

Mahana

WARD VILLAGE

APPENDICES

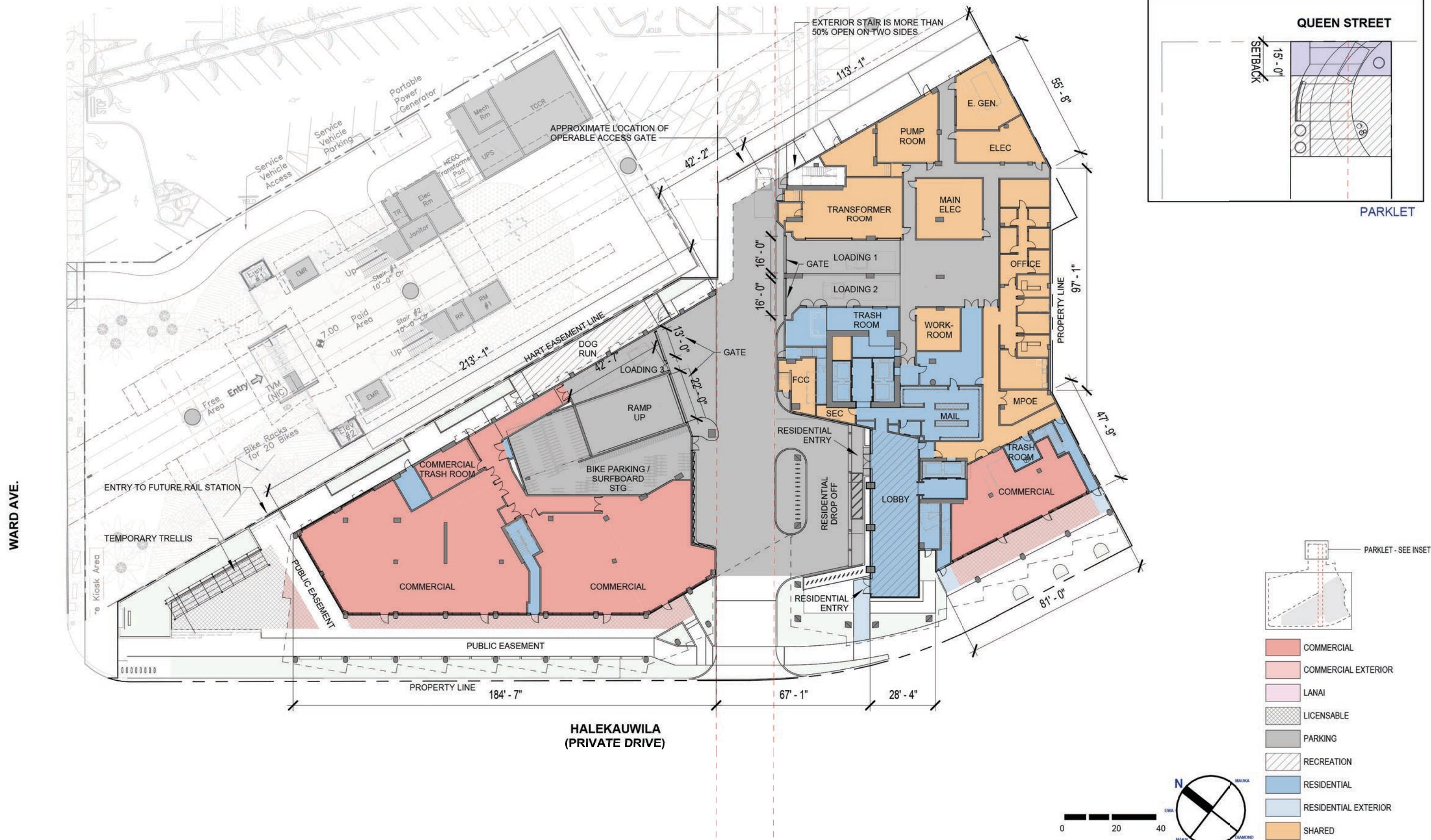
LAND BLOCK 1, PROJECT 6
AMENDED HCDA PLANNED DEVELOPMENT PERMIT APPLICATION
(KAK 25-045)
DECEMBER 2025

WARD VILLAGE.

Appendices

APPENDIX A	LEED CHECKLIST
APPENDIX B	SITE PLAN AND ELEVATIONS WITH HART STATION
APPENDIX C	SHPD LETTER
APPENDIX D	TRAFFIC IMPACT REPORT
APPENDIX E	INFRASTRUCTURE AVAILABILITY REPORT
APPENDIX F	SHADE/SHADOW STUDY
APPENDIX G	PEDESTRIAN WIND STUDY
APPENDIX H	ACOUSTICAL CONSULTANT LETTER

Appendix A


LEED CHECKLIST

Certified 40-49 points

 Platinum 80 points and above

		Yes	?	No				
Summary		62	28	20				
Category	Credit	Credit Name		Yes	?	No	Status	Responsibility
Location and Transportation	C	LEED-ND Location					Targeted	-
	C	Sensitive Land Protection			1		Not Attempted	SCB
	C	High Priority Site			2		Not Attempted	SCB
	C	Surrounding Density & Diverse Uses			5		Not Attempted	SCB
	C	Access to Quality Transit			5		Not Attempted	SCB
	C	Bicycle Facilities			1		Not Attempted	SCB/Owner
	C	Reduced Parking Footprint			1		Not Attempted	SCB/Owner
	C	Green Vehicles			1		Not Attempted	SCB/Owner
Sustainable Sites	P	Construction Activity Pollution Prevention					Required	Contractor
	C	Site Assessment					Targeted	SCB
	C	Site Development - Protect or Restore Habitat					Targeted	Landscape
	C	Open Space					Targeted	Landscape
	C	Rainwater Management					Targeted	Civil
	C	Heat Island Reduction					Targeted	SCB
	C	Light Pollution Reduction					Targeted	Lighting
Water Efficiency	P	Outdoor Water Use Reduction					Required	Landscape
	P	Indoor Water Use Reduction					Required	SCB/Owner
	P	Building-Level Water Metering					Required	MEP
	C	Outdoor Water Use Reduction			1		Targeted	Landscape
	C	Indoor Water Use Reduction			3		Targeted	SCB
	C	Cooling Tower Water Use			1		Targeted	MEP
	C	Water Metering					Targeted	MEP
Energy and Atmosphere	P	Fundamental Commissioning and Verification					Required	Cx
	P	Minimum Energy Performance					Required	MEP
	P	Building-Level Energy Metering					Required	MEP
	P	Fundamental Refrigerant Management					Required	MEP
	C	Enhanced Commissioning			3		Targeted	Cx
	C	Optimize Energy Performance			2	9	Targeted	MEP
	C	Advanced Energy Metering					Targeted	MEP
	C	Demand Response			2		Deferred	Owner
	C	Renewable Energy Production			3		Deferred	MEP
	C	Enhanced Refrigerant Management					Targeted	MEP
	C	Green Power and Carbon Offsets			2		Deferred	Owner
Materials and Resources	P	Storage and Collection of Recyclables					Required	SCB/Owner
	P	CDWM Planning					Required	Contractor
	C	Building Life-Cycle Impact Reduction			2		Deferred	Contractor
	C	BPDO - Environmental Product Declarations					Targeted	Contractor
	C	BPDO - Sourcing of Raw Materials					Targeted	Contractor
	C	BPDO - Material Ingredients					Targeted	Contractor
	C	C&D Waste Management			1		Targeted	Contractor
Indoor Environmental Quality	P	Minimum IAQ Performance					Required	MEP
	P	Environmental Tobacco Smoke Control					Required	Owner
	C	Enhanced IAQ Strategies			1		Targeted	MEP
	C	Low-Emitting Materials					Targeted	Contractor
	C	Construction IAQ Management Plan					Targeted	Contractor
	C	Indoor Air Quality Assessment			2		Targeted	Contractor
	C	Thermal Comfort					Targeted	MEP
	C	Interior Lighting			1		Targeted	Lighting
	C	Daylight			3		Deferred	SCB
	C	Quality Views					Targeted	SCB
	C	Acoustic Performance			1		Targeted	SCB
Innovation	C	Innovation in Design: UHI	1				Targeted	-
	C	Innovation in Design: Quality Views	1				Targeted	-
	C	Innovation in Design: Biophilic Design	1				Targeted	-
	C	Innovation in Design: Purchasing - Lamps	1				Targeted	-
	C	Innovation in Design: Green Building Education	1				Targeted	-
	C	LEED Accredited Professional	1				Targeted	-
Regional Priority	C	C&D Waste Management	1				Targeted	-
	C	Indoor Water Use Reduction	1				Targeted	-
	C	Renewable Energy Production	1				Deferred	-
	C	Optimize Energy Performance	1				Targeted	-

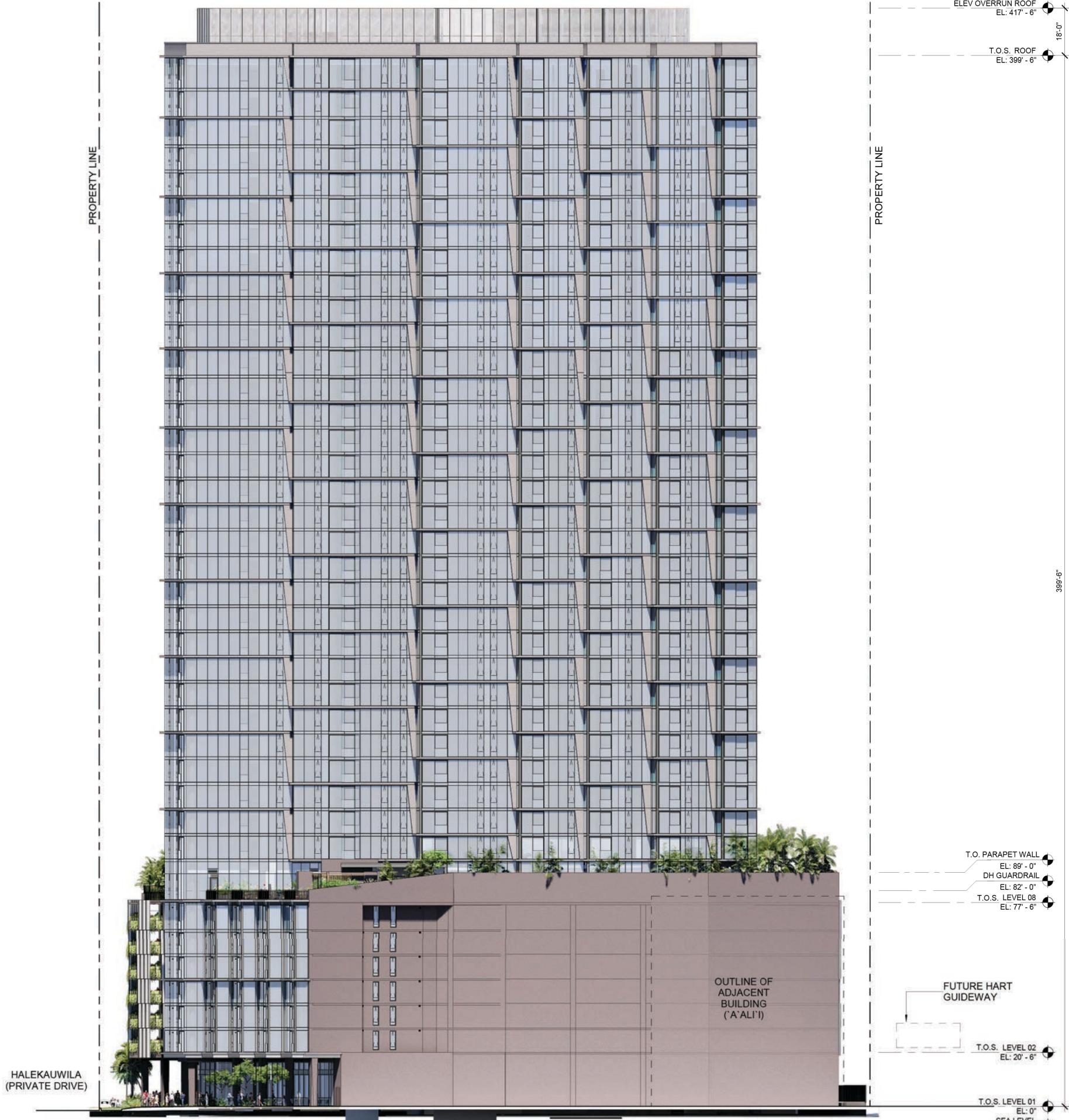
Appendix B

SITE PLAN AND ELEVATIONS WITH
HART STATION

SCB
Architecture, Planning,
Interior and Urban Design

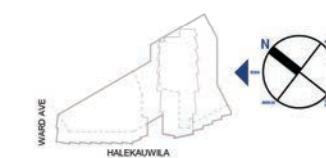
© 2025 Solomon Cordwell Buenz

Architecture **Planning** **Interior Design** 255 California Street 3rd Floor San Francisco, CA 94111 T 415.216.2450 F 415.216.2451


PROJECT NAME:	MAHANA	WARD VILLAGE
PROJECT NO:	2018028	DTL./SHT. REF.
DRAWING TITLE:	FLOOR PLAN - LEVEL 01	
DRAWING SCALE:	1" = 40'-0"	

DATE: _____
REV.: _____
SHEET **of** _____

C1.04



PROJECT NAME: MAHANA WARD VILLAGE DATE: _____
 PROJECT NO: 2018028 DTL/SHT. REF.: REV.: _____
 DRAWING TITLE: SOUTH ELEVATION SHEET of _____
 DRAWING SCALE: As indicated

PROJECT NAME: MAHANA WARD VILLAGE DATE: _____
 PROJECT NO: 2018028 DTL/SHT. REF.: REV.: _____
 DRAWING TITLE: EAST ELEVATION SHEET of _____
 DRAWING SCALE: As indicated

C1.16

*HCDA RULE 15-22-62: MEASURED FROM THE STRUCTURAL SLAB, UTILITARIAN FEATURES INCLUDING STAIRWELLS MAY EXCEED THE HEIGHT LIMIT BY NOT MORE THAN 12'-0".

