%) Replicates Replicates	87298.8 98995.3 313.5	87787.8 OPR 97847.7 CCB 192.6 MB 79.2	88223.0 11/16/2 97090.5 11/16/2 91.5 11/16/2 16.4	3 01:28:25 pm 88230.0 3 01:30:58 pm 96661.7 3 01:33:29 pm 0.6 3 01:36:00 pm 33.2	50,000 0 0 1 4.730 5.270 -0.072 -0.077	Conc 87885 97649 150	0.51 1.06 10.20	ו (ug/L)	118.30 105.33 N/A
Flag ICV CCV (95- CCB BLANK _CS	Replicates -105%) Replicates Replicates Replicates Replicates	87298.8 98995.3 313.5 106.0	87787.8 OPR 97847.7 CCB 192.6 MB 79.2 LCS 88385.1	88223.0 11/16/2 97090.5 11/16/2 91.5 11/16/2 16.4 11/16/2 85559.0	3 01:28:25 pm 88230.0 3 01:30:58 pm 96661.7 3 01:33:29 pm 0.6 3 01:36:00 pm 33.2 3 01:38:31 pm 84561.6	50,000 0 0 1 4.730 5.270 -0.072 -0.077 4.740	Conc 87885 97649 150 59 87945	entration 0.51 1.06 10.20 2.93 4.52	n (ug/L) Q	118.30 105.33 N/A N/A 118.38
Flag ICV CCV (95- CCB BLANK LCS	Replicates -105%) Replicates Replicates Replicates Replicates	87298.8 98995.3 313.5 106.0	87787.8 OPR 97847.7 CCB 192.6 MB 79.2 LCS	88223.0 11/16/2 97090.5 11/16/2 91.5 11/16/2 16.4 11/16/2 85559.0	3 01:28:25 pm 88230.0 3 01:30:58 pm 96661.7 3 01:33:29 pm 0.6 3 01:36:00 pm 33.2 3 01:38:31 pm	50,000 0 0 1 4.730 5.270 -0.072 -0.077 4.740	Conc 87885 97649 150 59	0.51 1.06 10.20 2.93	n (ug/L) Q	118.30 105.33 N/A N/A
Flag ICV CCV (95- CCB BLANK LCS WDJ170	Replicates -105%) Replicates Replicates Replicates Replicates 11-01 Replicates	87298.8 98995.3 313.5 106.0 93275.5	87787.8 OPR 97847.7 CCB 192.6 MB 79.2 LCS 88385.1 UNK	88223.0 11/16/2 97090.5 11/16/2 91.5 11/16/2 16.4 11/16/2 855559.0 11/16/2 11.9	3 01:28:25 pm 88230.0 3 01:30:58 pm 96661.7 3 01:33:29 pm 0.6 3 01:36:00 pm 33.2 3 01:38:31 pm 84561.6 3 01:41:02 pm	50,000 0 1 4.730 5.270 -0.072 -0.077 4.740 -0.078	Conc 87885 97649 150 59 87945 46	entration 0.51 1.06 10.20 2.93 4.52	n (ug/L) Q	118.30 105.33 N/A N/A 118.38

12/13/2023 4:32:21 PM

11162023 Hg A.wszf

Page 1

Sample	Name		Туре	Date/Tir	ne	Conc (ug/L)	µAbs	%RSD	Residual Flags % Recovery
WDJ170	01-03		UNK	11/16/23	3 01:46:05 pm	-0.089	-165	2.85	N/A
	Replicates	-99.1	-165.3	-194.2	-201.3				
WDJ17	01-04		UNK	11/16/23	3 01:48:37 pm	-0.060	378	2.60	N/A
	Replicates	413.6	369.5	345.7	383.0				
WDJ177	79-08		UNK	11/16/23	3 01:51:09 pm	-0.087	-125	0.53	N/A
	Replicates	-126.4	-113.4	-125.9	-133.7				
MS1			UNK	11/16/23	3 01:53:41 pm	-0.089	-166	2.77	N/A
	Replicates	-166.6	-196.7	-198.5	-101.7				
MSD1			UNK	11/16/23	3 01:56:13 pm	-0.079	19	2.16	N/A
	Replicates	-21.9	37.3	48.8	11.9				
WDJ182	23-01		UNK	11/16/23	3 01:58:45 pm	-0.077	58	6.03	N/A
	Replicates	161.8	94.2	-8.3	-14.0	0.011		0.00	
WDJ182			UNK		3 02:01:18 pm	-0.076	82	4.05	N/A
	Replicates	30.6	39.6	109.4	147.4	-0.070	02	4.00	IN/A
WDJ182			UNK		3 02:03:49 pm	-0.089	-160	1.14	N/A
VVDJ102	Replicates	-141.8	-149.4	-163.7	-183.9	-0.089	-100	1.14	N/A
	Replicates	-141.0					00070	0.40	
MS2	Deplicates	90336 3	UNK	90171.6	3 02:06:20 pm	4.840	89870	0.43	N/A
	Replicates	89336.2			90102.0				exemplation of the statement of the
MSD2			UNK		3 02:08:51 pm	5.080	94263	0.93	N/A
	Replicates	93851.1		94003.8	95544.0	nan disanta salah			
WDJ182			UNK		3 02:11:22 pm	-0.075	90	4.14	N/A
	Replicates	158.9	110.6	65.1	26.9				
WDJ182	23-05		UNK	11/16/23	3 02:13:54 pm	-0.070	197	1.24	N/A
	Replicates	217.5	188.4	200.6	181.6				
WDJ170	01-04		UNK	11/16/23	3 02:16:26 pm	-0.083	-38	2.88	N/A
	Replicates	15.0	-22.7	-58.4	-84.9				
MS1			UNK	11/16/23	3 02:18:57 pm	3.550	66375	0.34	N/A
	Replicates	66508.1	66171.4	66198.8	66620.1				
MSD1		_	UNK	11/16/23	3 02:21:30 pm	4.110	76449	1.21	N/A
	Replicates	76009.0	75644.2	76418.1	77726.1				
WDJ182	23-01		UNK	11/16/23	3 02:24:02 pm	-0.060	363	12.89	N/A
	Replicates	541.3	406.7	288.2	216.3				
WDJ182	23-02		UNK	11/16/23	3 02:26:34 pm	-0.024	1024	5.85	N/A
	Replicates	1059.4	1003.4	1028.5	1006.2				
BLK			UNK	11/16/23	3 02:29:06 pm	-0.089	-165	0.90	N/A
	Replicates	-143.7	-171.7	-166.7	-177.3			41 A T	
СК			UNK		3 02:31:38 pm	2.210	41806	1.44	N/A
	Replicates	42544.2		41494.6	41221.6	2.210		1.44	1975
WDJ182			UNK		3 02:34:09 pm	-0.061	355	1.82	N/A
	Replicates	380.8	332.8	347.0	358.8	-0.001	555	1.02	11/0

12/13/2023 4:32:21 PM

11162023 Hg A.wszf

Page 2

Page 82 of 84

Sample	Name		Туре	Date/Tir	ne	Conc (ug/L)	µAbs '	%RSD	Residual Flags % Recovery
WDJ182	23-07		UNK	11/16/23	3 02:36:41 pm	-0.061	352	0.89	N/A
	Replicates	342.9	363.4	357.0	344.5				
WDJ182	23-08		UNK	11/16/23	3 02:39:13 pm	-0.044	669	3.04	N/A
	Replicates	695.0	685.3	652.3	645.4				
WDJ182	23-09		UNK	11/16/23	3 02:41:45 pm	-0.024	1038	2.26	N/A
	Replicates	1051.7	1034.0	1036.5	1029.3				
WDJ182	23-10		UNK	11/16/23	3 02:44:17 pm	-0.051	533	1.60	N/A
	Replicates	548.5	539.3	513.3	530.8				
WDJ182	23-11		UNK	11/16/23	3 02:46:49 pm	-0.039	762	4.25	N/A
	Replicates	797.5	773.1	749.5	728.0				
WDJ182	23-12		UNK	11/16/23	3 02:49:22 pm	-0.048	597	2.18	N/A
	Replicates	622.0	590.5	597.7	576.7				
WDK010	05-01		UNK	11/16/23	3 02:51:53 pm	-0.077	64	2.61	N/A
	Replicates	114.3	67.8	34.1	39.8				
WDK010	05-08		UNK	11/16/23	3 02:54:24 pm	-0.050	552	1.77	N/A
	Replicates	536.2	574.1	544.8	551.1				
WDK130	0-06		UNK	11/16/23	3 02:56:55 pm	-0.070	183	1.38	N/A
	Replicates	200.5	195.5		171.0				
BLANK			UNK	11/16/23	3 02:59:27 pm	-0.063	310	1.55	N/A
	Replicates	319.5	330.5	297.6	292.6				
LCS			UNK	11/16/23	03:01:58 pm	5.210	96642	0.87	N/A
	Replicates	97697.6	96877.1	96148.6	95843.3				
CKBLK			UNK	11/16/23	3 03:04:29 pm	-0.070	180	5.40	N/A
	Replicates	112.3	206.7	264.7	134.7				
CK2			UNK	11/16/23	3 03:07:01 pm	1.010	19951	1.24	N/A
	Replicates	20237.4	20023.2	19829.2	19716.2				
BLANK			UNK	11/16/23	03:09:32 pm	-0.062	335	0.99	N/A
	Replicates	346.6	343.4	327.4	324.2			0.00	
LCS			UNK	11/16/23	03:12:04 pm	5.100	94636	0.93	N/A
	Replicates	95658.1		94257.7	93654.7	0.100	0,000	0.00	
WDK014			UNK		03:14:36 pm	-0.063	315	1.70	N/A
	Replicates	331.8	330.4	292.4	304.1	0.000	010	1.70	19/7
WDK014			UNK	Outpatrie &	03:17:08 pm	-0.072	156	1.47	N/A
	Replicates	132.6	151.0	178.3	163.1	-0.072	150	1.47	19/75
WDK014			UNK		03:19:40 pm	-0.066	255	0.53	N/A
	Replicates	258.3	262.5	250.5	249.0	-0.000	200	0.00	11/75
WDK014		200.0	UNK			0.066	270	0.73	<b>N</b> UA
	Replicates	271.1	278.8	273.0	03:22:13 pm 258.2	-0.066	270	0.73	N/A
WDK041		£, 1, 1				0.050	FOO	4 47	
VUR041	Replicates	496.4	UNK 496.7	519.4	03:24:45 pm 522.5	-0.052	509	1.47	N/A