*HCDA RULE 15-22-77: NO BUILDING SHALL CONTAIN A REFLECTIVE SURFACE FOR MORE THAN 30% OF THAT WALL'S SURFACE AREA.

Appendix C

SHPD LETTER

JOSH GREEN, M.D.
GOVERNOR | KE KIA'ĀINA

SYLVIA LUKE
LIEUTENANT GOVERNOR | KA HOPE KIA'ĀINA

STATE OF HAWAII | KA MOKU'ĀINA 'O HAWAII
DEPARTMENT OF LAND AND NATURAL RESOURCES
KA 'OIHANA KUMUWAIWAI 'ĀINA

STATE HISTORIC PRESERVATION DIVISION
KAKUHIHEWA BUILDING
601 KAMOKILA BLVD, STE 555
KAPOLEI, HAWAII 96707

November 19, 2025

Craig K. Nakamoto, Executive Director
Hawai'i Community Development Authority
547 Queen Street
Honolulu, Hawai'i 96817
craig.k.nakamoto@hawaii.gov

Ms. Dawn Takeuchi-Apuna, Director
Department of Planning and Permitting
City and County of Honolulu
Frank F. Fasi Municipal Building
650 S. King Street, 7th Floor
Honolulu, Hawai'i 96813
c/o Clint Young
clint.young@honolulu.gov

Dear Mr. Nakamoto and Ms. Dawn Takeuchi-Apuna:

SUBJECT: **Hawaii Revised Statutes (HRS) Chapter 6E-42 Historic Preservation Review
Request to Support HCDA Proceeding with Permitting Process
Victoria Ward Limited (VWL) Block N West Makai Project
Honolulu Ahupua'a, Honolulu (Kona) District, Island of O'ahu
TMK: (1) 2-3-002:116 por.**

This letter provides the State Historic Preservation Division's (SHPD's) review regarding the Hawaii Community Development Authority's (HCDA's) planned development permitting process for the Victoria Ward, Ltd. (VWL) and The Howard Hughes Corporation (HHC) project titled Victoria Ward Limited (VWL) Block N West Makai Project. This private project is subject to permitting under HCDA's 2005 Mauka Area Rules and with permitting by the City and County of Honolulu, Department of Planning and Permitting (DPP).

Howard Hughes Corporation's (HHC) Block N West Makai/Mahana Project (HICRIS Project No. 2019PR30462) is a residential tower development on Ward Avenue, near its intersection with Halekauwila Street [TMK: (1) 2-3-002:116 por.]. On May 9, 2023, the SHPD issued a letter to the HCDA and DPP [Project No. 2019PR30462, Doc. No. 2305SCH05]. The letter lays out the stipulations that HHC has committed to for HCDA to proceed with the Planned Development Permit (PDP) project review process. After its project review, HCDA approved the project's PDP application with these stipulations.

SHPD is aware that subsequently, HHC entered into a transaction with HCDA, enabling project modifications, including increased platform height and unit counts. With these changes to the project design, HHC is now going through HCDA's review of a PDP Amendment of the project changes. The changes in the platform height and number of units of the project have not changed the commitments in SHPD's letter dated May 9, 2023 (Doc. No. 2305SCH05).

DAWN N.S. CHANG
CHAIRPERSON
BOARD OF LAND AND NATURAL RESOURCES
COMMISSION ON WATER RESOURCE
MANAGEMENT

RYAN K.P. KANAKA'OLE
FIRST DEPUTY

CIARA W.K. KAHANANE
DEPUTY DIRECTOR - WATER

AQUATIC RESOURCES
BOATING AND OCEAN RECREATION
BUREAU OF CONVEYANCES
COMMISSION ON WATER RESOURCE
MANAGEMENT
CONSERVATION AND COASTAL LANDS
CONSERVATION AND RESOURCES
ENFORCEMENT
ENGINEERING
FORESTRY AND WILDLIFE
HISTORIC PRESERVATION
KAHOOLAE ISLAND RESERVE COMMISSION
LAND
STATE PARKS

Mr. Nakamoto and Ms. Dawn Takeuchi-Apuna
November 19, 2025
Page 2

With HHC's renewed commitment to the stipulations specified in SHPD's May 9, 2023 letter, the SHPD has no objection with HCDA/DPP proceeding with the review and acceptance of the project's PDP Amendment based on the recent project changes.

SHPD hereby notifies DPP and HCDA that the permitting process may continue.

Please contact Samantha Hemenway, O'ahu Lead Archaeologist, at Samantha.Hemenway@hawaii.gov, for any matters regarding archaeological resources or this letter.

Aloha,

Jessica L. Puff, PhD
Administrator, State Historic Preservation Division
Deputy State Historic Preservation Officer

cc: Ka'iulani Sodaro (HHC), kaiulani.sodaro@howardhughes.com
Matt McDermott (CSH), mmcdermott@culturalsurveys.com

Appendix D

TRAFFIC IMPACT REPORT

Traffic Impact Report Update

Block N West

Prepared for:
Victoria Ward, Ltd.

Prepared by:
Wilson Okamoto Corporation

Updated May 2025

TRAFFIC IMPACT REPORT UPDATE
FOR
BLOCK N WEST

Prepared for:

Victoria Ward Limited
1240 Ala Moana Blvd., Suite 200
Honolulu, HI 96814

Prepared by:

Wilson Okamoto Corporation
1907 S. Beretania Street, Suite 400
Honolulu, Hawaii 96826
WOC Ref #8206-81

Updated May 2025

TABLE OF CONTENTS	
	Page
I. Introduction	1
A. Purpose of Study	1
B. Scope of Study	1
II. Project Description.....	2
A. Location.....	2
B. Project Characteristics	2
III. Baseline Traffic Conditions.....	4
A. Area Roadway System	4
B. Traffic Volumes and Conditions.....	4
1. General	4
a. Field Investigation	4
b. Capacity Analysis Methodology.....	6
2. Baseline Peak Hour Traffic	7
a. General	7
b. Ward Avenue and Queen Street.....	11
c. Queen Street and Kamakee Street.....	12
d. Ward Avenue and Halekauwila Street	12
e. Kamakee Street and Halekauwila Extension.....	13
f. Ward Avenue, Auahi Street, and Pohukaina Street...	13
g. Kamakee Street and Auahi Street	14
h. Ala Moana Boulevard and Ward Avenue.....	14
i. Ala Moana Boulevard, Kamakee Street, and Ala Moana Park Drive	15
IV. Projected Traffic Conditions	15
A. Site-Generated Traffic.....	15
1. Trip Generation Methodology	15
2. Trip Distribution and Through Traffic Forecasting Methodology.....	17
B. Other Considerations	18
1. Honolulu Rail Transit Project	18
2. KKMP Block D Development	22
3. KKMP Block C Development.....	22
C. Total Traffic Volumes Without Project.....	23
D. Total Traffic Volumes With Project	27
V. Traffic Impact Analysis.....	27

VI. Multimodal Facilities	31
A. Pedestrian Facilities.....	31
1. Existing Conditions.....	31
2. Projected Conditions.....	31
B. Bicycle Facilities.....	31
1. Existing Facilities	31
2. Bicycle Level of Traffic Stress	32
3. Projected Conditions.....	34
C. Transit Facilities.....	36
1. Existing Conditions.....	36
2. Transit Capacity and Quality of Service Manual (TCQSM)..	36
3. Transit Level of Service	38
4. Projected Conditions.....	38
VII. Recommendations	39
VIII. Conclusion	40

LIST OF FIGURES

FIGURE 1	Location Map and Vicinity Map
FIGURE 2	Proposed Site Plan
FIGURE 3	Baseline Lane Configurations
FIGURE 4	Baseline Year 2027 AM Peak Hour of Traffic
FIGURE 5	Baseline Year 2027 PM Peak Hour of Traffic
FIGURE 6	Distribution of External Site-Generated Trips
FIGURE 7	Distribution of Site-Generated Vehicles
FIGURE 8	AM Peak Hour of Traffic With Project
	Distribution of Site-Generated Vehicles
	PM Peak Hour of Traffic With Project
FIGURE 9	Year 2030 AM Peak Hour of Traffic Without Project
FIGURE 10	Year 2030 PM Peak Hour of Traffic Without Project
FIGURE 11	Year 2030 AM Peak Hour of Traffic With Project
FIGURE 12	Year 2030 PM Peak Hour of Traffic With Project
FIGURE 13	Existing and Proposed Bicycle Facilities
FIGURE 14	Existing Bicycle Level of Traffic Stress
FIGURE 15	Existing Bus Routes and Transit LOS

LIST OF APPENDICES

APPENDIX A	Traffic Count Data
APPENDIX B	Level of Service Definitions
APPENDIX C	Capacity Analysis Calculations
APPENDIX D	Baseline Peak Period Traffic Analysis
APPENDIX E	Trip Generation Calculations
APPENDIX F	Capacity Analysis Calculations
APPENDIX G	Projected Year 2030 Peak Period Traffic Analysis Without Project
	Capacity Analysis Calculations
	Projected Year 2030 Peak Period Traffic Analysis With Project
	Transit LOS Calculations

I. INTRODUCTION

A. Purpose of Study

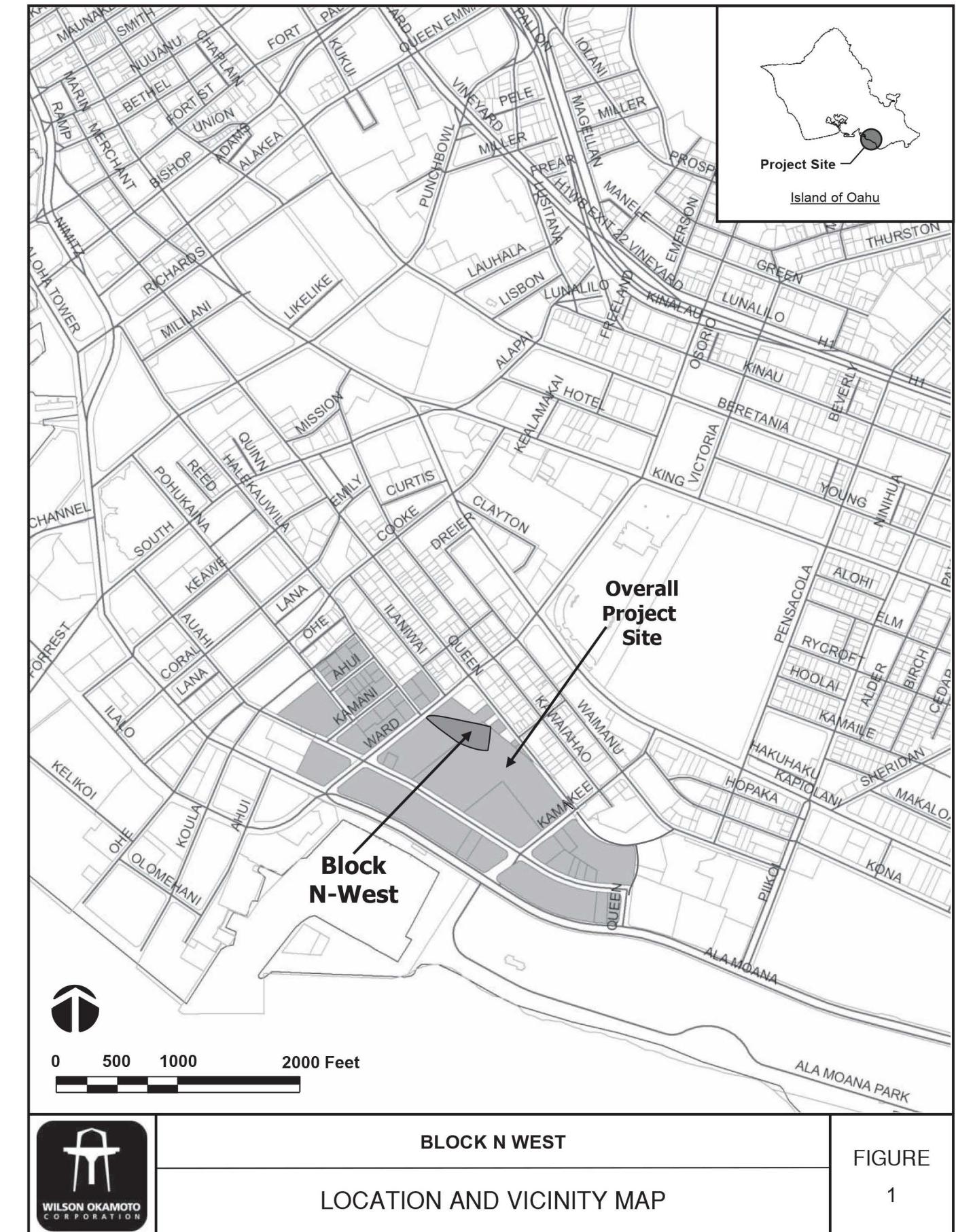
The purpose of this study is to identify and assess the potential traffic impacts resulting from the Block N West development of the Ward Village Master Plan in Kakaako on the island of Oahu. A previous assessment including the Block N West development was included in the “Transportation Master Plan and Assessment for the Ward Village Master Plan” (hereafter referred to as the “Ward Village TMP”) originally dated October 2020 and updated in October 2022. In addition, a Traffic Impact Analysis Report (TIAR) for Block N-West (dated March 2023) was also previously prepared and accepted by the City and County of Honolulu Department of Planning and Permitting, Traffic Review Branch (TRB). Since the preparation of the 2023 TIAR, the development timeline for the project has changed along with slight changes to the development plan. As such, this report is an update to the 2023 TIAR to incorporate these changes. It should also be noted that since the preparation of the 2023 TIAR, the project name has been updated to the “Mahana” development, but for the purpose of this report, the project will continue to be referred to as the Block N-West development to be consistent with the 2023 TIAR and Ward Village TMP.

B. Scope of Study

This report presents the findings and conclusions of the traffic study, the scope of which includes:

1. Description of the proposed project.
2. Evaluation of existing roadway and traffic operations in the vicinity.
3. Analysis of future roadway and traffic conditions without the proposed project.
4. Analysis and development of trip generation characteristics for the proposed project.
5. Superimposition of site-generated traffic over future traffic conditions.
6. The identification and analysis of traffic impacts resulting from the proposed project.
7. Recommendations of improvements, if appropriate, that would mitigate the traffic impacts resulting from the proposed project.

II. PROJECT DESCRIPTION


A. Location

The project site for the proposed Block N West development encompasses a portion of the former Ohana Hale Marketplace and will be located adjacent to the Halekauwila Extension in Kakaako on the island of Oahu (see Figure 1). The project site is bounded by Ward Avenue to the west, the Aalii development to the east, the future Kakaako Station site to the north and a private driveway to the south (referred to as the “Halekauwila Extension”). It is further identified as Tax Map Key (TMK): 2-3-002:116. Access to the proposed project is expected to be provided via a new two-way driveway off the Halekauwila Extension.

B. Project Characteristics

The overall Ward Village Master Plan entails the redevelopment of most of the existing commercial, office, and industrial spaces implemented in five (5) phases over a span of 10-15 years. Phase 1, which includes Blocks C (Waiea), K (Anaha), M (Aeo), and O (Kilohana) and Phase 2, which includes Blocks N-East (Aalii), I (Koula), and C West (Victoria Place), have been fully completed and occupied. Phase 3 projects, which include Blocks H (The Park Ward Village), F (Ulana), and B (Kalae), are currently under construction and are expected to be completed by Year 2027. The Phase 4 projects, which include Blocks A (The Launiu), D (Melia), and E (Ilima), have been accepted by the Hawaii Community Development Authority (HCDA), are under design and are expected to be completed by Year 2029.

Phase 5 of the master plan only includes Block N West as the Block P parcels previously planned for an 88,800 sq ft retail project has been sold to the HCDA and the retail project cancelled. The proposed project entails the development of approximately 465 residential units, 8,000 square feet (sf) of retail uses, and 4,000 sf of restaurant uses. It should be noted that these densities represent an increase in the residential units but a decrease in both commercial and restaurant uses from the 2023 TIAR. Access to the proposed project is expected to be provided via a new driveway off the Halekauwila Extension. As discussed in the Ward Village TMP, the existing private driveway that intersects Kamakee Street between Auahi and Queen Streets is expected to be extended westward to intersect with Ward Avenue forming a 4-way

intersection with Halekauwila Street at an earlier phase (Phase 3) in conjunction with the development of the Park Ward Village. Parking for the residential uses is expected to be accommodated on site while parking for the commercial uses is expected to be accommodated within the commercial parking area in the Park Ward Village development. The Block N West is anticipated to be completed by Year 2030. See Figure 2 for the project site plan.

III. BASELINE TRAFFIC CONDITIONS

A. Area Roadway System

East-west traffic flow through the Kakaako area is served by a number of existing major roadways which include Ala Moana Boulevard, Queen Street, and Kapiolani Boulevard that provide continuous east-west mobility through the project vicinity. These major roadways are supported by a network of connector roadways including Auahi Street, Pohukaina Street, and Halekauwila Street that provide alternate east-west routes through the surrounding areas. North-south traffic through the Kakaako area is served by a number of existing major roadways including Ward Avenue and Piikoi Street that support either one-way or two-way travel through the project vicinity. These major roadways are supported by a network of connector roadways including Cooke Street and Kamakee Street that provide alternate north-south routes through the surrounding areas.

B. Traffic Volumes and Conditions

1. General

a. **Field Investigation**

The traffic count data utilized for this study consisted of turning movement count surveys at 22 locations during the weekday morning peak hours of 6:00 AM and 9:00 AM and afternoon peak hours of 3:00 PM and 6:00 PM. The surveys were conducted during 2018 and supplemented during 2019 at the intersections along the following roadways:

- Along Kapiolani Boulevard at the intersections with Cooke Street, Ward Avenue, Kamakee Street, Queen Street, and Piikoi Street
- Along Auahi Street at the intersections with Cooke Street, Ward Avenue, Kamakee Street, and Queen Street and Queen Lane

- Along Halekauwila Street at the intersections with Cooke Street, Ward Avenue, and Kamakee Street
- Along Queen Street at the intersections with Cooke Street, Ward Avenue, Kamakee Street, and Queen Lane
- Along Ala Moana Boulevard at the intersections with Cooke Street, Ward Avenue, Kamakee Street, and Piikoi Street
- Pohukaina Street and Cooke Street
- Waimanu Street and Piikoi Street

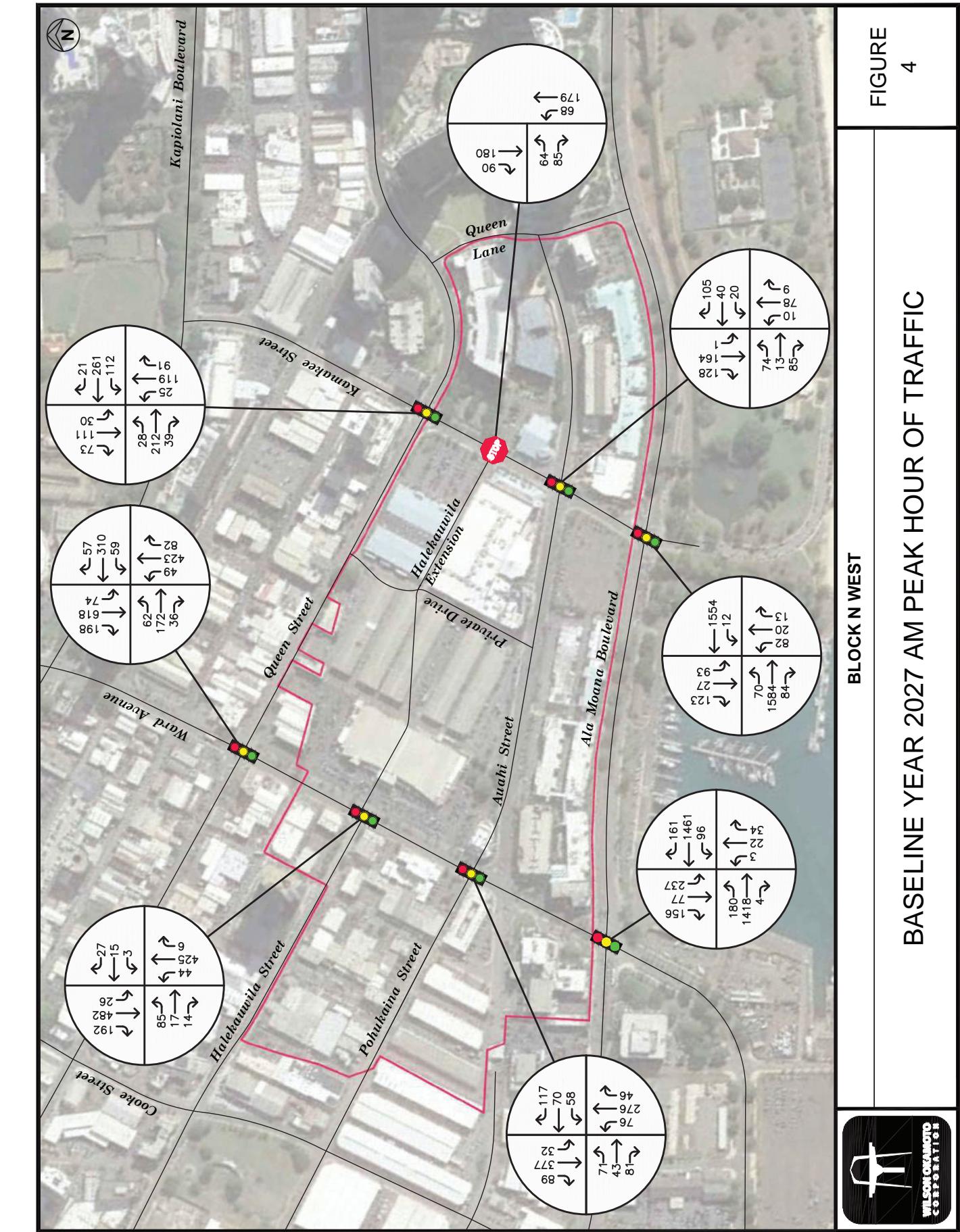
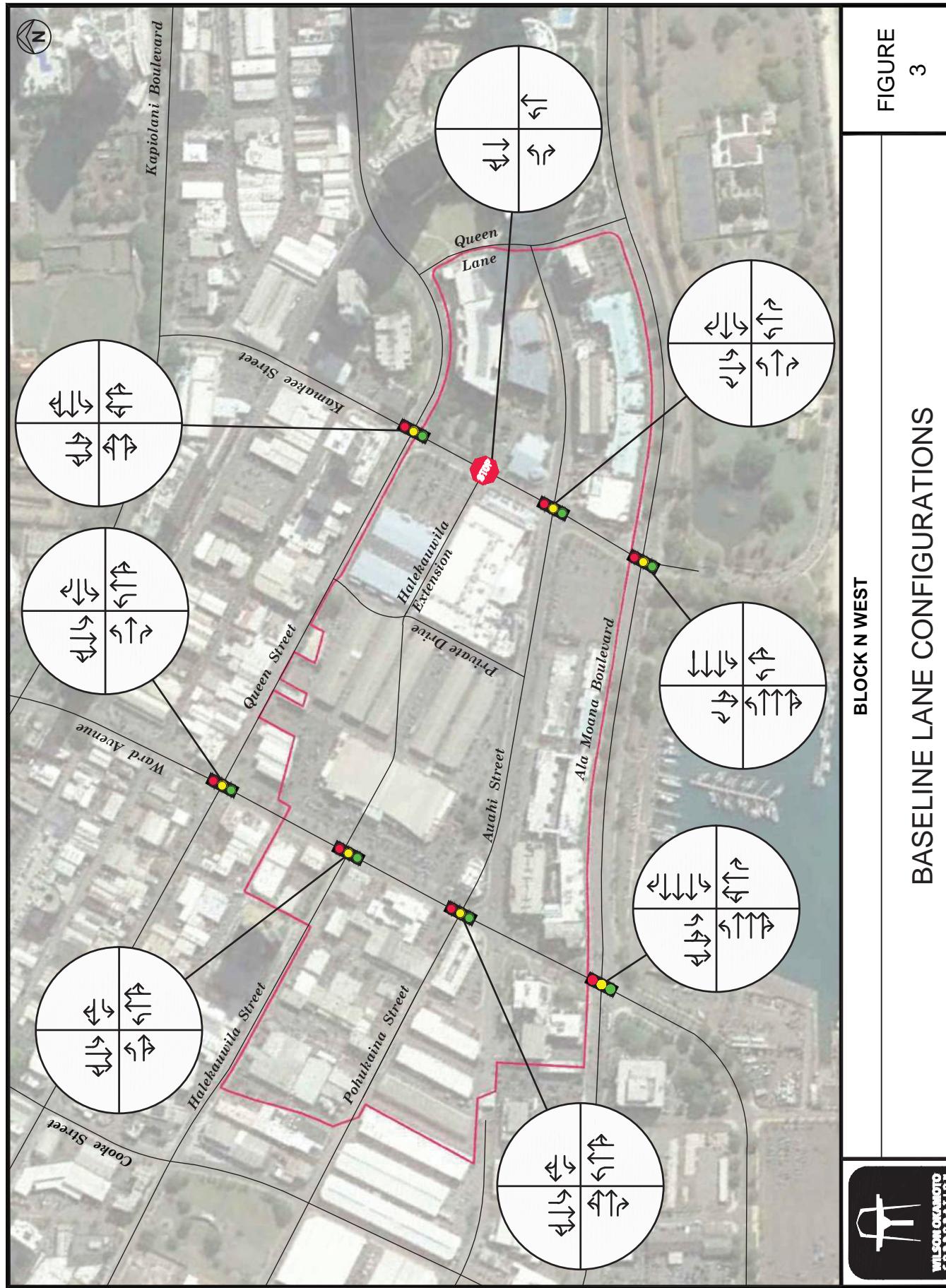
Starting in 2020, the ongoing COVID-19 pandemic resulted in fluctuations in traffic volumes and shifts in travel patterns that limited the ability to collect updated traffic data. Since the end of 2021, traffic volumes and patterns have slowly been normalizing and as such, additional supplemental traffic data was collected in August 2022 at key intersection in the vicinity to incorporate these noted changes.