11162023 Hg A.wszf

Page 3

Sample	Name		Туре	Date/T	ime	Conc (ug/L)	µAbs	%RSD	Residual Flags % Recovery
MS3			UNK	11/16/2	23 03:27:17 pm	5.360	99297	0.28	N/A
	Replicates	99642.6	99398.2	99103.5	99043.9				
MSD3			UNK	11/16/2	23 03:29:48 pm	4.950	91786	0.45	N/A
	Replicates	92261.9	91958.0	91572.5	91352.8				
BLANK			UNK	11/16/:	23 03:32:19 pm	-0.183	-1871	0.87	N/A
	Replicates	-1847.5	-1844.6	-1891.1	-1900.6				
LCS			UNK	11/16/2	23 03:34:50 pm	4.710	87544	0.50	N/A
	Replicates	88058.2	87711.3	87325.0	87081.5				
BLANK			UNK	11/16/2	23 03:37:21 pm	-0.213	-2419	0.23	N/A
	Replicates	-2407.8	-2428.1	-2424.1	-2417.6				
СК			UNK	11/16/2	23 03:39:53 pm	1.670	31883	1.07	N/A
	Replicates	32252.0	32030.5	31745.3	31505.1				
CK2			UNK	11/16/2	23 03:42:26 pm	3.960	73701	1.17	N/A
	Replicates	74682.4	74045.5	73336.8	72740.5				
CK1			UNK	11/16/2	23 04:04:26 pm	0.345	7771	0.96	N/A
	Replicates	7843.7	7790.6	7748.6	7702.3				
СКЗ			UNK	11/16/2	23 04:06:58 pm	0.683	13942	0.97	N/A
	Replicates	14072.6	14004.6	13889.8	13799.8				

Page 4



CLIENT:	Cardno-GS / Stantec
	737 Bishop Street, Suite 3050
	Honolulu HI 96813
ATTENTION:	Benjamin Berridge / Hannah Hubanks
	Benjamin.Berridge@cardno-gs.com

FILE No.:	1494
REPORT DATE:	10/26/2023
PAGE:	1 of 1

## **AECOS REPORT OF RESULTS**

SAMPLE TYPE: DATE SAMPLED:	Seawater 10/24/23			49083 10/24/23 @1726**		
TEMP. CONTROL: DATE/TIME ANALY	7.4 °C ZED: 10/24/23	@1754*	SAMPLER: S MATRIX: W	• Gabitzer Vater Knapstein		
	ANALYTE (UNITS)	Enterococcus (MPN/100ml)	Dilution Factor (10 ml / 100 ml)	Number of large positive wells	Number of small positive wells	
	METHOD →	ASTM D650399				
SAMPLE ID &	TIME SAMPLED					
WW-3 **	0830	>24,000	10	49	48	
D-4 **	0903	380	10	25	3	
D-8 **	0915	1900	10	47	15	
D-7 *	0930	5200	10	49	27	
D_3 **	0922	1500	10	45	13	
D-2.*	0940	960	10	42	5	
D-6 *	0945	9200	10	49	37	
WW-6 *	0945	4600	10	49	25	
U-3 / WW-4	1015	1900	10	47	15	
E-1	1030	41	10	4	0	
E-1 dup	1035	20	10	1	1	
U-2 / WW-5	1030	24,000	10	49	47	

* Samples were received and processed past the hold time.

** Samples were processed past the hold time.

for AECOS, Inc.

	S							CHAIN O	F CUST	CHAIN OF CUSTODY FORM
		AECUS, Inc	, S	Inc.	101			PROJECT		
		45-959 Kamenamena rugnway Suute 104 Kaneohe, Oahu, HI 96744 Tel: (808) 234-7770 Fax: 234-7775	umena r u, HI 770 Fax	ондлмау эшие. 967 <u>44</u> «: 234-7775	10 <del>1</del>			FILE No. LOG NUMBER		C
L	CLIENT: Cardno GS/nc	GS/nc.	-	CONTACT:		808-47	808-476-0067		□ RUSH	HS
	ADDRESS: 737 BISnop Street	shop Street		PHONE No.:	No.:	() ()			D SEE	SEE REVERSE
	lever!	Hensinh, HZ 96813	9	Furchase Order 180.	Order 1	No.:			SPECIA	SPECIAL INSTRUCTIONS
Ľ	SAMPLE ID	DATE	TIME	SAMPLE TYPE	CONT	CONTAINER(S)	REQUESTE	REQUESTED ANALYSES		PRESERVATION
*	1 / WW-3	10/24/2023	8:30	SW		idexx	enterio	a.		
<u></u>	2 / D-4		9:03		_		-			
 X	3 < D-6		9:15							
<b>_</b>	4 V D-7		9:30							-
`* `*	5 V D-3		9:22							
J.	6 V D-2		9:40							
$\mathbf{\lambda}$	7 D-6		9:45							
	8 V W.W6		9:4S	-						
	9- V U-3/WW-4		10:15							
	10 V E -1		10:30						OO NOOBBEON OO	TT BOTTON THR
	CLIENTS PROVIDING SAMPLES TO THE LABORATORY SHOULD COMPLETE AS MUCH OF THE ABOVE FORM AS POSSIBLE, NOTE: NAME AND DATED SIGNATIONE OF FEROID OUTBOLLY THE SAMPLE MIST BE ENTERED BELOW ↓. INFORMATION REQUESTED IN SHADED BOXES ABOVE TO BE FILLED IN BY THE LABORATORY.	TO THE LABORATORY SH LOW 4. INFORMATION R	COULD COM	PLETE AS MUCH OF TI IN SHADED BOXES AF	HE ABOVI SOVE TO I	E FORM AS POS BE FILLED IN I	SIBLE, NOTE: N. 3Y THE LABORA1	AME AND DATED SIGNATOR	OD NIDEWEL ID HY	
<u>  </u>	SAMPLED BY:	DATE		RECEIVED BY:		DATE		RECEIVED FOR LABOR TORY:	ORATORY:	
	PRINT NAME ZUDNEY CHBITCH	NUN RCH 24		SIGNATURE	1	TIME	20	SIGNATURE		TIME 1736
<u>.</u>	RELINQUISHED:	DATE		RELINQUISHED:		DATE		RELINQUISHED:		20
]	SIGNATURE SALVIN J J MA			SIGNATURE OR INITIALS PRECAUTIONS:		TIME		SIGNATURE OR DUTTALS DISPOSAL:		TIME
				<i>l</i> ;	1, 1, U °C				RETURN SAMP	RETURN SAMPLE TO CLIENT
	<b>USE (BLACK) INK</b>	<u></u>			-				-	2
	12 Der Prived	1 expueid							page lota	04
	いるよ									