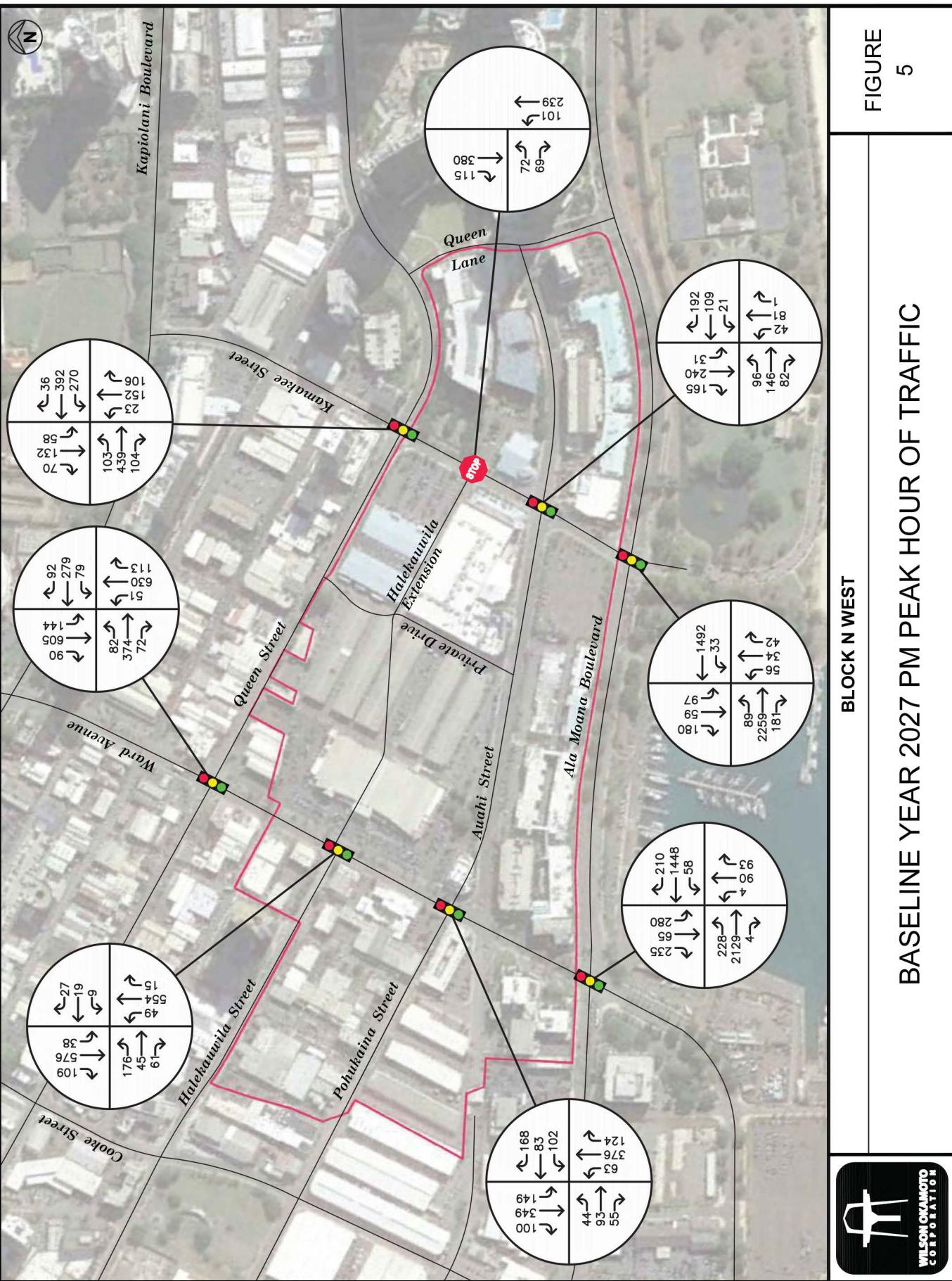
The resulting baseline traffic volumes used for this study reflect the incorporation of these considerations and are considered to be representative of Year 2022 existing conditions. As previously noted, the developments associated with Phase 1 and Block N East of Phase 2 have been completed and occupied. As such, the trips associated with these blocks were assumed to be captured within the surveyed traffic volumes. In addition, during the supplemental counts, the sites for Blocks H, F, B, A, and N West had been cleared of their existing uses, while Block C West was still under construction. Appendix A includes the traffic count data.

b. Capacity Analysis Methodology

The highway capacity analysis performed in this study is based upon procedures presented in the “Highway Capacity Manual”, Transportation Research Board, 2000, and the “Synchro” software, developed by Trafficware. It should be noted that the HCM 2010 and 2016 methodologies are available with the Synchro software; however, as previously discussed in the Ward Villages Master Plan, analysis conducted using that methodology is unable to accommodate all of the exclusive and shared-use lane configurations in the study area. As

such, for the purpose of this report, the HCM 2000 methodology output was used for consistency with the overall traffic study. The analysis is based on the concept of Level of Service (LOS) to identify the traffic impacts associated with traffic demands during the peak periods of traffic.



LOS is a quantitative and qualitative assessment of traffic operations. Levels of Service are defined by LOS “A” through “F”; LOS “A” representing ideal or free-flow traffic operating conditions and LOS “F” unacceptable or potentially congested traffic operating conditions.


“Volume-to-Capacity” (v/c) ratio is another measure indicating the relative traffic demand to the road carrying capacity. A v/c ratio of one (1.00) indicates that the roadway is operating at or near capacity. A v/c ratio of greater than 1.00 indicates that the traffic demand exceeds the road’s carrying capacity. The LOS definitions are included in Appendix B.

2. Baseline Peak Hour Traffic

a. General

Figures 3-5 show the baseline Year 2027 lane configurations and AM and PM peak hour traffic volumes at key locations within the study area which includes the development of other projects in the vicinity, as well as Phases 1 to 4 of the Ward Village Master Plan which are expected to be completed prior to the proposed project. The baseline traffic conditions are based on the projected Year 2027 conditions included in the “Traffic Impact Report For Block D and Block E Developments” dated March 2023 (hereafter referred to as the “Block D and Block E TIAR”). The AM peak hour of traffic generally occurs between 7:30 AM and 8:30 AM while the PM peak hour of traffic generally occurs between 4:30 PM and 5:30 PM. Although the peak hours of traffic generally occur around the same time periods at each of the study intersections, the absolute commuter peak hour time

periods for each intersection may differ slightly. The analysis is based on these absolute commuter peak hour time periods to identify the traffic impacts resulting from the proposed project. LOS calculations for the study intersections are included in Appendix C.

As previously discussed in the Ward Village TMP, improvements to the surrounding roadways are planned in conjunction with the overall Ward Village Master Plan. These improvements include the realignment of Auahi Street east of Ward Avenue that will connect Auahi Street to Pohukaina Street and the completion of the Halekauwila Extension from Robinson Lane to Ward Avenue. Both of these roadway projects are expected to be completed by Year 2026 and were included in the baseline conditions. The baseline conditions also included the following other considerations discussed in the Block D and Block E TIAR:

- Ala Moana Pedestrian Bridge
- Ala Moana Boulevard and Kamakee Street Lane Use Modifications
- Kakaako Mauka Master Plan (KKMP) Blocks I (Alia) and Block G (Kaliu) developments
- Right-Turn on Red Restrictions at Select Intersections along Ala Moana Boulevard

b. Ward Avenue and Queen Street

At the intersection with Queen Street, Ward Avenue carries 554 vehicles northbound and 890 vehicles southbound during the AM peak hour of traffic. During the PM peak period, the overall traffic volume is higher with 794 vehicles traveling northbound and 839 vehicles traveling southbound. The northbound approach operates at LOS "B" and LOS "C" during the AM and PM peak hours of traffic, respectively, while the southbound approach of the intersection operates at LOS "B" during both peak hours of traffic.

The Queen Street approaches of the intersection carry 270 vehicles eastbound and 426 vehicles westbound during the AM peak

hour of traffic. During the PM peak period, traffic volumes are higher with 528 vehicles traveling eastbound and 450 vehicles traveling westbound. The eastbound approach operates at LOS "B" and LOS "C" during the AM and PM peak hours of traffic, respectively, while the westbound approach of the intersection operates at LOS "C" during both AM and PM peak hours of traffic.

c. Queen Street and Kamakee Street

At the intersection with Kamakee Street, Queen Street carries 279 vehicles eastbound and 394 vehicles westbound during the AM peak hour of traffic. During the PM peak hour, traffic volumes are higher with 646 vehicles traveling eastbound and 698 vehicles traveling westbound. The eastbound approach operates at LOS "B" and LOS "C" during the AM and PM peak hours of traffic, respectively, while the westbound approach operates at LOS "A" and LOS "B" during the AM and PM peak hours of traffic, respectively.

The Kamakee Street approaches carry 235 vehicles northbound and 214 vehicles southbound during the AM peak hour of traffic.

During the PM peak hour, the overall traffic volume is similar with 281 vehicles traveling northbound and 260 vehicles traveling southbound. Both approaches of Kamakee Street operate at LOS "B" during the AM peak hour and LOS "C" during the PM peak hour.

d. Ward Avenue and Halekauwila Street

At the intersection with Halekauwila Street, Ward Avenue carries 475 vehicles northbound and 700 vehicles southbound during the AM peak hour of traffic. During the PM peak hour of traffic, traffic volumes are higher with 618 vehicles traveling northbound and 723 vehicles traveling southbound. Both approaches of Ward Avenue operate at LOS "A" during the AM peak hour and LOS "B" during the PM peak hour.

The Halekauwila Street approach of the intersection carries 116 vehicles eastbound and 45 vehicles westbound during the AM peak

hour. During the PM peak hour, traffic volumes are higher with 282 vehicles traveling eastbound and 55 vehicles traveling westbound. The eastbound approach operates at LOS "B" during both peak hours of traffic, while the westbound approach operates at LOS "B" and LOS "A" during the AM and PM peak hour, respectively.

e. Kamakee Street and Halekauwila Extension

At the intersection with Halekauwila Extension, Kamakee Street carries 247 vehicles northbound and 270 vehicles southbound during the AM peak hour. During the PM peak hour, the traffic volumes are higher with 340 vehicles traveling northbound and 495 vehicles traveling southbound. The northbound approach on Kamakee Street operate at LOS "A" during both peak hours.

Halekauwila Extension carries 149 vehicles eastbound during the AM peak hour. During the PM peak hour, traffic volume is lower with 141 vehicles traveling eastbound. The eastbound approach on Halekauwila Extension operates at LOS "B" and LOS "C" during the AM and PM peak hours, respectively.

f. Ward Avenue, Auahi Street, and Pohukaina Street

At the intersection with Auahi Street, Ward Avenue carries 398 vehicles northbound and 498 vehicles southbound during the AM peak hour. During the PM peak hour, traffic volumes are higher with 563 vehicles traveling northbound and 598 vehicles traveling southbound. During the AM peak hour, both approaches of Ward Avenue operate at LOS "A" while both approaches operate at LOS "B" during the PM peak hour.

The Auahi Street approach of the intersection carries 245 vehicles westbound during the AM peak hour and 353 vehicles during the PM peak hour. The Auahi Street approach operates at LOS "B" during both peak hours. The Pohukaina Street approach of the intersection carries 195 eastbound vehicles during the AM peak hour

and 192 vehicles during the PM peak hour. The Pohukaina Street approach operates at LOS "B" during both peak hours.

g. Kamakee Street and Auahi Street

At the intersection with Auahi Street, Kamakee Street carries 97 vehicles northbound and 293 vehicles southbound during the AM peak hour. During the PM peak hour, the traffic volumes are higher with 124 vehicles traveling northbound and 436 vehicles traveling southbound. Both approaches on Kamakee Street operate at LOS "B" during both peak hours.

Auahi Street carries 172 vehicles eastbound and 165 vehicles westbound during the AM peak hour. During the PM peak hour, traffic volumes are higher with 324 vehicles traveling eastbound and 322 vehicles traveling westbound. Both approaches on Auahi Street operate at LOS "B" during both peak hours.

h. Ala Moana Boulevard and Ward Avenue

At the intersection with Ward Avenue, Ala Moana Boulevard carries 1,602 vehicles eastbound and 1,718 vehicles westbound during the AM peak hour. During the PM peak hour, the overall traffic volume is similar with 2,361 vehicles traveling eastbound and 1,716 vehicles traveling westbound. Both approaches on Ala Moana Boulevard operate at LOS "D" and LOS "E" during the AM and PM peak hours, respectively. Traffic operations at this intersection are influenced by the high volume of conflicting traffic at this intersection and split phasing of the northbound and southbound approaches.

The Ward Avenue approaches of the intersection carry 59 vehicles northbound and 470 vehicles southbound during the AM peak hour. During the PM peak hour, traffic volumes are higher with 187 vehicles traveling northbound and 580 vehicles traveling southbound. The northbound approach operates at LOS "D" during both peak hours while the southbound approach operates at LOS "D" and LOS "E" during the AM and PM peak hours, respectively. As previously

discussed, the low levels of service are influenced by the high volume of conflicting traffic at this intersection.

i. Ala Moana Boulevard, Kamakee Street, and Ala Moana Park Drive

At the intersection with Kamakee Street, Ala Moana Boulevard carries 1,738 vehicles eastbound and 1,566 vehicles westbound during the AM peak hour of traffic. During the PM peak hour, the overall traffic volume is higher with 2,529 vehicles traveling eastbound and 1,525 vehicles traveling westbound. The eastbound approach operates at LOS "B" and LOS "C" during the AM and PM peak hours, respectively, while the westbound approach operates at LOS "B" during both peak hours.

The Kamakee Street approach of the intersection carries 243 vehicles southbound during the AM peak hour and 336 vehicles during the PM peak hour. The Kamakee Street approach operates at LOS "C" and LOS "D" during the AM and PM hours, respectively. The northbound approach is comprised of Ala Moana Park Drive which carries 115 vehicles during the AM peak hour and 132 vehicles during the PM peak hour. The Ala Moana Park Drive operates at LOS "C" and LOS "D" during the AM and PM peak hours, respectively.