JEC AEC	AECOS. Inc.		CHAIN C	CHAIN OF CUSTODY FORM
45-939 Kamehameha ] Kaneohe, Oahu, HI Tel: (808) 234-7770 Fax	45-939 Kamehameha Highway Suite 104 Kaneohe, Oahu, HI 96744 Tel: (808) 234-7770 Fax: 234-7775	104	PROJECT FILE No. LOG NUMBER	[ 49083 ]
CLIENT: Cardad ADDRESS:	CONTACT: PHONE No.: Purchase Order	CONTACT: PHONE No.: 🖀 Purchase Order No.:		RUSH     SEE REVERSE
SAMPLE ID   DATE	SAMPLED TF   TIME   SAMPLE TYPE	CONTAINER(S)	REQUESTED ANALYSES	PRESERVATION
0	10:35	1 /deXX	entero	
U-2/W/W/-5 10/24/2033	3 10:30 SW	i jacka	entervo	
-				
OVIDING SAMPLES TO THE LABORATORY	SHOULD COMPLETE AS MUCH OF T N PROULD COMPLETE AS MUCH OF T	HE ABOVE FORM AS POE BOVE TO BE FILLED IN	10 10 10 10 10 10 10 10 10 10 10 10 10 1	RE OF PERSON COLLECTING THE
SAMPLED BY: DATE DAY: DATE DATE DATE DATE DATE DATE PROTING DATE	RECEIVED BY: SIGNATURE	DATE	20 RECEIVED FOR ABORA ORY	DRABORY: DATE 10124 2023 TIME 1736
RELINQUISHED: DATE DATE 20D SIGNATURE SIGNATURE SUMMENTS: DATE TIME 20D	RELINQUISHED SIGNATURE OR DVFTALS PRECAUTIONS:	TIME	20 SIGNATURE OR INITIALS DISPOSAL:	TIME 20
				RETURN SAMPLE TO CLIENT
USE (BLACK) INA				د کرد عام



# Acute Toxicity Test Results for ADC Kekaha Wet Weather Water Quality Monitoring

## Monitoring Period: October 2023

Prepared for:	Stantec 737 Bishop St., Suite 3050 Honolulu, HI 96734
Testing Lab:	Enthalpy Analytical 4340 Vandever Avenue San Diego, CA 92120
Submitted:	December 20, 2023

### Data Quality Assurance:

Data Verified by:

- Enthalpy Analytical (formerly Nautilus Environmental) is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Department of Health Services Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- All results have met internal Quality Assurance Program requirements, unless otherwise noted in this report.

Boul

Barbara Orelo, Project Manager

*California* 4340 Vandever Ave San Diego, CA 92120 858.587.7333

### Introduction

A sample was collected during a wet weather event for the ADC Kekaha Water Quality Monitoring. The sample was submitted by Stantec. Testing was conducted at the Enthalpy Analytical Laboratory in San Diego, California using the fathead minnow (*Pimephales promelas*), water flea (*Ceriodaphnia dubia*), and freshwater amphipod (*Hyalella azteca*) 96-hour acute survival tests.

### **Materials and Methods**

#### Sample Information

Client:	Stantec
Project Name:	ADC Kekaha Water Quality Monitoring
Sample IDs:	WW-3
Sample Collection Dates, Times ^a :	10/24/23, 11:30
Sample Receipt Dates, Times:	10/26/23, 09:55
Sample Material:	Wet weather sample
Sampling Method:	Grab

^a Collection times adjusted to Pacific Daylight Time from Hawaii Standard Time.

Table 1. Wate	er Quality	y Param	eters Mea	sured upo	n Sample	Receipt	
							11.

Sample ID	рН	DO (mg/L)	Temp. (⁰C)	Cond. (µS/cm)	Salinity (ppt)	Alkalinity (mg/L as CaCO₃)	Hardness (mg/L as CaCO3)	Total Chlorine (mg/L)
WW-3	6.77	8.7	1.5	717	0.4	20	80	<0.02

### Acute Toxicity Test Methods

Testing was conducted in accordance with methods published in US Environmental Protection Agency (USEPA) guidance (2002). Test specifications are summarized in Table 2.

Table 2. 30-III Acute Survival Test Specific	
Fathead minnow test: 10/26/23, 14:40 to 10/30/23, 13:55	Species: <i>Pimephales promelas.</i> Source & Age: Aquatic Biosystems (Ft. Collins, CO), 3 and 7 days ^a
Water flea test: 10/26/23, 14:40 to 10/30/23, 12:55	Species: <i>Ceriodaphnia dubia.</i> Source & Age: Internal culture, < 24 hours
Freshwater amphipod test: 10/26/23, 15:35 to 10/30/23, 14:05	Species: <i>Hyalella azteca</i> . Source & Age: Aquatic Research Organisms (Hampton, NH), 13 days
Protocol Used:	Acute Manual (EPA/821/R-02/012), EPA 2002
Test Acceptability Criteria:	Control mean survival ≥ 90%
Test Concentration:	100% sample (WW-3)
Lab Control Water:	Diluted mineral water (per EPA protocol) for <i>P. promelas</i> and <i>C. dubia</i> ; Carbon-filtered municipal water (Coast) for <i>H. azteca</i>

### Table 2. 96-hr Acute Survival Test Specifications

^a Organisms from two batches used; see QA section of report

#### **Statistical Analyses**

Statistical analyses were conducted using EPA flowchart specifications as outlined in the test guidance manual (USEPA 2002). Organism performance in the sample was compared to that observed in the concurrent lab or salt control. Results were used to calculate whether a statistically significant effect was observed between the control and sample result. Comprehensive Environmental Toxicity Information System[™] (CETIS) software by Tidepool Scientific Software, version 2.1.4.11.

### Results

No statistically significant effects were detected to survival for any of the species tested.

Due to heavy debris, the water flea test was also performed after filtering the samples through a 0.45um filter. The test resulted in 100 percent survival for the unfiltered sample, indicating that the debris did not cause mortality.

A summary of results is presented in Table 3. Raw datasheets and complete statistical summaries for all tests are provided in Appendix A. Sample receipt information is provided in Appendix B, and a copy of the chain of custody form is presented in Appendix C.

Sample ID	Species	Lab Control Result	100% Sample Result	Statistically Significant Effect? (Yes/No)	Percent Effect
	Fathead Minnow	95.0	100	No	-5.3
WW-3	Water Flea	100	100	No	0.0
	Freshwater Amphipod	97.5	90.0	No	7.7

Percent effect from control is calculated as: ((mean response in lab control - mean response in undiluted sample)/mean response in lab control) *100. A negative value results when organism performance in the sample is greater than that in the lab control.

#### **Quality Assurance**

The sample was received via overnight delivery service two days after collection and within the range of 0-6 degrees Celsius (°C). The tests were initiated within the maximum allowable holding time of 72 hours.

Due to insufficient number of organisms caused by poor quality upon receipt, two different batches of fathead minnow of different ages (3 days old and 7 days old) were used. Test organisms of both ages were evenly distributed in the test chambers. As there were no statistically significant effects in the fathead minnow test, it is unlikely the two ages of the organisms affected the results.

Mean control responses met minimum acceptability criteria for all tests. Minor QA issues that were unlikely to have any bearing on the final test data, such as slight temperature deviations, are noted on the datasheets, and a list of laboratory qualifier codes can be found in Appendix D.

### **Reference Toxicant Testing**

Results for reference toxicant testing used to monitor laboratory performance and test organism sensitivity are summarized in Table 4. The reference toxicant tests for all species tested met all acceptability criteria. The median effect concentration values ( $EC_{50}$ ) were within two standard deviations of the historical means for the fathead minnow and water flea tests, indicating organisms exhibited typical sensitivity as historically observed in the laboratory. The  $EC_{50}$  value was slightly above two standard deviations of the historical means for the amphipod test, indicating organisms exhibited less sensitivity as historically observed in the laboratory. The control charts for the previous 20 reference toxicant tests are presented in Appendix E.

Species	NOEC (µg/L copper)	LC₅₀ (µg/L copper)	Historical LC ₅₀ ± 2 SD (μg/L copper)	<b>CV</b> (%)
Fathead Minnow	15	89.2	67.1 ± 74.1	55.2
Water Flea	10	16.5	17.7 ± 14.9	41.9
Freshwater Amphipod	400	706	434 ± 250	28.8

NOEC = the highest concentration tested that results in no observed effect

 $LC_{50}$  = the concentration expected to cause a lethal effect to 50 percent of the test organisms

Historical  $LC_{50} \pm 2$  SD = the mean  $LC_{50}$  from the previous 20 tests performed by Enthalpy, plus or minus two standard deviations CV = Coefficient of Variation

#### References

Tidepool Scientific Software. 2000-2022. CETIS Comprehensive Environmental Toxicity Information System Software, Version 2.1.4.11.

USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. EPA/821/R-02/012. US EPA Office of Water, Washington, DC.