IV. PROJECTED TRAFFIC CONDITIONS

A. Site-Generated Traffic

1. Trip Generation Methodology

The trip generation methodology used in this study is based upon generally accepted techniques developed by the Institute of Transportation Engineers (ITE) and published in "Trip Generation, 10th Edition," 2017. The ITE trip generation rates are developed empirically by correlating the vehicle trip generation data with various land use characteristics such as the number of vehicle trips generated per dwelling unit or 1,000 sf of development. It should be noted that a more recent edition of the Trip Generation was recently published at the end of 2021. Although average trip generation rates for some

residential land uses have remained generally similar, the retail land uses have been updated to provide additional land use types. However, trip generation data for some of these uses are still limited. As such, for the purpose of this assessment, the 2017 edition was used. Tables 1 summarize the proposed trip generation characteristics for the Block N West development.

Table 1: Proposed Peak Hour Trip Generation

MULTIFAMILY HOUSING (HIGH-RISE)		
INDEPENDENT VARIABLE: Dwelling Units = 465		
		PROJECTED TRIP ENDS
AM PEAK	ENTER	35
	EXIT	109
	TOTAL	144
PM PEAK	ENTER	102
	EXIT	65
	TOTAL	167
RESTAURANT (HIGH-TURNOVER SIT-DOWN)		
INDEPENDENT VARIABLE: 1,000 sf of development = 4.034		
		PROJECTED TRIP ENDS
AM PEAK	ENTER	22
	EXIT	18
	TOTAL	40
PM PEAK	ENTER	24
	EXIT	15
	TOTAL	39
SHOPPING CENTER		
INDEPENDENT VARIABLE: 1,000 sf of development = 8.066		
		PROJECTED TRIP ENDS
AM PEAK	ENTER	5
	EXIT	3
	TOTAL	8
PM PEAK	ENTER	15
	EXIT	16
	TOTAL	31

Table 1: Proposed Peak Hour Trip Generation (Cont'd)

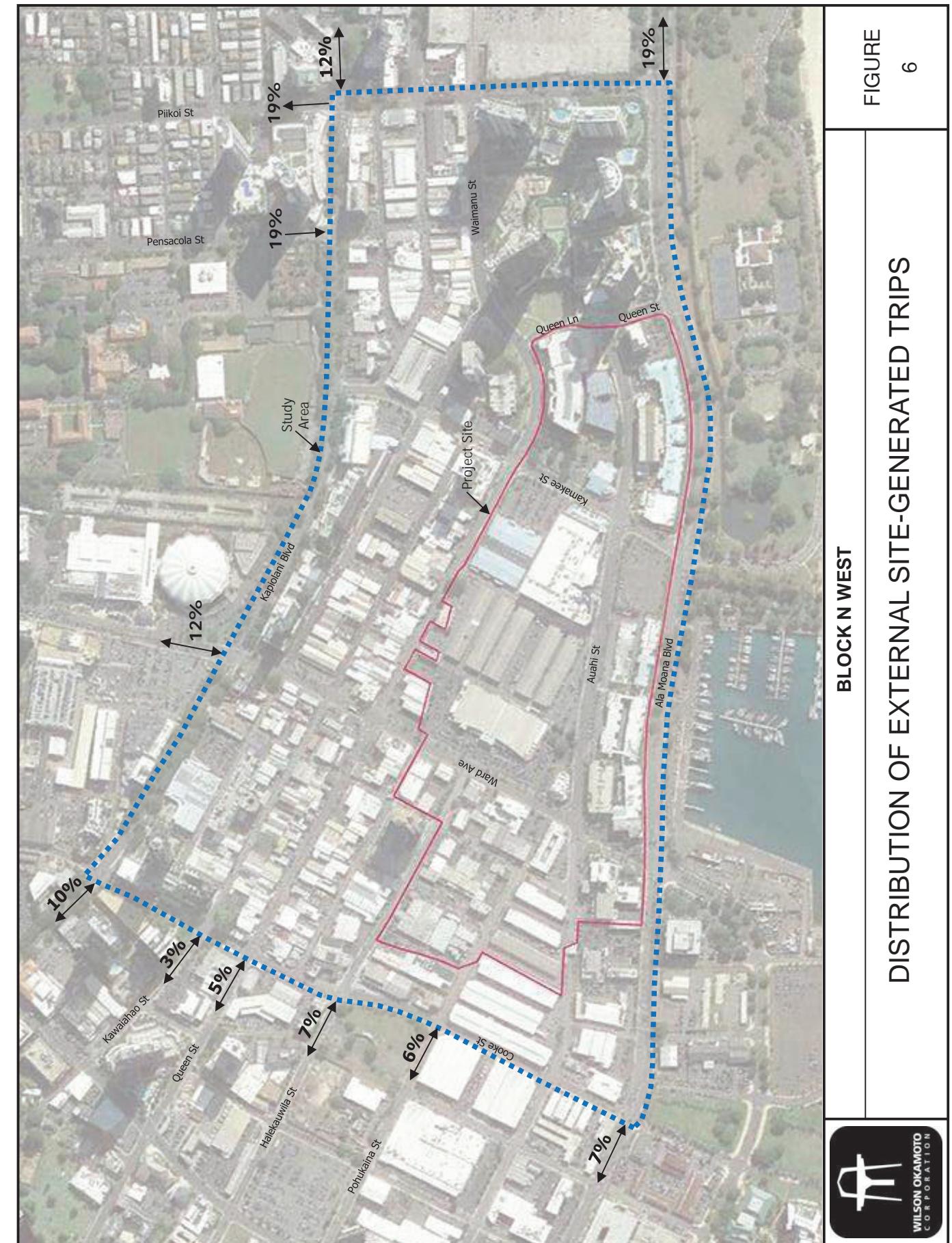
TOTALS		
		PROJECTED TRIP ENDS
AM PEAK	ENTER	62
	EXIT	130
	TOTAL	192
PM PEAK	ENTER	141
	EXIT	96
	TOTAL	237

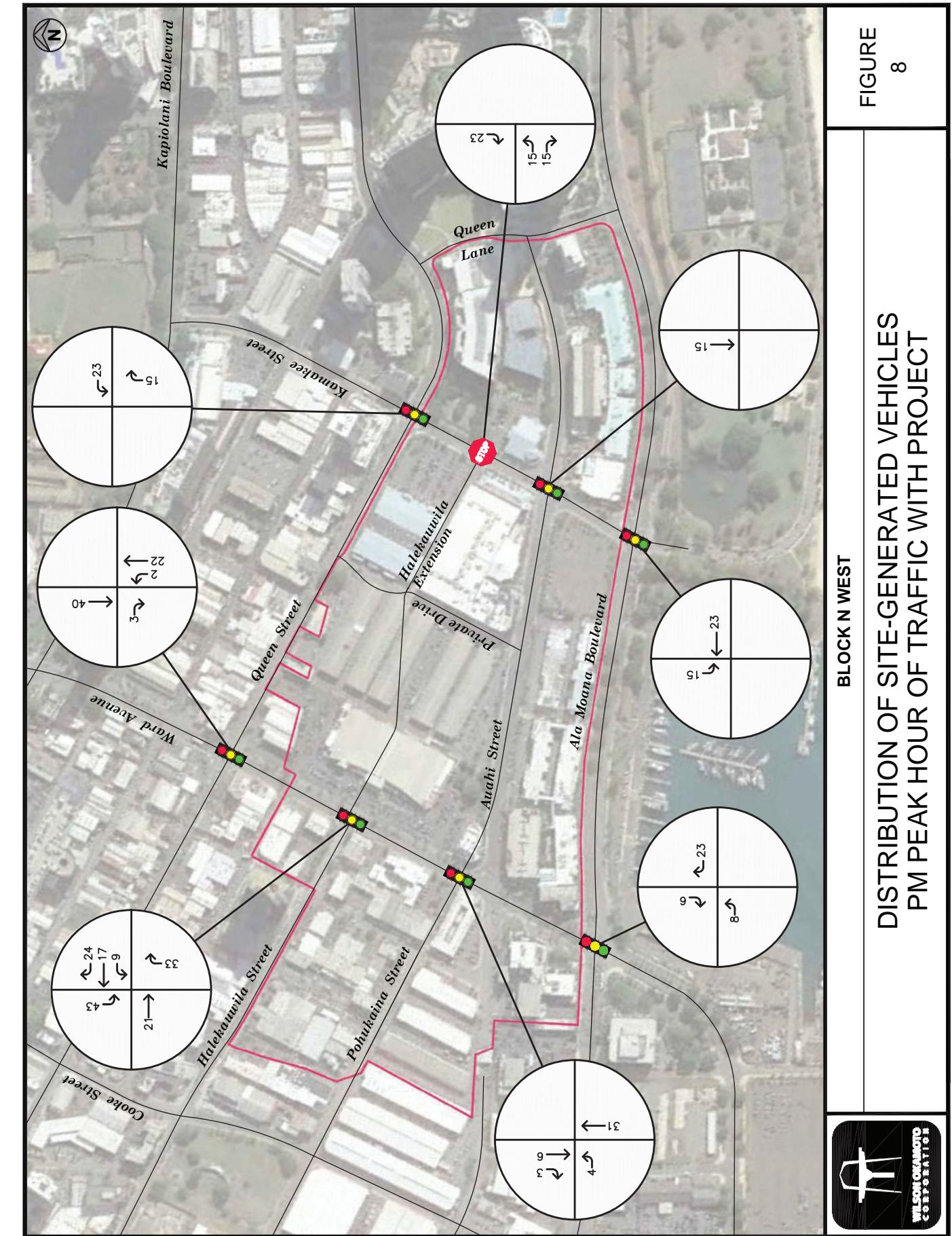
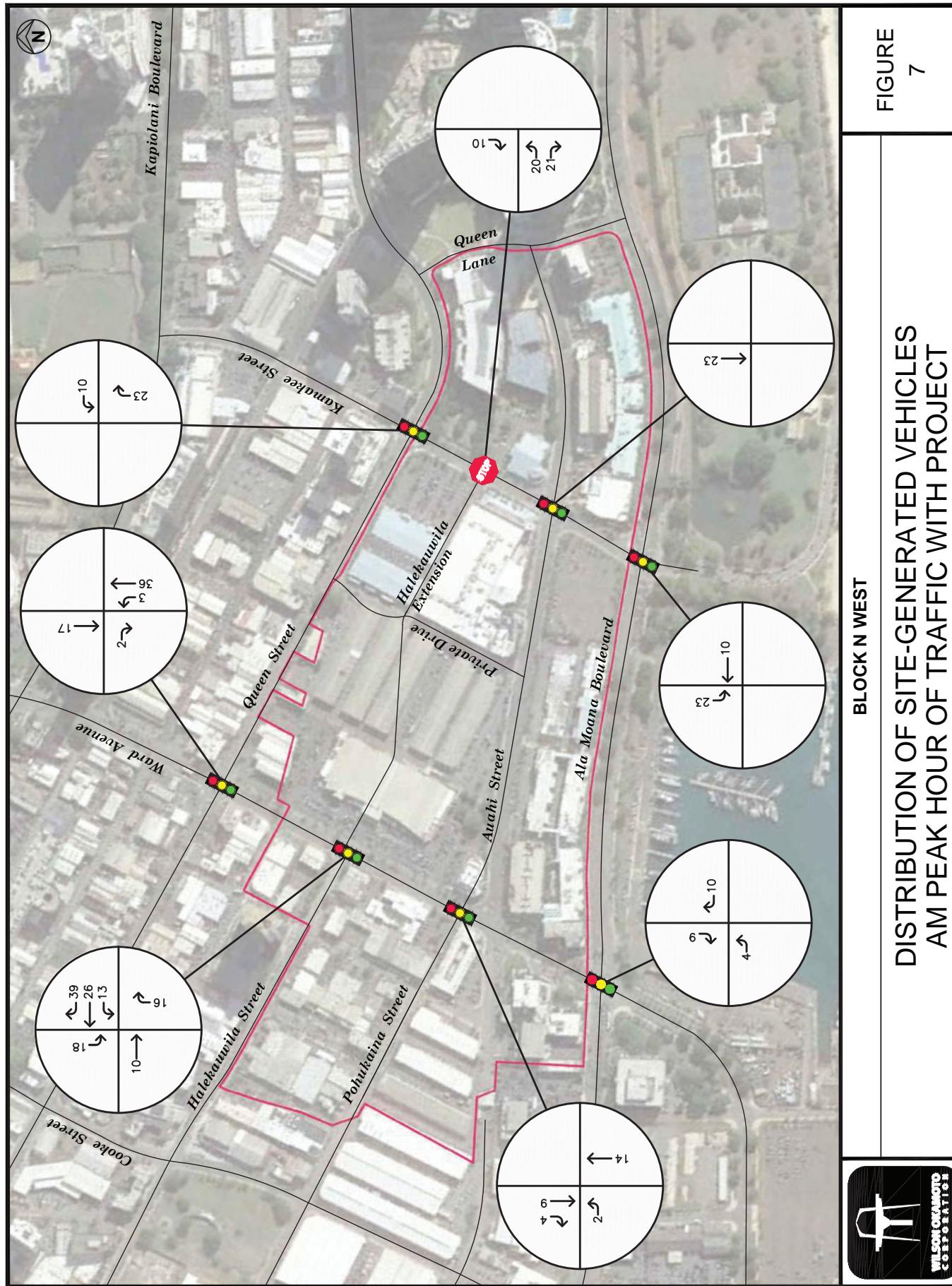
The trip generation methodology developed by ITE also includes provisions for multi-modal trips. Multi-modal trips are trips made utilizing non-motorized modes of travel such as walking and biking, as well as trips made using transit. The project site is currently served by established, convenient transit routes that may reduce the number of vehicular trips added to the surrounding major roadways. The trip generation characteristics for the proposed project were adjusted to account for trips made using alternative modes of transportation. Table 2 summarizes the adjusted trip generation characteristics for the Block N West development. Appendix D includes a detailed trip generation worksheet for the Block N West development.