Appendix A

**Raw Data and Statistical Summaries** 

CETIS Sun	nmary Report			Report Date: Test Code/ID:	14 Dec-23 12:47 (p 1 of 2310-S187 / 06-0379-685
Fathead Minn	ow 96-h Acute Surviv	al Test	· ·		Nautilus Environmental (CA
Batch ID: Start Date:	12-6102-8422 26 Oct-23 14:40 30 Oct-23 13:55	Test Type: Protocol: Species:	Survival (96h) EPA/821/R-02-012 (2002) Pimephales promelas	Analyst: Diluent:	Not Applicable
Test Length:		Taxon:	Pimephales prometas	Brine: Source:	Not Applicable Aquatic Biosystems, CO Age: 3d
Sample ID:	16-0832-0741 24 Oct-23 11:30 ₽ ₽↑	Code:	23-1192 Wet Mosther Sample	Project:	ADC Kekaha WQ Monitoring
•	26 Oct-23 09:55	Material: CAS (PC):	Wet Weather Sample	Source: Station:	Stantec WW-3

Stantec

Client:

Analysis ID	Endpoint		Compar	ison Method			P-Value	Compari	s		
01-6052-1399	96h Survival R	late	Unequal	Variance t Tv	vo-Sample 1	Test	0.9092	100% pas	-		
Test Accepta	bility					TAC	Limits				
Analysis ID	Endpoint		Attribute	•	Test Stat	Lower	Upper	Overlap	Decision		
01-6052-1399	96h Survival R	late	Control F	Resp	0.95	0.9	<<	Yes	Passes C	riteria	
96h Survival	Rate Summary	, <u> </u>		****							
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	%Effect
0	LC	4	0.950	0.858	1.040	0.900	1.000	0.029	0.058	6.08%	0.00%
100		4	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	-5.26%
96h Survival	Rate Detail					······	MD	5: E9C3530	59ADB3E8	9271B042A	2FFF261C
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0	LC	0.900	0.900	1.000	1.000						
100		1.000	1.000	1.000	1.000						

Sample Age: 51h (1.5 °C)

Single Comparison Summary

Analyst:<u>A()</u> 23 QA

7 of 25

Age: 3d+ 7d

Fathead Mini	now 96-h Acı	ute Survival Te	est						Nautilu	s Environ	mental (C
Analysis ID: Analyzed: Edit Date:	01-6052-139 14 Dec-23 1 14 Dec-23 1	2:46 An	dpoint: 96ł alysis: Par 95 Hash: E90	rametric-Tw	o Sample	042A2FFF	State	IS Versior us Level: or ID:	n: CETISv2 1 007-926		
Data Transfo	rm	Alt Hyp				Compari	son Result			-	PMSE
Angular (Corre	ected)	C > T					ssed 96h su	vival rate	endpoint		7.18%
Unequal Vari	ance t Two-S	Sample Test									
Control	vs Conc-	-% d	f Test Stat	Critical	MSD	Р-Туре	P-Value	Decisio	n(α:5%)		
Lab Control	100	3	-1.73	2.35	0.111	CDF	0.9092		nificant Effec	t	
ANOVA Table											
Source		Squares	Mean Squ	iare	DF	F Stat	P-Value	Decisio	n(a:5%)		
Between	0.0132		0.0132797		1	3	0.1340		nificant Effec	t	
Error	0.0265		0.0044266		6						
Total	0.0398	339			7						
ANOVA Assu	mptions Tes	ts					<u> </u>				
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variance	Varian	ice Ratio F Tes	t					Indeterm			
Distribution	Shapir	o-Wilk W Norr	nality Test		0.849	0.645	0.0929	Normal I	Distribution		
AAL A								***			
96h Survival	Rate Summa	iry									
96h Survival Conc-%	Rate Summa Code	ry Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
Conc-%		Ŧ	<b>Mean</b> 0.950	95% LCL	95% UCL	Median 0.950	<b>Min</b> 0.900	<b>Max</b> 1.000	Std Err 0.029	<b>CV%</b> 6.08%	%Effec
<b>Conc-%</b> 0	Code	Count									0.00%
<b>Conc-%</b> 0 100	Code LC	Count 4 4	0.950 1.000	0.858	1.000	0.950	0.900	1.000	0.029	6.08%	0.00%
Conc-% 0 100 Angular (Corr	Code LC rected) Trans	Count 4 4 sformed Sumr	0.950 1.000 mary	0.858 1.000	1.000 1.000	0.950 1.000	0.900 1.000	1.000 1.000	0.029 0.000	6.08% 0.00%	0.00%
<b>Conc-%</b> 0 100	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count	0.950 1.000 nary Mean	0.858 1.000 95% LCL	1.000 1.000 95% UCL	0.950 1.000 Median	0.900 1.000 Min	1.000 1.000 <b>Max</b>	0.029 0.000 Std Err	6.08% 0.00% CV%	0.00% -5.26% %Effec
Conc-% 0 100 Angular (Corr Conc-%	Code LC rected) Trans	Count 4 4 sformed Sumr	0.950 1.000 mary	0.858 1.000	1.000 1.000	0.950 1.000	0.900 1.000	1.000 1.000	0.029 0.000	6.08% 0.00%	0.00% -5.26%
Conc-% 0 100 Angular (Corr Conc-% 0 100	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 <b>95% UCL</b> 1.480	0.950 1.000 Median 1.330	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 <b>95% UCL</b> 1.480	0.950 1.000 Median 1.330	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 <b>95% UCL</b> 1.480	0.950 1.000 Median 1.330	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 -	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 <b>95% UCL</b> 1.480	0.950 1.000 Median 1.330 1.410	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 -	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 <b>95% UCL</b> 1.480 1.410	0.950 1.000 Median 1.330 1.410	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 -	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 95% UCL 1.480 1.410	0.950 1.000 Median 1.330 1.410 0.08 - 0.06 - 0.04 -	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 -	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 95% UCL 1.480 1.410	0.950 1.000 Median 1.330 1.410	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effe 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 -	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 95% UCL 1.480 1.410	0.950 1.000 Median 1.330 1.410 0.08 - 0.06 - 0.04 -	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 -	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 <b>95% UCL</b> 1.480 1.410	0.950 1.000 Median 1.330 1.410 0.08 - 0.06 - 0.04 - 0.02 -	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 - 0.8 - 0.8 - 0.6 - 0.5 -	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 95% UCL 1.480 1.410	0.950 1.000 Median 1.330 1.410 0.08 - 0.06 - 0.04 - 0.02 - 0.00 - -0.02 -	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 - 9 0.7 - 9 0.6 - 0.8 - 9 0.7 - 0.8 - 9 0.7 - 0.8 - 9 0.7 - 1.0 - 0.9 - 0.8 - 9 0.7 - 1.0 - 0.7 - 1.0 - 0.9 - 0.8 - 0.7 - 1.0 - 0.9 - 0.8 - 0.0 - 0.9 - 0.8 - 0.9 - 0.8 - 0.9 - 0.8 - 0.9 - 0.8 - 9 0.7 - 1.0 - 0.9 - 0.8 - 0.7 - 0.8 - 0.0 - 0.9 - 0.8 - 0.0 - 0.9 - 0.8 - 0.7 - 0.8 - 0.0 - 0.9 - 0.8 - 0.0 - 0.9 - 0.8 - 0.0 - 0.9 - 0.8 - 0.0 - 0.9 - 0.0 - 0.9 - 0.0 - 0.8 - 0.0 - 0.9 - 0.0 - 0.9 - 0.0 - 0.0 - 0.9 - 0.0	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 95% UCL 1.480 1.410	0.950 1.000 Median 1.330 1.410 0.08 - 0.06 - 0.04 - 0.02 - 0.00 - 0.02 - 0.02 - 0.04 - 0.04 -	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 - 0.7 - 0.8 - 0.8 - 0.7 - 0.8 - 0.8 - 0.7 - 0.8 - 0.7 - 0.8 - 0.8 - 0.7 - 0.8 - 0.8 - 0.7 - 0.8 - 0.5 - 0.5 - 0.5 - 0.4 - 0.5 - 0.9 - 0.5 - 0.5 - 0.4 - 0.5 - 0.5 - 0.9 - 0.5 - 0.9 - 0.5 - 0.5 - 0.4 - 0.9 - 0.5 - 0.9 - 0.5 - 0.4 - 0.5 - 0.4 - 0.5 - 0.4 - 0.5 - 0.3 -	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 95% UCL 1.480 1.410	0.950 1.000 Median 1.330 1.410 0.08 - 0.06 - 0.04 - 0.02 - 0.00 - -0.02 -	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effe 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 - 9 - 0.8 - 9 - 0.8 - 0.7 - 0.8 - 0.8 - 0.7 - 0.8 - 0.4 - 0.5 - 0.5 - 0.4 - 0.2 - 0.1 -	Code LC rected) Trans Code	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 95% UCL 1.480 1.410	0.950 1.000 Median 1.330 1.410 0.08 - 0.06 - 0.04 - 0.02 - 0.00 - 0.02 - 0.02 - 0.04 - 0.04 -	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047	6.08% 0.00% CV% 7.07%	0.00% -5.26% %Effec 0.00% -6.12%
Conc-% 0 100 Angular (Corr Conc-% 0 100 Graphics 1.0 - 0.9 - 0.8 - 98 0.7 - 98 0.7 - 98 0.7 - 1.0 - 0.8 - 99 0.8 - 99 0.7 - 0.8 - 99 0.7 - 0.8 - 99 0.7 - 0.8 - 0.1 - 0.9 - 0.8 - 0.1 - 0.5 - 0.1 - 0.4 - 0.2 - 0	Code LC rected) Trans Code LC	Count 4 4 sformed Sumr Count 4	0.950 1.000 mary <u>Mean</u> 1.330	0.858 1.000 <b>95% LCL</b> 1.180	1.000 1.000 95% UCL 1.480 1.410	0.950 1.000 Median 1.330 1.410 0.08 - 0.06 - 0.04 - 0.02 - 0.00 - -0.02 - -0.04 - -0.04 - -0.06 -	0.900 1.000 Min 1.250	1.000 1.000 <b>Max</b> 1.410	0.029 0.000 Std Err 0.047 0.000	6.08% 0.00% CV% 7.07% 0.00%	0.00% -5.26% %Effec 0.00% -6.12%