Table 2: Adjusted Peak Hour Trip Generation

TOTALS		
		PROJECTED TRIP ENDS
AM PEAK	ENTER	52
	EXIT	123
	TOTAL	175
PM PEAK	ENTER	121
	EXIT	79
	TOTAL	200

2. Trip Distribution and Through Traffic Forecasting Methodology


The directional distribution of site-generated trips was based on the relative distribution of traffic along the regional roadways in the vicinity of the project. These percentages are generally consistent with the regional forecasting model developed by the Oahu Metropolitan Planning Organization (OMPO) since the project is located within a developed, well-established area in Honolulu. The OMPO model provides a macro level forecast of the



anticipated overall travel demand for the island of Oahu utilizing Socio-Economic Data (SED) representing population distribution within a multitude of traffic analysis zones to forecast individual vehicle trips between destinations within the model. The model by OMPO provides a general framework of travel demand, however a more finite, micro-level approach was utilized to complete the specific distribution of site-generated trips at the study intersections based on their assumed origin/destination, allowed turning movements, and the relative convenience of the available routes. In addition, taking into the account the project's location within a well-developed area and anticipated development in the vicinity of the project, a growth rate of approximately 1.5% growth rate per year was assumed in the vicinity of the project. This is generally in line with OMPO's forecasting model which estimates population growth to be relatively linear to the Year 2035. As such, a growth factor was determined for Year 2030 and applied to the baseline through traffic demands along the regional roadways in the project vicinity. Figures 6 to 8 show the trip distribution percentages and the distribution of site-generated traffic during the AM and PM peak periods based on the OMPO model. The trips associated with the proposed project were distributed at the study intersections based on their assumed origin/destination, allowed turning movements, and the relative convenience of the available routes.

B. Other Considerations

1. Honolulu Rail Transit Project

The City and County of Honolulu is currently developing a fixed guideway transit system that is planned to extend from Kapolei to the central Honolulu area thereby providing an alternate mode of travel through the Kakaako area. The proposed Honolulu High-Capacity Transit Corridor Project is intended to increase east-west mobility on Oahu's most heavily congested corridor. In the vicinity of the Ward Village development, the guideway alignment is expected to run along Halekauwila Street, cross over to Queen Street, and then follow that roadway to Waimanu Street. However, on September 30, 2022, the Honolulu Authority for Rapid Transit (HART)

announced the Federal Transit Administration (FTA) approved HART's 2022 Recovery Plan, which proposed a truncated project scope with an interim terminus at the Civic Center, located at the intersection of Halekauwila Street and South Street. HART further announced that it remains committed to completing the full scope of the project to the Ala Moana Transit Center in a subsequent phase. Because the timing of the subsequent phase was not announced, the rail project was not incorporated into baseline or projected conditions.

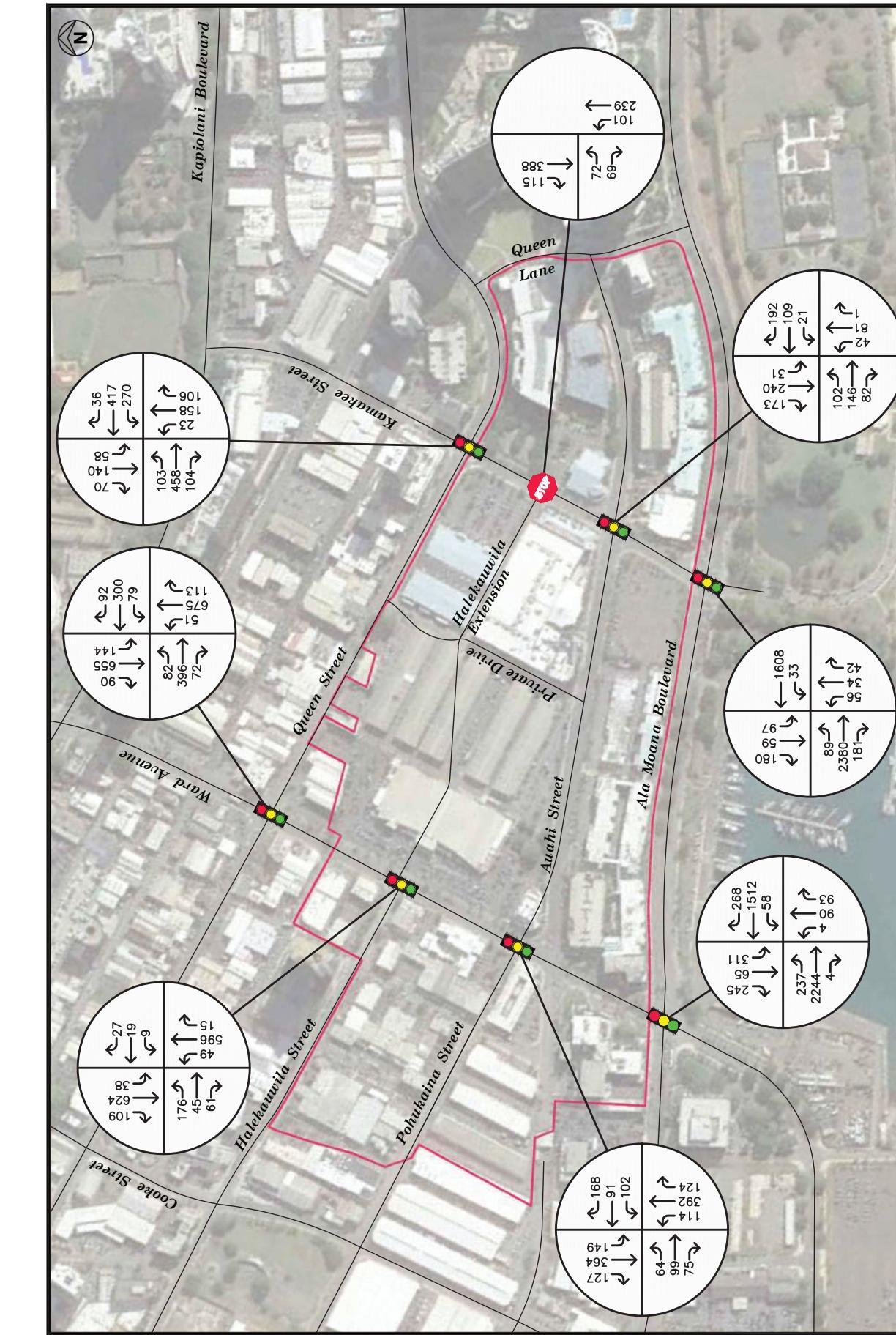
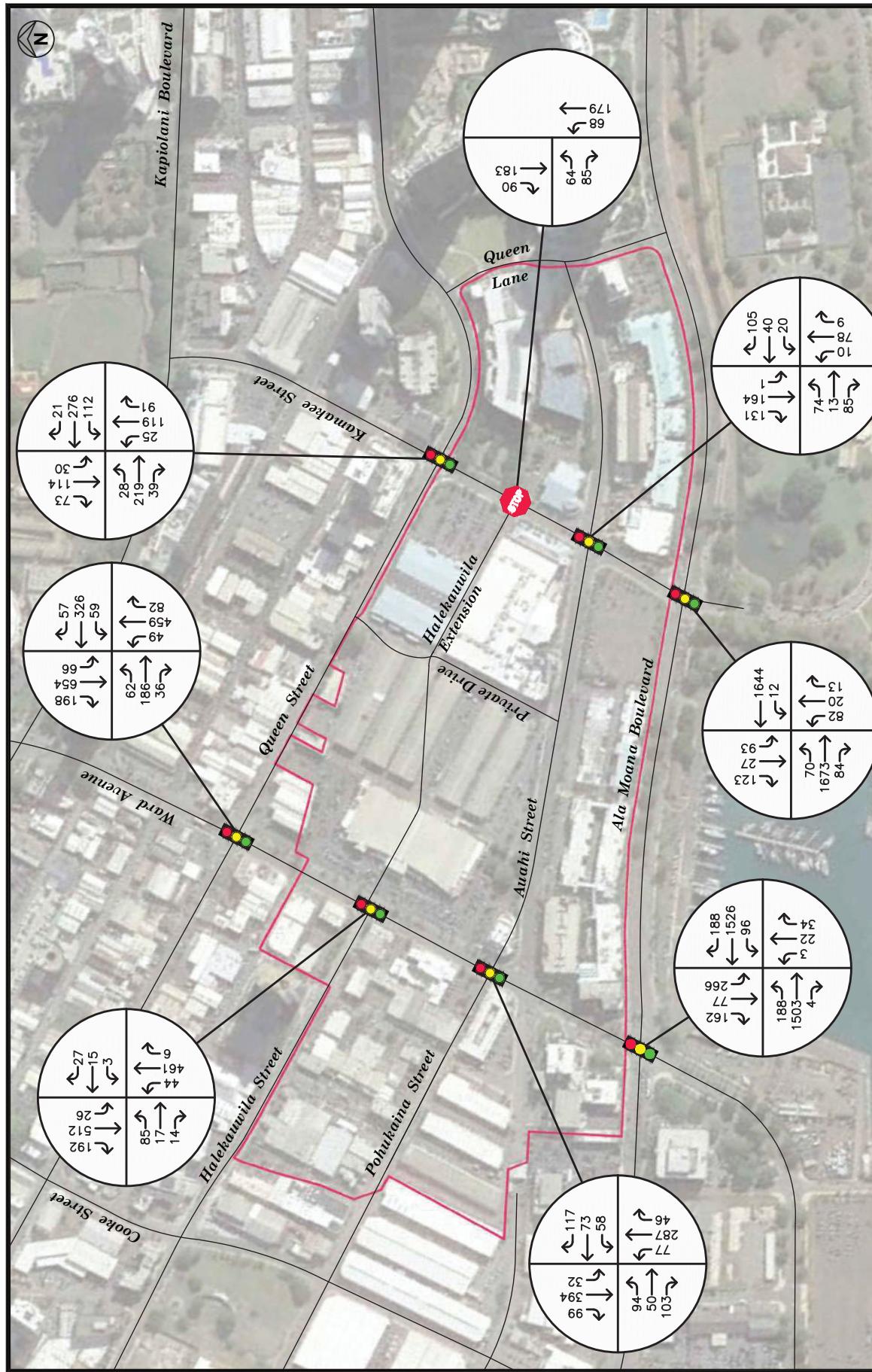
2. KKMP Block D Development

As discussed in the Ward Village TMP, there is another planned development in the vicinity of the project. The KKMP Increment 2 is being planned by Kamehameha Schools and entails the replacement of existing commercial and light industrial uses within the Kakaako Mauka area with mixed-use developments. Blocks I and G of the KKMP were previously incorporated into baseline conditions. The Block D development is another development within the KKMP and entails development of approximately 1,034 residential units, 68,325 sf of commercial uses, and 2,679 sf of restaurant uses. Access to the project site is expected to be provided via driveways off Pohukaina Street and Auahi Street. Based on the Traffic Impact Report for the Kakaako Block D Development (dated August 2024), the proposed project is expected to be completed by Year 2029. As such, the trips associated with the proposed Block D development were incorporated into projected conditions.

3. KKMP Block C Development

Another KKMP development anticipated in the vicinity of the project is the Block C development. The project site for Block C is bounded by Pohukaina Street to the north, Auahi Street to the south, Coral Street to the west and Cooke Street to the east. This project is expected to be a mixed-use development with residential and commercial uses. Information regarding this project found in real estate websites previously anticipated the project to be completed by 2026, but more recent updates indicate that the project is

delayed. The Hawaii Community Development Authority (HCDA) website also has limited information on the status of this project. As such, the KKMP Block C development was not incorporated into projected conditions.



C. Total Traffic Volumes Without Project

The projected Year 2030 AM and PM peak period traffic volumes and operating conditions without the Block N West development are shown in Figures 9 and 10 and summarized in Table 3. The analysis incorporates the trips associated with the development of other projects in the area including Phases 1 to 4 of the Ward Villages Master Plan, Blocks I, G, and D of the KKMP, and the anticipated ambient growth in traffic in the vicinity. In addition, the analysis also incorporates the aforementioned roadway improvements along Auahi Street and Halekauwila Street. The baseline levels of service are provided for comparison purposes. LOS calculations are included in Appendix E.

Table 3: Baseline and Projected Year 2030 (Without Project) LOS Traffic Operating Conditions

Intersection	Approach/ Critical Movement	AM		PM	
		Base-line*	Year 2030 w/out Proj	Base-line*	Year 2030 w/out Proj
Ward Ave/ Queen St	Eastbound	B	B	C	C
	Westbound	C	C	C	C
	Northbound	B	B	C	C
	Southbound	B	B	B	B
Queen St/ Kamakee St	Eastbound	B	B	C	C
	Westbound	A	A	B	B
	Northbound	B	B	C	C
	Southbound	B	B	C	C
Ward Ave/ Halekauwila St	Eastbound	B	B	B	B
	Westbound	B	B	A	A
	Northbound	A	A	B	B
	Southbound	A	A	B	B

*Year 2027 conditions which incorporate the completion of Phases 1 to 4 of the Ward Villages Master Plan.

Table 3: Baseline and Projected Year 2030 (Without Project) LOS Traffic Operating Conditions (Cont'd)

Intersection	Approach/ Critical Movement	AM		PM	
		Base-line*	Year 2030 w/out Proj	Base-line*	Year 2030 w/out Proj
Kamakee St/ Halekauwila Ext	Eastbound	B	B	C	C
Ward Ave/ Auahi St/ Pohukaina St	Eastbound	B	B	B	B
	Westbound	B	B	B	B
	Northbound	A	A	B	B
	Southbound	A	A	B	B
Kamakee St/ Auahi St	Eastbound	B	B	C	C
	Westbound	B	B	B	B
	Northbound	B	B	B	B
	Southbound	B	B	B	B
Ala Moana Blvd/ Ward Ave	Eastbound	D	D	E	E
	Westbound	D	D	E	E
	Northbound	D	D	D	D
	Southbound	D	D	E	E
Ala Moana Blvd/ Kamakee St	Eastbound	B	B	C	C
	Westbound	B	B	B	B
	Northbound	C	C	D	D
	Southbound	C	C	D	D

*Year 2027 conditions which incorporate the completion of Phases 1 to 4 of the Ward Villages Master Plan.