Convergent Rounding (3 sf)

## 96-hour Freshwater Acute Bioassay Static-Renewal Conditions

#### Water Quality Measurements & Test Organism Survival

Client: Stantec / ADC Kekaha	Test Species: P. promelas	[		Тес	ch Initi	ais	
Sample ID: <u>WW-3</u>	Start Date/Time: 10/26/23 1440	Q1)	0	24	48	72	96
Sample Log-in No's.: 23-1192	End Date/Time: 10/30/23 1355	Counts:	WF	W.	LM	KR	KR
Test No's.: <u>2310-5187</u>		Readings:	WF	Ŷ	RT	KR	n
		Dilutions made by:	KR		Row	•	

Concentration (%)	Rep			iber o rganis	of Live sms	) 1			nduct nhos/				Tei	npera (°C)	ture		05	Disso	lved C (mg/L	) ) () ()	n		-	pH (units	)	
		0	24			96	0	24		72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	A	10		9	9	9	193	201	190	203	206	19.6	19.6	20.8	19-5	Ray I	8.5	9.0			8.6	8.12	2 222	5.08	H.28	6.2
	В			9	9	9			200					19.1					8.8					821		
	С		10		10	10		- 1 L																<u> </u>		
	D		10		0	10-	· .													-			·			
100%	Α	10	Q73	Q13	613	10	709	712	705	753	773	19.2	19.5	20.3	19.10	P1.0	7.5	8.8	8.6	9.1	8.9	6.8	7.6	6.87	7 100	7.6
	в	10	QB	(QB)	64.3	ic		-	'nα					19,2					8.6					259		
	С	10	QD	Q3	613	id												4								
	D	10	Q13	600	613	61																				
									i					I					i					i		
									f					f					f					f	·	
									i					i					i					I		
									f					f					f					f		
														· ·				1.11					1			
									i					i					i					i		
									f		·			f					f					f		
		_																								·
															-				<u> </u>						-	
-								è-	i					i					i	* * <u>*</u>		<u> </u>		i		
									f					f				· ·	f					f		
																										i
																									:	
									i					i					1	(				i		
									f					f					f					f		
										-	· · · · ·															
Initial Counts QC'd by:			l	L																			l			
Initiated by:	ŴF				,	f			En	viron	menta	l Chan	nber:		Ē											
Animal Source/Date R	eceiv	ed:		AB	<u>s/</u>	10/2	4/23	+ 10	125/2	3	Age a	t Initia	tion:	3d	+	7.	1						Feed	ling Ti	mes	
Animal Acclimation Q	ualifie	rs (c			1						22 /			224 (1		~				s te		0	24	48	72	96
															_	~					AM:		-	ogŪ	)	
Comments:	į	i = ini	itial re	eading	in fre	esh tes	st solut	tion, f	= final	readi	ng in te	est cha	mber	prior te	o rene	wal					PM:	-				
	-	Orga	nisms	s fed p	prior to	o initia	tion, ci	ircle o	ne( y	) n	)															
QC Check:	H(S		2/	13/2	3														Fin	al Rev	view:	BC	> \-	ΛZ	10,	<u>13</u>

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

.

### **CETIS Summary Report**

Report Date: Test Code/ID: 14 Dec-23 12:44 (p 1 of 1) 2310-S188 / 11-0565-2342

Ceriodaphnia	96-h Acute Su	rvival Te	est						Nautilu	s Environr	nental (CA)
Batch ID: Start Date: Ending Date: Test Length:	08-8106-7528 26 Oct-23 14:4 30 Oct-23 12:5 94h	0 5	Test Type: Protocol: Species: Taxon:	Survival (96h) EPA/821/R-02- Ceriodaphnia d			Ana Dilu Brin Sou	ent: No e: No	t Applicable t Applicable House Cultu	re	<b>Age:</b> <24
	07-7906-8049 24 Oct-23 11:30 26 Oct-23 09:55 51h (1.5 °C)	0 PƏT 5	Code: Material: CAS (PC): Client:	23-1192 Wet Weather S Stantec	Sample		Proj Sou Stati	rce: Ca	C Kekaha W rdno Hawaii N-3	/Q Monitori	ng
Analysis ID	arison Summar Endpoint 96h Survival Ra			parison Method xon Rank Sum 1		Test	<b>P-Value</b> 1.0000	<b>.</b>	i <mark>son Result</mark> ssed 96h su		s 1
Test Acceptal	bility					TAC	Limits		<u></u>	*******	
Analysis ID 11-9911-3040	Endpoint 96h Survival Ra	ate	Attrib Contro	ute ol Resp	Test Stat	Lower 0.9	Upper <<	Overlap Yes	Decision Passes C		
96h Survival	Rate Summary									<u> </u>	
Conc-%	Code	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0 100	LC	4 4	1.000 1.000	1.000 1.000	1.000 1.000	1.000	1.000 1.000	0.000 0.000	0.000 0.000	0.00% 0.00%	0.00% 0.00%
96h Survival I	Rate Detail						MD	5: 02835A	6FE1710696	B7C8F79E	C2C22377
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0	LC	1.000	1.000	1.000	1.000						
100		1.000	1.000	1.000	1.000						

Analyst: AS <u>kchz</u> QA

CETIS Ana	lytical F	leport					Report Test C	t Date: ode/ID:			44 (p 1 of 1
Ceriodaphnia	96-h Acute	Survival Tes	t						Nautilu	s Environ	mental (CA)
Analysis ID: Analyzed: Edit Date:	11-9911-30 14 Dec-23 14 Dec-23	12:44 A		5h Survival R onparametric 2835A6FE17	-Two Sampl		Stat	'IS Versior us Level: or ID:	n: CETISv2 1 007-926		
Data Transfor	rm	Alt Hy	p			Compari	son Result				
Angular (Corre	ected)	C > T				100% pa	ssed 96h su	rvival rate	endpoint		
Wilcoxon Rar	nk Sum Tw	o-Sample Tes	t								
Control	vs Con	>-%	df Test Sta	t Critical	Ties	P-Type	P-Value	Decisio	n(α:5%)		
Lab Control	100		6 18		1	Exact	1.0000	Non-Sig	nificant Effec	t	
ANOVA Table											
Source	Sum	Squares	Mean Sc	luare	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	0		0		1	WALLA		Indeterm	ninate		
Error Total	0		0		6 7	_					
					1						
ANOVA Assu		sts			<u> </u>						
Attribute Variance	Test	nce Ratio F Te			Test Stat	Critical	P-Value	Decisio			
Distribution		iro-Wilk W Nor						Indeterm Indeterm			
96h Survival I	Rate Summ	ary					·····				
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
100		4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
Angular (Corr	ected) Trar	sformed Sum	mary								
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0 100	LC	4	1.350	1.340	1.350	1.350	1.350	1.350	0.000	0.00%	0.00%
		4	1.350	1.340	1.350	1.350	1.350	1.350	0.000	0.00%	0.00%
Graphics											
1.0 -		A		A							
0.9 -		•									
0.8 -								•			
- 7.0 gate											
- 0.0 - 0.0					Corr. Angle						
0.5-					, Ar	0-				•	
<b>n</b> 0.4 -	7										
<b>6</b> 0.3 -					.						
0.2 -											
0.1 -											
0.0 -						1					I
		D LC		00		<u> </u>	-1.0	-0.5	0.0 0.	5 1.	0

Convergent Rounding (3 sf)

۰.

CETIS™ v2.1.4.11 x64 (007-926-968-0)

QA: 1/20/23 Analyst: AZS

#### 96-hour Freshwater Acute Bioassay **Static-Renewal Conditions**

#### DF-002

Sampl

#### Water Quality Measurements & Test Organism Survival

96

<u>44</u>

Client: Stantec / ADC Kekaha	Test Species: <u>C.dubia</u>		Те	ch Initi	als
Sample ID: WW-3	Start Date/Time: 10/26/23 1440 (21)	0	24	48	72
e Log-in No.: <u>23 - 1192</u>	End Date/Time: 10/30/23 1255 Counts:	LМ	と	RT	KR
Test No.: 2310 - 5188	Readings:	WF	YL	RT.	Kr
	Dilutions made by:	KR		ĮΫ	

Concentration (%)	Rep			ber o ganis	of Live sms	•			nduct nhos/				Tei	mpera (°C)	ture		Dissolved Oxygen (mg/L) Q나 윈녀			n			pH (units	)			
		0	24		72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	
Lab Control	A	5	5	5	5	5	195	197	186	1910	ren	19.0	p9	195	20.2	10.0	8,4	a.D	8.8	9:2	8.9	8.19	8.2	\$2	8.22	82	4
	В	5	5	5	5	5			240					19.1					8.6					\$,25	1		
	С	5	5	5	5	5																					
	D	5	5	5	5	Š																					
100%	Α	5	5	ร	5	5	711	13	691	726	\$n0	19.2	20,0	19.3	20.1	no.O	7.6	8.1	9.4	9.3	75	7.2	6.9	7.42	7.23	24	j.
	В	5	5	5	5	5			167					101.1					8.7					7.69			
	C	5	5	5	5	5																					
	D	5	5	5	5	5								·	-			6									
100%	A	5	5	S	5	5	711	708	690	730	102	20,9	20.1	4.5	19.9	20.0	6.0	Ho	9.4	7.1	8:1	7.30	7.48	699	7.05	1.21	
Filtered (0.45um)	В	5	5	5	5	5			687			-		19.1		20.0		8.5	8.7					7.68			
	С	5	5	5	5	5									. · · .								-			·	
	D	5	5	5	5	5																					
									i					I					Ĭ					i			
									f					f					f		· ·			f			
													1			1											
									I					i					i					i		···· ·	
									f					f					f					f	· .		
							· .				-							·									
																						· · · · ·					
									i					i					i				·	i			r
	-								f					f					f					f			
																		·								-	
							i																				
									i					i	·		i		i					i i			
									f					f					f					f•			
																							-				
Initial Counts QC'd by:	#1	<del>ا</del>												1.													
Initiated by:				- 1			,	c.	En	vironr	nental	Chan	nber:	Ľ													
Animal Source/Date	Rece	ived:	(	Int	eri	<u>101</u>		V/R			Age a	t Initia	tion:	27	24	hr	5,						Feed	ding Ti	nes		
							1				-		-									0	24	48	72	96	
Comments:	_	i = ini	tial rea	ading	in fre	sh tes	t soluti	ion, f =	final ı	eadin	g in te	st char	nber p	orior to	renev	wal ()	Par	of 10	127	13				1145			
							tion, ci														[	-			·		
QC Check:	Ą	<u>75</u>	12/	3/2	3				U										Fin	al Rev	/iew:	Bo	12	12	h	3	

Enthalpy Analytical. 43<u>40 Van</u>dever Avenue. San Diego, CA 92120.

CETIS Sun	nmary Repo	rt				Report Test Co	19 (p 1 of 1) 3-3359-1675				
Acute Amphip	ood Survival Tes	t							Nautilu	s Environm	iental (CA)
Batch ID: Start Date: Ending Date: Test Length:	03-6508-4753 26 Oct-23 15:35 30 Oct-23 14:05 94h	Pi Si	est Type: rotocol: pecies: axon:	Survival (96h) EPA/600/R-99/ Hyalella azteca	( )		Anal Dilue Brin Soui	ent: Not e: Not	Applicable Applicable latic Resear	ch Organis	<b>Age:</b> 13d
•	08-1028-9990 24 Oct-23 11:30 26 Oct-23 09:55 52h (1.5 °C)	PDT M C	ode: aterial: AS (PC): lient:	23-1192 Wet Weather S	ample		Proje Sour Stati	<b>·ce:</b> Sta	ntec	/Q Monitorin	ıg
Single Compa	arison Summary				· · · ·						
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compari	son Result		s
03-5076-3094	96h Survival Rat	e	Equal	Variance t Two-	Sample Tes	;t	0.0836	100% pas	sed 96h su	rvival rate	1
Test Acceptat	oility					TACI	_imits				
Analysis ID	Endpoint		Attrib	ute	Test Stat		Upper	Overlap	Decision		
03-5076-3094	96h Survival Rat	e	Contro	ol Resp	0.975	0.9	<<	Yes	Passes C	riteria	
96h Survival I	Rate Summary					-*-					
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	%Effect
0	LC	4	0.975	0.895	1.050	0.900	1.000	0.025	0.050	5.13%	0.00%
100		4	0.900	0.770	1.030	0.800	1.000	0.041	0.082	9.07%	7.69%
96h Survival I	Rate Detail						MDS	5: F3A9B39	ADCB64BE	EC94D6F9	C54CBD926
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0	LC	0.900	1.000	1.000	1.000						
100		0.900	0.900	0.800	1.000						

Analyst: <u>45</u> 2/23 QA

13 of 25

CETIS Analy	/tical Rep	ort		-			Report Test Co				2:50 (p 1 of 1) 13-3359-1675
Acute Amphipo	d Survival Te	est							Nautilu	s Enviro	nmental (CA)
Analyzed: 1	3-5076-3094 4 Dec-23 12:4 4 Dec-23 12:4	49 <b>An</b> a	Ilysis: Pa	n Survival Ra rametric-Two A9B39ADCE	o Sample	D6F9C54C		IS Version us Level: or ID:	: CETISv2 1 007-926		
Data Transform		Alt Hyp				Compari	son Result				PMSD
Angular (Correct	ed)	C > T.				100% pa	ssed 96h su	rvival rate e	ndpoint		9.11%
Equal Variance	t Two-Samp	le Test	· · · · · · · · · · · · · · · · · · ·						·		
Control v	s Conc-%	df	Test Stat	Critical	MSD	P-Type	P-Value	Decision	ı(α:5%)		
Lab Control	100	6	1.57	1.94	0.145	CDF	0.0836		ificant Effec	t	
ANOVA Table											
Source	Sum Sq	uares	Mean Squ	Jare	DF	F Stat	P-Value	Decision	ı(α:5%)		
Between	0.027359		0.027359		1	2.47	0.1672		ificant Effec	t	
Error	0.066502		0.0110838	3	6	_					
Total	0.093861	16			7						
ANOVA Assum	otions Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
Variance		Ratio F Test			2.34	47.5	0.5035	Equal Va	riances		
Distribution	Shapiro-	Wilk W Norm	ality Test		0.915	0.645	0.3900	Normal D	istribution		
96h Survival Ra	te Summary						(		· · · · · · · · · · · · · · · · · · ·		
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	4	0.975	0.895	1.000	1.000	0.900	1.000	0.025	5.13%	0.00%
100		4	0.900	0.770	1.000	0.900	0.800	1.000	0.041	9.07%	7.69%
Angular (Correc	ted) Transfo	rmed Summ	ary								
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	4	1.370	1.240	1.500	1.410	1.250	1.410	0.041	5.94%	0.00%
100		4	1.250	1.060	1.450	1.250	1.110	1.410	0.062	9.93%	8.53%
Graphics	·										
1.0 -	Surrenze over a presente of	1			_	a / a 🛛 🗖					
0.9					_	0.15 -					
0.8				·	<b>X</b>	0.10 -					
										/	
0.7 - 0.6 - 0.5 - 0.4 - 0.4 - 0.4 -					٩	0.05 -					
					lgn				•	• •	
0.5-					Corr. Angle	0.00 -		•			
S 0.4 -					ပိ						
						-0.05 -					
0.2 -						-0.10 -					
0.1 -							/ •				
0.0 -	·····					-0.15 -				,	
	0 LC		100				-1.0	-0.5	0.0	0.5	1.0
		Conc-9									

Convergent Rounding (3 sf)

CETISTM v2.1.4.11 x64 (007-926-968-0)

QA: npohis Analyst: AC

96-hour Freshwater Acute Bioassay Static-Renewal Conditions

DF-006

#### Water Quality Measurements & Test Organism Survival

Client: Stantec / ADC Kekaha	Test Species: <i>H. azteca</i>		Tec	ch Initia	is	
Sample ID: <u>WW-3</u>	Start Date/Time: 1535 10/26/23 Q11	0	24	48	72	96
Sample Log-in No's.: <u>23 1192</u>	End Date/Time: 1405 10 30 73 Counts:	WF	n	WPI	2R	Ý
Test No's.: 2310-5189	Readings:	WF	W	RTK	IR I	Ŵ
	Dilutions made by:	KR	ę	Soin		
· · · · · · · · · · · · · · · · · · ·						