Traffic operations under Year 2030 without project conditions are generally expected to remain similar to baseline conditions. Along Ward Avenue, traffic operations at Queen Street are expected to continue operating at LOS "C" or better during both peak periods, whereas those at Ala Moana Boulevard are expected to continue operating at LOS "D" and LOS "E" or better during the AM and PM peak hours, respectively. As previously discussed, the high volume of conflicting traffic and the split phasing of the northbound and southbound approaches influence the low levels of service at this intersection. Along Kamakee Street, the approaches at the intersection with Queen Street are anticipated to continue operating at LOS "B" and LOS "C" or better during the AM and PM peak periods, respectively, while those at Ala Moana Boulevard are expected to continue operating at LOS "C" or better and

LOS "D" or better during the AM and PM peak periods, respectively. The remaining study intersections are also expected to continue operating similar to baseline conditions.

D. Total Traffic Volumes With Project

Figures 11 and 12 show the Year 2030 cumulative AM and PM peak hour traffic conditions resulting from the completion of the Block N West development. The cumulative volumes consist of site-generated traffic superimposed over Year 2030 projected traffic demands. The traffic impacts resulting from the proposed project are addressed in the following section.

V. TRAFFIC IMPACT ANALYSIS

The Year 2030 cumulative AM and PM peak hour traffic conditions with the completion of the Block N West development are shown on Figures 11 and 12 and summarized in Table 4. The projected Year 2030 (Without Project) operating conditions are provided for comparison purposes. LOS calculations are included in Appendix F.

Table 4: Projected Year 2030 (Without and With Project) LOS Traffic Operating Conditions


Intersection	Approach/ Critical Movement	AM		PM	
		Year 2030		Year 2030	
		w/out Proj	w/ Proj	w/out Proj	w/ Proj
Ward Ave/ Queen St	Eastbound	B	B	C	C
	Westbound	C	C	C	C
	Northbound	B	B	C	C
	Southbound	B	B	B	B
Queen St/ Kamakee St	Eastbound	B	B	C	C
	Westbound	A	B	B	B
	Northbound	B	B	C	C
	Southbound	B	B	C	C
Ward Ave/ Halekauwila St	Eastbound	B	B	B	B
	Westbound	B	B	A	A
	Northbound	A	A	B	B
	Southbound	A	A	B	B
Kamakee St/ Halekauwila Ext	Eastbound	B	B	C	D

YEAR 2030 AM PEAK HOUR OF TRAFFIC WITH PROJECT

BLOCK N WEST

FIGURE 11

YEAR 2030 PM PEAK HOUR OF TRAFFIC WITH PROJECT

BLOCK N WEST

FIGURE 12

WILSON CONSULTING

**Table 4: Projected Year 2030 (Without and With Project)
LOS Traffic Operating Conditions**

Intersection	Approach/ Critical Movement	AM		PM	
		Year 2030		Year 2030	
		w/out Proj	w/ Proj	w/out Proj	w/ Proj
Ward Ave/ Auahi St/ Pohukaina St	Eastbound	B	B	B	B
	Westbound	B	B	B	B
	Northbound	A	A	B	B
	Southbound	A	A	B	B
Kamakee St/ Auahi St	Eastbound	B	B	C	C
	Westbound	B	B	B	B
	Northbound	B	B	B	B
	Southbound	B	B	B	B
Ala Moana Blvd/ Ward Ave	Eastbound	D	D	E	E
	Westbound	D	D	E	E
	Northbound	D	D	D	D
	Southbound	D	D	E	E
Ala Moana Blvd/ Kamakee St	Eastbound	B	B	C	C
	Westbound	B	B	B	B
	Northbound	C	C	D	D
	Southbound	C	C	D	D

Traffic operations under Year 2030 with project conditions are generally expected to remain similar to without project conditions despite the addition of site-generated vehicles to the surrounding roadways. Along Queen Street, traffic operations at the intersection with Ward Avenue are expected to continue operating at LOS “C” or better during both peak periods, while those at the intersection with Kamakee Street are expected to continue operating at LOS “B” during the AM peak period and LOS “C” or better during the PM peak period. Along Auahi Street, traffic operations at the intersection with Ward Ave are expected to continue operating at LOS “B” during both peak periods, while those at the intersection with Kamakee Street are expected to continue operating at LOS “B” during the AM peak period and LOS “C” or better during the PM peak period. Traffic operations at the remaining study intersections are also anticipated to continue operating at levels of service similar to without project conditions.

VI. MULTIMODAL FACILITIES

A. Pedestrian Facilities

1. Existing Conditions

Improved pedestrian facilities such as sidewalks and crosswalks are currently provided along the roadways adjacent to the project site including Ward Avenue and Halekauwila Street, as well as further east and south along Kamakee Street and Auahi Street. It should be noted that a rectangular rapid flashing beacon (RRFB) was also previously installed at the intersection of Kamakee Street with the Halekauwila Extension to facilitate pedestrian crossings at this midblock location. Pedestrian facilities north of the project site along Queen Street are, however, currently limited with sidewalks only provided on the south side of the roadway east of Cummins Street. The shoulder areas west of Cummins Street are generally unimproved with pedestrians observed to occasionally utilize the vehicle travel way due to the presence of perpendicular on-street parking along this roadway.

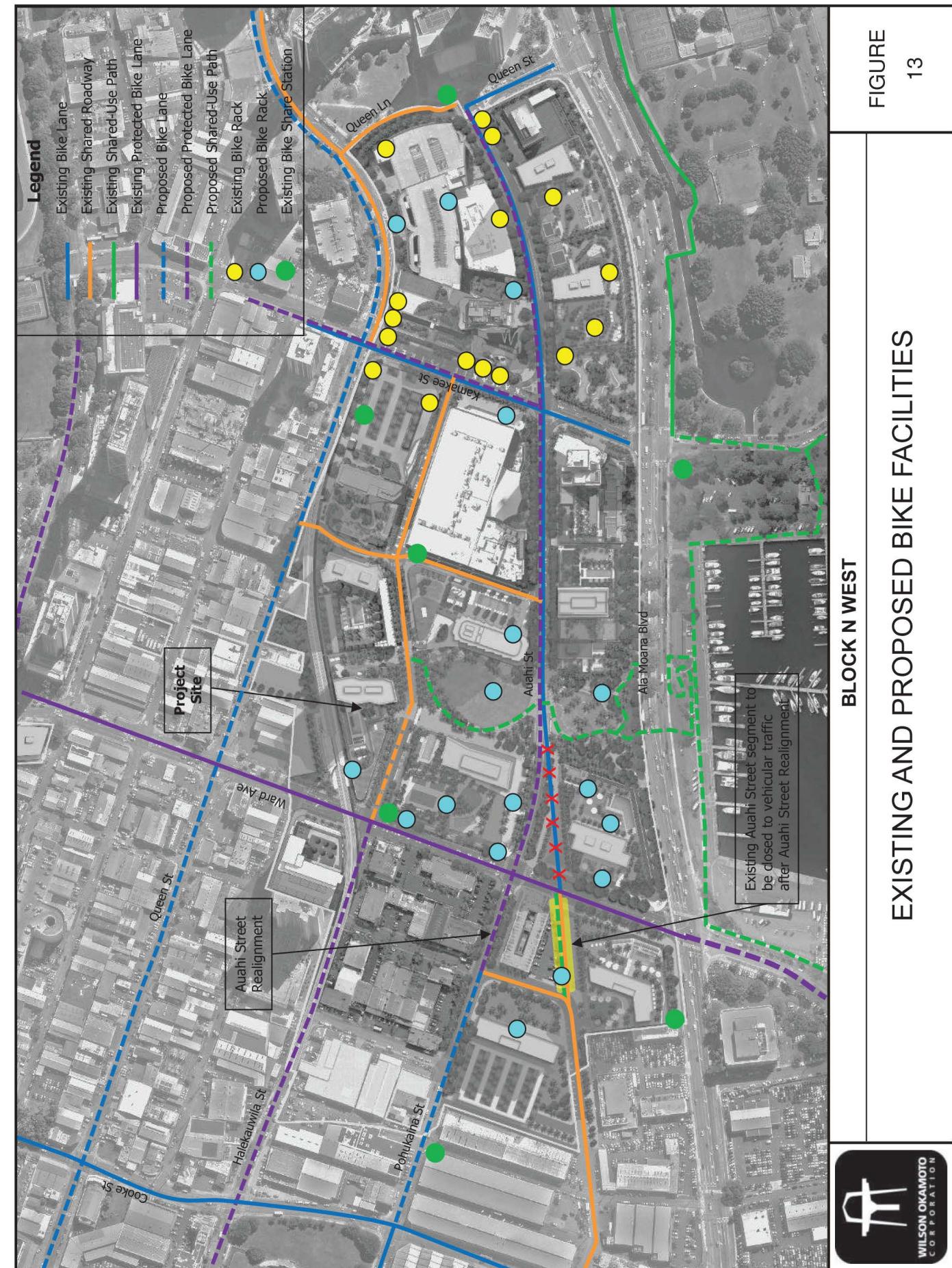
2. Projected Conditions

Existing pedestrian facilities along the adjacent roadways are generally expected to be improved/maintained with the proposed project. The project frontage along the Halekauwila Extension is expected to incorporate sidewalks and landscaping treatments consistent with the already constructed segments of the Halekauwila Extension east of Ward Avenue. In addition, the proposed project is also located in close proximity to the Victoria Ward Mauka/Makai Parks, which will include a north-south pedestrian route extending from Halekauwila Street to Ala Moana Boulevard and the Ala Moana Pedestrian Bridge.

B. Bicycle Facilities

1. Existing Facilities

A number of bicycle parking areas are currently provided throughout Ward Village. In addition, the proposed Block N West development is located within close proximity to a number of BIKI bikeshare facilities, which are operated by Bikeshare Hawaii. The nearest BIKI station to the project site

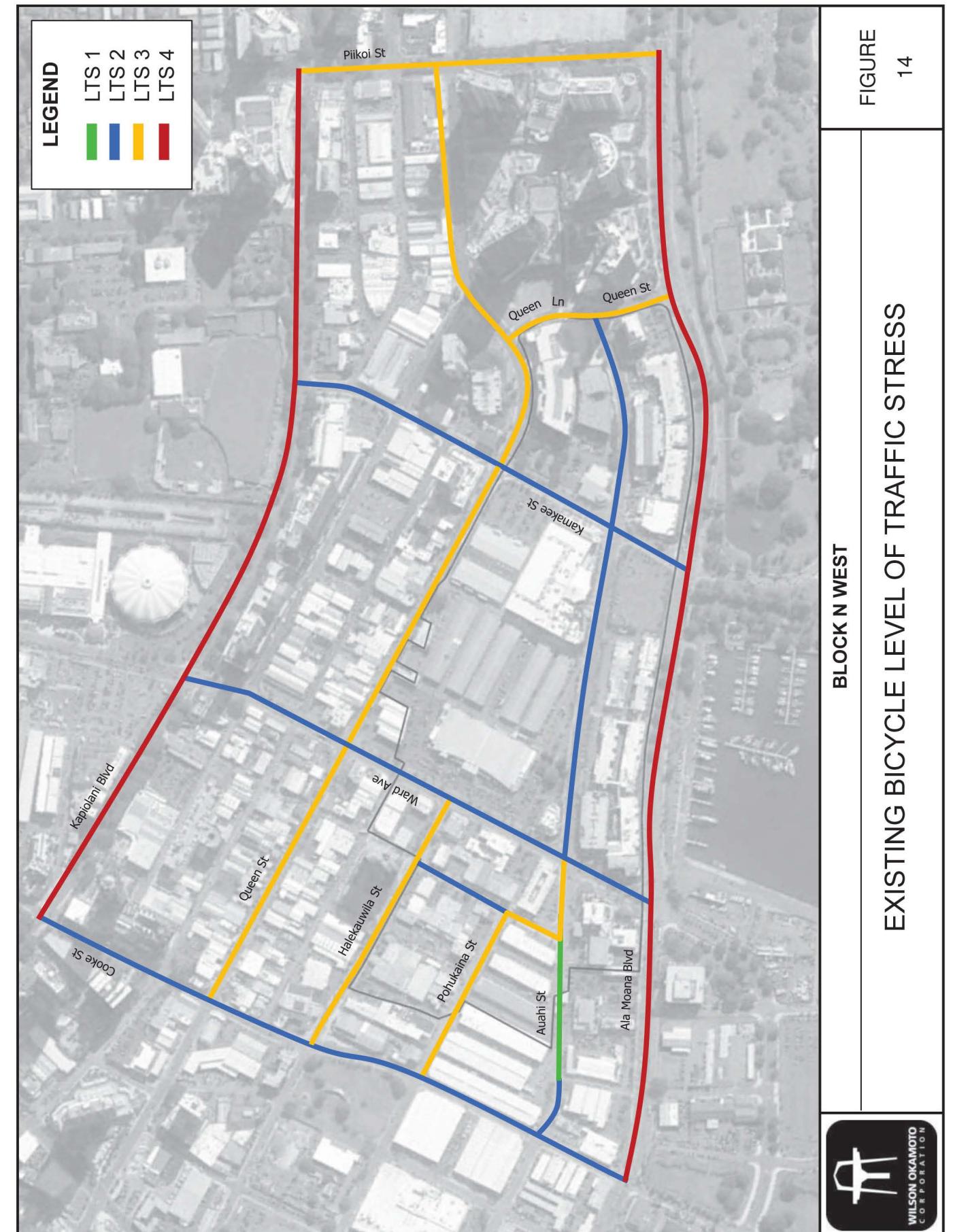

is located near the intersection of Ward Avenue and Halekauwila Street with additional bike share stations located near the intersections of Halekauwila Extension with Robinson Lane and Kamakee Street with Queen Street.