Concentration (%)	Rep			iber c rganis	of Live sms	) T			nducti nhos/		1		Ter	npera (°C)	ture	1	QR		lved ( (mg/L Qเว		n			pH (units	)	1
		0	24		72	96	0	24	48	.72	96	0	24	48	72	96	0	24	48	72	96	. 0,	24	48	72	96
Lab Control	A	10	10	9	9	9	866	88	\$53	903	904	19.5	19.8	19.6	19.9	19.5	8.7	9.0	9.0	9.0	8.7	8.41	8.38	3.28	845	E.38
(loayt)	В	10	10	10	10	10			866					19.2					<b>4.0</b>					832		
	C	10	10	10	10	10								-												
	D	10	10	10	10	IU											1 									
100%	A	10	QB	QI3	013	9	711	731	696	753	ziel	19.0	<u>n.s</u>	20.6	F1.6	19.2	\$,C	9.0	7.2	9.0	8.B	7.00	79	7.17	7.47	7.63
	в	10	QC	QU	<del>0</del> 13	9			28					19,2					\$.9					7.51		
	С	10	<u>613</u>	QU	<b>Q</b> 3	8																				
	D	10	QP	Q17	013	10																				
									i					i					ì					i		
									f			1.1		f					f					f		
									-																	
									i					I					i					i		
								1	f			÷.,		f					f					f		
								·														·				
			-						i					i					i					i		
									f			·.		f					f					f		
								· · · ·																	1. 	
																				<u></u>						
							<u> </u>		i					i	· · · · ·				i					i		<u>.</u>
		_							f					f					f	-				f		
											-					-				<u>.</u>						
															. •											
	-								i					i I	· · ·				i			· · · ·		i		
									f					f					f					f	•	
																		-								
Initial Counts QC'd by:												·		1=			i									
Initiated by:	WF								En	vironi	nenta	Chan	nber:	Ē												
Animal Source/Date Re	eceiv	ed:		10	126	123	<u>A(</u>	0			Age a	t Initia	tion:	13	day						[		Feed	ling Ti	nes	
Animal Acclimation Qu	ıalifiə	rs (c	ircle	all th	at app	oly):				Q	22 /	623	) <u>)</u>	24 /		1e						0	24	48	72	96
												$\mathbf{\Theta}$									AM:			CAD		
Comments:	_i	i = ini	tial re	eading	j in fre	sh tes	st solut	ion, f	= final	readia	ng in te	est cha	mber	prior to	o rene	wal					PM:		1			*
	-	Orgai	nisms	fed p	orior to	) initia	tion, ci	ircle o	ne (ry	) / n	)															
QC Check:	Ars	l	2/1	<u>3/</u> )	-3				-										Fin	al Rev	view:	bc	> 12	12	p?	, >

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix B

Sample Check-In Information

Enthalpy Analytical 4340 Vandever Avenue San Diego, CA 92120		Awter	June of	Sample Check-In Information
client: Stantec			u vecer	
	Tests Performe		, hyalella	Sample Descriptions: DARK Grange Color, Very Opaque, NO Odor, NO Debris DARK Grange Color, Very Opaque, NO Odor, NO Debris A 1)-tight - Ythou Color, Citar, Mitd Odor, NO Debris A
Project: ADC KEKAV	1A Test ID No.(s	): <u>7310 - 51</u> 2	87 to 5189	1) tight YEHOW Color, CIERR, Mind odur, NU Doris ()
				2)
Sample ID: 1)		3	4)	3)
here the	92			4)
• • • • • • • • •	4/23 1130Ppt			3
	6/23 0955			COC Complete?
	( 4L Wbis			Jan flea
	~ 9L			Filtration? () N water flea
	1.5			Initials: $1) (x + 0) = 3$ (1) (x + 0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
	YN YN	Y N	Y N	Pore Size: 0.4.5µm
	8.7			Organisms or Debris
	6.77			
Conductivity (µS/cm)	717			
Salinity (ppt)	. 4			pH Adjustment? Y (N)
Alkalinity (mg/L) ²	20			1 2 3 4 5 6
Hardness (mg/L) ^{2,3}	80			Initial pH:
Total Chlorine (mg/L)	. D.02			Amount of HCI added:
Technician Initials	AA			
Freshwater Tests: Valer Hales	11a	-1		Final pH:
Control/Dilution Water Source: 8:2 Coas		Alkalinity: <u>47/119</u>	Hardness: <u>96/23</u> /	Cl ₂ Adjustment? Y N
Additional Control? Y N =		Alkalinity:	Hardness:	1 2 3 4 5 6
Marine Tests:				Initial Free Cl ₂
Control/Dilution Water Source: LAB SW AR	TSW Other:	Alkalinity:	Salinity:	STS added:
Additional Control? Y N =		Alkalinity:	Salinity:	Final Free Ct ₂ :
Sample Salted w/ artificial salt? Y N If yes,	, target ppt and source?			Sample Aeration?
Sample salted w/brine? Y N If yes,		_		Sample Aeration? $(y)$
				Initial D.O.
Notes <u>1 Temperature for sample must be</u>			<u>.                                    </u>	Duration & Rate
² mg/L as CaCO3, ³ Measured for	freshwater samples only, NA = Not	Applicable		Final D.O.
				Measure NH3 via test strip (circle one)? Y
				NH3 Strip Result* A: B:C: *(if 6 or more, notify PM)
Additional Comments: (A) Q18 AA 10/261	23 (B) Measured Usin	a 1:1 dilution	U WITH DI	Subsamples for Additional Chemistry Required? $Y(N)$
Q Q18H15 12/13/23	Menard 10 x			NH3 Other

QC Check: # (5 12/15/23

Tech Initials:

Final Review: 80 12/20/23

Appendix C

Chain-of-Custody Form

### **Enthalpy Analytical - Environmental Toxicology**

4340 Vandever Avenue San Diego, CA 92120 Phone 858,587,7333 infoSD@enthalpy.com

Chain	of	Custody

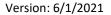
ha	2/6/2023	

Sample Collection	Bv:				· · · · · · · · · · · ·			<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					Date_	2/6/2	Page_1	- 0 
	Бу.					<b>I</b>				-	1		YSES	REQU	JIRED	_
Report to:						Invoice To:		Same as Report to							Enthalpy Matrix Codes:	
Company		Cardno-GS			_	Company									<u>G</u> = Grab	
Address		737 Bishop St	Suite 3050		_	Address									$\underline{C} = Composite$	
City/State/	Zip	Honolulu, HI	96734		_	City/State,	/Zip		- N	ल	<u>Na</u>	a,	viva		<u>FW</u> = Freshwater	1.000
Contact		Benjamin Ber	ridge		-	Contact			- N	urvi.	Survival	Survival	Sur	LV N	<u>SW</u> = Seawater	1.000
Phone		808-476-0067	7		_	Phone			Acut -	te S	ft	e S(	cute	s Su	<u>Sed</u> = Sediment	0.80
Email		benjamin.berr	ridge@cardno-	<u>as.com</u>	_	Email			96-hr Acute Survival	96-hr Acute Survival	hr Ac	6-hr Acute	beryllina 6-hr Acute Survival	Acut	<u>STRM</u> = Stormwater	100 A 200
			CANADIE							96-h	a 96-hr	is 6-h	llina (	்	<u>GW</u> = Groundwater	
SAM	PLE ID	Date	SAMPLE Time	Туре	MATRIX CODE (FW, SW, Sed,	Containe Type	er Qty	COMMENTS	promelas	dubia	azteca	. affinis	M. bery	ba	<u>WW</u> = Wastewater	
WW-3		10-24-2023	08:30 HST	(GorC) G	STRM, GW, WW, O) STRM - FW 0.33 PPT				- a	U V	Ï	4	<	Ϋ́	0 = Other (specify)	-
		10 2 1 2025	00.50 1151		31101-11F0.33 FF1	2.5 Gal Plastic	2	· · · · · · · · · · · · · · · · · · ·	X	X	X					A NEWSON N
																214244
									1							4-11-24
																4400
																Contraction of the second
										<u> </u>						10.4 Line
	· <u>· · · · · · · · · · · · · · · · · · </u>															1000
																1000
		`														
																1000
																1
PROJ	ECT INFORMATIC	DN .		SAN	PLE RECEIPT			1) RELINQUISHED BY (CLIENT)			2	) REC	EIVE	D BY	(COURIER)	
Project Name:	ADC Water Qua Monitoring	llity	То	tal No. of C	ontainers	2 :	(Signature)	(Time) 14:00	(Signatı.	ıre)					(Time)	
PO No.:			Rec	eived Good	Condition?	Y	(Printed Na Ben B	me) (Date) erridge 2/6/2023	(Printed	Name)					(Date)	
Shipped Via:	FedEx		Ma	tches Test :	Schedule?	У	(Company) Cardr	o/Stantec	(Compar	ny) Fea	dEx - See	e Shipping	j Informal	tion		
PECIAL INSTRU	CTIONS/COMME	NTS:	The present of the second s	y 1994 - Grands parks		internet <b>f</b> an de la constant de la c		3) RELINQUISHED BY (COURIER)			4)	RECEI	VED I	BY (L	ABORATORY)	
DJ x4L cu	bes received A	1512/13/2	.3				(Signature)		(Signatu ເ			6.2			(Time) 09(55	
							(Printed/Na Han	nah Hubanks 10-25-23	(Printed)	Name)	ere pe s	1000.000	m	$\overline{}$	(012612	3
							(Company) S	tantec GS (form. Cardno GS)	(Compar	ËAS	89422				23-1192	

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted. Shaded areas are for lab use only

Report turn-around-time varies depending on length of test; please inquire with your project manager.

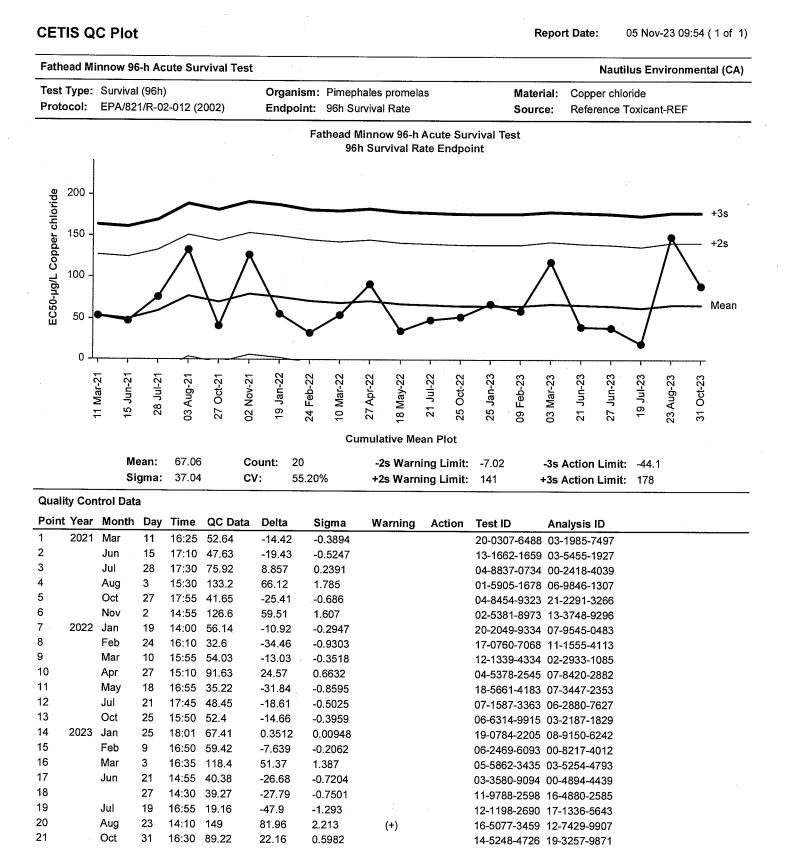
### http://enthalpy.com/environmental-toxicology-2/


19 of 25

Appendix D

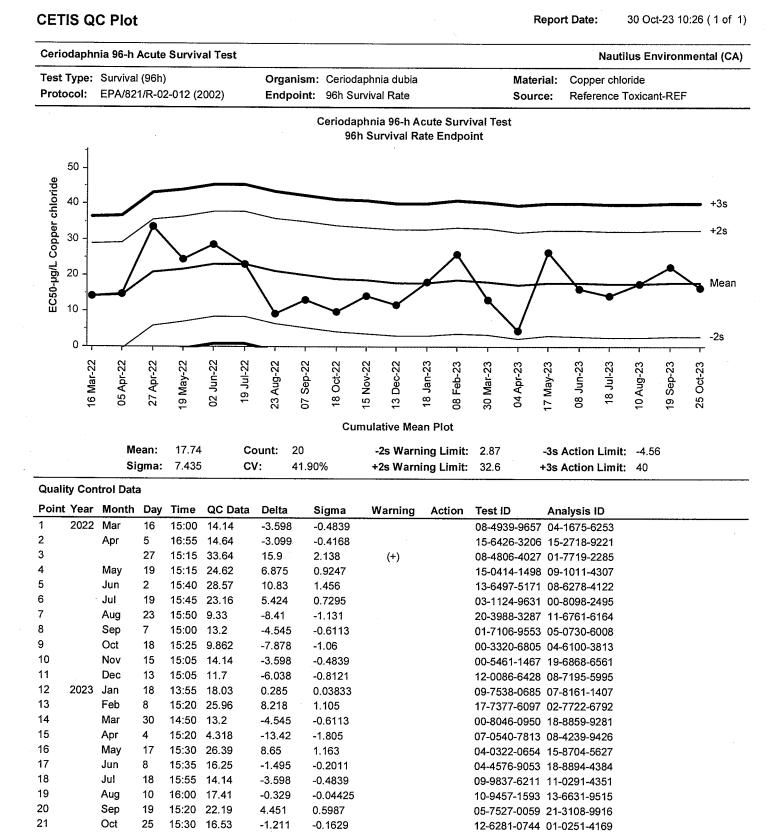
Qualifier Code Glossary

## **Glossary of Qualifier Codes**

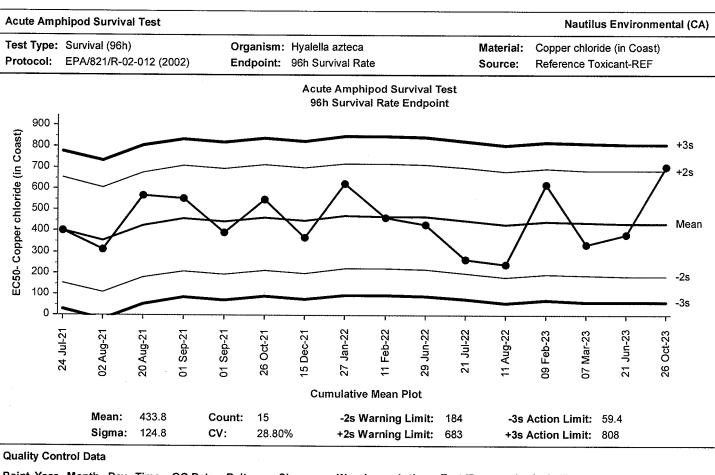

- Q1 Temperature out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperature out of recommended range; no action taken, test terminated same day
- Q3 Sample pH adjusted to within range of 6-9 with reagent grade NaOH or HCl, as needed
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with continuous aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, partial renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set. Test results were reviewed and reported in accordance with guidance found in EPA-833-R-00-003, 2000 unless otherwise specified.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set. Test results were reviewed and reported in accordance with EPA-833-R-00-003, 2000 guidance unless otherwise specified.
- Q18 Incorrect or illegible Entry
- Q19 Miscalculation
- Q20 PMSD criteria do not apply to the test of significant toxicity (TST) analysis
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% batch <u>mortality</u> observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Enthalpy and ultimately deemed fit to use for testing.
- Q23 Test organisms experienced a <u>temperature</u> shift greater than 3°C within 1 day or were received at a temperature greater than 3°C outside the recommended test temperature range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.
- Q24 Test organisms experienced a <u>salinity</u> shift greater than 3 ppt within 1 day or were received at a salinity greater than 3 ppt outside the recommended test salinity range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.






Appendix E

**Reference Toxicant Test Control Charts** 

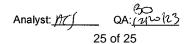



CETIS™ v2.1.4.11 x64

Analyst: <u>A</u> QA: <u>تعالى من</u> 23 of 25



Analyst: Ars 24 of 25




Report Date:

30 Oct-23 16:41 (1 of 1)

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2021	Jul	24	10:35	402.1	-31.74	-0.2543			01-9158-2894	04-9657-5582
2		Aug	2	18:10	311.1	-122.7	-0.9829			12-1293-8948	18-5258-0274
3			20	16:45	568.8	135	1.081			13-6419-6120	05-7250-0573
4		Sep	1	14:40	551	117.2	0.9393			16-9611-9317	12-1127-8026
5			1	16:00	393.8	-40.01	-0.3206			05-5529-3044	09-1102-6160
6		Oct	26	19:00	549.6	115.8	0.9277			18-1063-1366	05-2379-1035
7		Dec	15	18:25	366.8	-67	-0.5368			20-2781-7958	18-9516-9975
8	2022	Jan	27	17:30	625.4	191.6	1.535			18-9392-5843	01-5172-6206
9		Feb	11	17:35	463.8	30.04	0.2407			14-7873-5968	19-5575-1394
10		Jun	29	17:00	431	-2.754	-0.02206			03-3409-7356	15-5020-6688
11		Jul	21	16:27	264.5	-169.3	-1.357			05-1323-0021	05-5852-2990
12		Aug	11	18:55	240.4	-193.4	-1.55			20-9606-1183	03-0306-6180
13	2023	Feb	9	17:15	619.4	185.6	1.487			20-3293-9827	10-5332-3305
14		Mar	7	16:30	334.9	-98.88	-0.7923			20-0160-8722	08-8166-1553
15		Jun	21	15:20	384	-49.78	-0.3989			18-4411-2589	06-3764-0545
16		Oct	26	16:00	706.2	272.4	2.182	(+)		10-2636-7152	05-7689-5230

**CETIS QC Plot** 