Bicycle facilities, which generally consist of shared-use paths, bike lanes, protected bike lanes, or shared roadways with pavement markings called sharrows, are also provided in the vicinity of the project. Existing bike facilities currently include designated bike lanes along Auahi Street between Ward Avenue and Queen Street (one lane on each side of the roadway), a bike route along Queen Street east of Kamakee Street, and buffered bike lanes along Ward Avenue between Ala Moana Boulevard and South King Street. It should be noted that since the preparation of the Ward Village TMP, additional bicycle facilities have been added to the roadways in the vicinity including the bike lanes along Cooke Street. Figure 13 depicts the existing bicycle facilities in the vicinity of the proposed project.

2. Bicycle Level of Traffic Stress

Bicycle Level of Traffic Stress (LTS) is a metric developed by the Mineta Transportation Institute used to classify a roadway segment or intersection. The LTS ranking system is based on the amount of traffic stress imposed on cyclists based on variables such as street width, prevailing vehicle speed, and average daily traffic volumes. The Level of Traffic Stress ranges from 1 to 4 and can be assessed for a given segment or intersection via six tables provided by the Mineta Transportation Institute. The general descriptions of the LTS levels are as follows:

- LTS 1: Characterized by strong separation from all except low speed, low volume traffic. Simple crossings. Suitable for children.
- LTS 2: Except in low speed/low volume traffic situations, cyclists have their own place to ride that keeps them from having to interact with traffic except at formal crossings. There is a physical separation from higher speed and multilane traffic. Crossings are easy for an adult to navigate. This refers to a level of traffic stress that most adults can tolerate, particularly those sometimes classified as interested but concerned.


- LTS 3: Involves interaction with moderate speed or multilane traffic, or close proximity to higher speed traffic. Refers to a level of traffic stress acceptable to those classified as enthused and confident.
- LTS 4: Involves interaction with higher speed traffic or close proximity to high speed traffic. Refers to a level of stress acceptable only to those classified as strong and fearless.

It should be noted that current LTS methodology assumes no traffic stress is imposed on cyclists at signalized intersections. Guidance provided by the Mineta Transportation Institute includes categorizing signalized intersections as LTS 2. The LTS of the roadways in the vicinity of the proposed Block A development are depicted in Figure 14. As shown in Figure 14, Ward Avenue is rated at LTS 2 due to the provision of buffered bike lanes along this roadway while Auahi Street is currently rated LTS 3. As previously mentioned, designated bike lanes adjacent to the parking lanes were recently installed along Cooke Street. As such, this roadway is now rated as LTS 2.

3. Projected Conditions

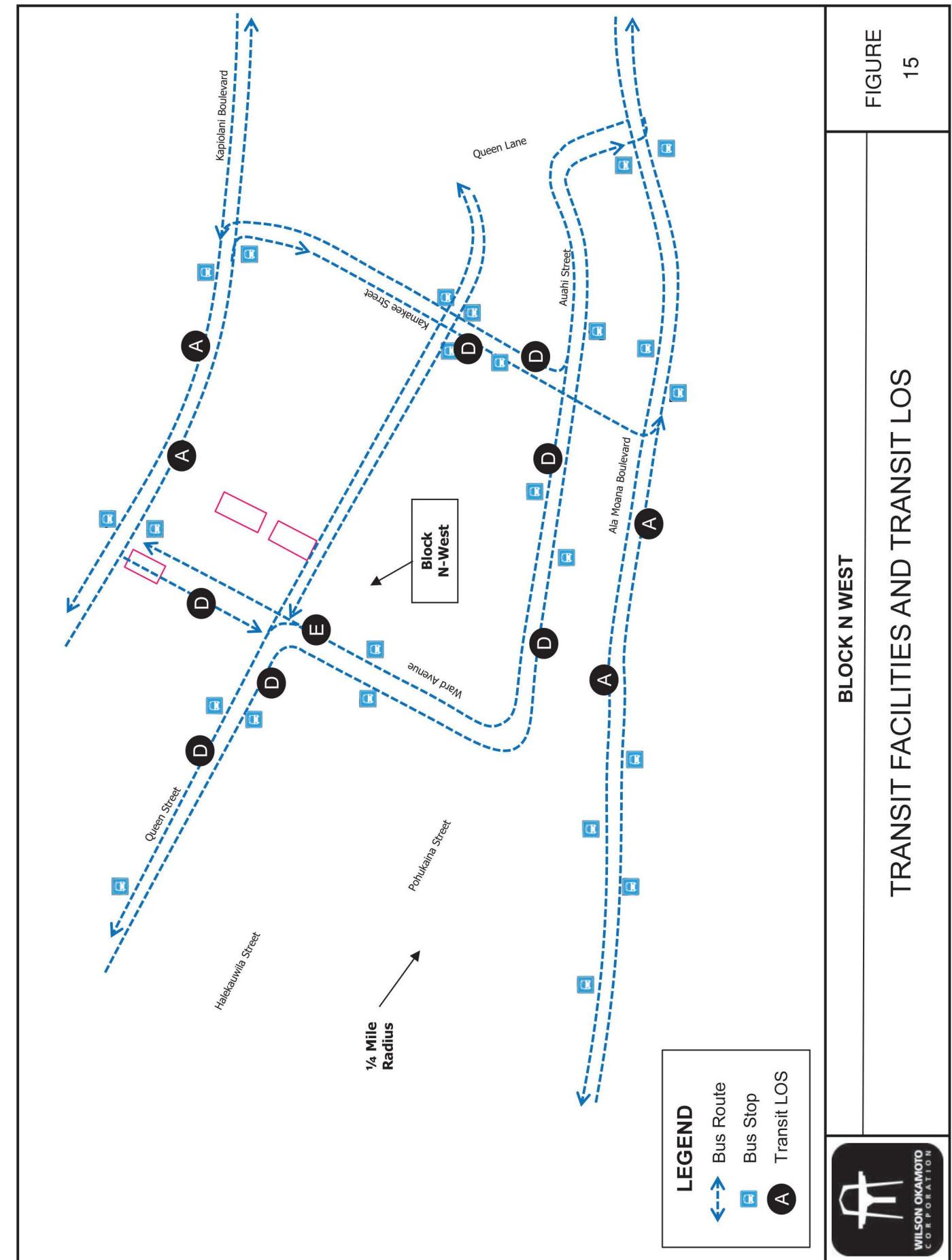
The proposed project is expected to provide bicycle facilities on-site. These facilities are expected to include short- and long-term facilities for residents, guests, and employees to encourage the use of alternate modes of transportation. In addition, there are also future bike improvements planned as part of the overall Ward Village Master Plan to enhance bicycle connectivity within the area as well to the surrounding uses. In conjunction with the Auahi Street Promenade project, the roadway is expected to be converted to a 2-lane roadway to accommodate enhanced multimodal facilities with additional pavement striping installed to provide buffered bike lanes resulting in additional separation between bicyclists and vehicles. This project is expected to be completed by Year 2026.

There are also other bicycle improvements planned by the City and County of Honolulu Department Transportation Services (CCH-DTS) in the vicinity of the project as included in the Oahu Bike Plan (Updated 2019). These include the following:

- Bike lanes along Ala Moana Boulevard between Nimitz Highway and Kalakaua Avenue
- Protected bike lanes along Halekauwila Street between Ala Moana Boulevard and Ward Avenue

Figure 13 depicts the future bicycle facilities in the vicinity of the project.

The addition of the aforementioned bicycle facilities are expected to improve the level of traffic stress along the roadways in the project vicinity and increase bicycle connectivity; however, the time for these improvements are not known at this time.


C. Transit Facilities

1. Existing Conditions

Public transportation services in the vicinity of the project are provided by the City and County of Honolulu. These services currently consist of fixed route bus services, as well as door-to-door services for people who have difficulty accessing the fixed route services (HandiVan). The fixed route bus services in the project vicinity consist of regional routes along Ala Moana Boulevard and Kapiolani Boulevard and supplemented by local routes along Auahi Street and Queen Street. There are approximately 11 transit stops that are served by 15 bus routes within a quarter mile radius of the proposed project (see Figure 15). In addition to fixed bus routes, the project vicinity is also served by a number of trolley companies including Waikiki Trolley.

2. Transit Capacity and Quality of Service Manual (TCQSM)

Transit Capacity and Quality of Service is a metric used to measure transit availability, comfort, and convenience from both the passenger and transit service provider's points of view. The framework for this metric is outlined in the Transit Cooperative Research Program (TCRP) Report 165: Transit Capacity and Quality of Service Manual, 3rd Edition (TCQSM) published in 2013 which provides research-based guidance on public transit capacity and quality of service. The quality of service concepts and methods contained in the TCQSM address real-world transit operations, comprehensive planning, and design needs.

The research for and development of the TCQSM has also directly supported the development of the Multimodal Level of Service (LOS) analysis methodologies introduced in the Highway Capacity Manual (HCM) 2010 and subsequently refined in HCM 6. Multimodal LOS analyzes a roadway corridor comprised of street segments which are defined as a length of street between intersections where traffic may have to stop due to traffic control. Transit LOS can be directly compared to other transportation modes with LOS “A” representing the best quality of service and the letter “F” used to represent the worst quality of service. The assessment evaluates the quality of transit operations incorporating factors that bear all aspect of a transit trip including the pedestrian environment along the street, service frequency and reliability, and the availability of transit amenities at those stop locations.

3. Transit Level of Service

Figure 15 summarizes the existing transit LOS for the transit facilities within a quarter-mile radius of the project site. Transit LOS calculations are included in Appendix G. In general, there is good transit quality of service in the project vicinity. The project vicinity is served by a number of transit facilities that provide connections to local and regional bus routes with headways of 1 hour or less. Pedestrian facilities such as sidewalks and crosswalks facilitate access to and from these bus stop locations.

4. Projected Conditions

Modifications to the existing bus stops in the vicinity of Block N West are expected under projected conditions. In conjunction with the planned improvements along Auahi Street, the existing bus stops will be relocated to facilitate access to future planned developments within the Ward Village with additional bus stops provided to further enhance convenient access to transit. West of Kamakee Street, the existing bus stops north and south of the roadway near the Ward Entertainment Center are expected to be relocated further west near the Park Ward Village development and the Victoria Ward Mauka and Makai Parks. All bus and trolley stops along Auahi Street will be modified to include bus/trolley pull-in areas to facilitate through traffic along

the roadway. Along Ward Avenue, the existing bus stop at Halekauwila Street on the east side of the roadway is also expected to be relocated slightly south near the future the Park Ward Village development.

In addition, the City and County of Honolulu is currently developing a fixed guideway transit system that will extend from Kapolei to the central Honolulu area thereby providing an alternate mode of travel through the Kakaako area. In the vicinity of the project, the guideway alignment was originally expected to run along Halekauwila Street, cross over to Queen Street, and then follow that roadway to Waimanu Street. However, based on recent discussions about the project, a truncated project scope is now expected with an interim terminus at the Civic Center west of the Ward Village development. It should be noted that HART remains committed to completing the full scope of the project to the Ala Moana Transit Center in a subsequent phase, but the timing of the subsequent phase is unknown at this time. As such, this project was not incorporated into projected conditions.

VII. RECOMMENDATIONS

Based on the analysis of the traffic data, the following are the recommendations of this study to be incorporated in the project design.

1. Provide sufficient sight distance for motorists to safely enter and exit the project driveway to ensure visibility between pedestrians, bicyclists, motorists, or other users at these conflict points. It should be noted that there is a planned pullout along the opposite side of Halekauwila Street offset from the proposed residential driveway for Block N West, as well as a marked pedestrian crossing slightly east of the project site.
2. Provide adequate on-site loading and off-loading service areas to accommodate all anticipated vehicle types and prohibit off-site loading operations.
3. Provide adequate turn-around areas for service, delivery, and refuse collection vehicles to maneuver on-site and prohibit vehicle-reversing maneuvers onto public roadways.
4. Provide sufficient turning radii at all project driveways to avoid or minimize vehicle encroachments to oncoming traffic lanes.
5. If access at the entrances to the parking areas are controlled, provide sufficient storage for entering vehicles at the parking area access controls (i.e. automatic gate,

etc.) to ensure that queues do not extend onto the adjacent roadway. The layout and dimensions shall be determined during the design phase.

6. Provide bicycle facilities within the project boundaries including designated and secured bicycle parking to encourage the use of this alternative mode of transportation. Access to these facilities should be safe, convenient, and clearly delineated, especially within the designated parking areas where conflicts with vehicular traffic are expected.
7. Update the study should development phasing, land use intensity, or land use mix change.
8. Continue to develop and/or enhance bicycle and pedestrian facilities, as well as public transportation services in the project vicinity as described in the “Transportation Master Plan and Assessment for the Ward Village Master Plan,” dated October 2022.
9. Coordinate the management of Block N West with those discussed in the Ward Village TMP including the overall Transportation Demand Management (TDM) Plan.

VIII. CONCLUSION

The overall Ward Village Master Plan is expected to be implemented in five (5) phases over a span of 10-15 years and entail the redevelopment of most of the existing commercial, office, and industrial spaces. Block N West is a part of Phase 5 of the master plan which is expected to include residential, retail, and restaurant uses. With the implementation of the aforementioned recommendations, traffic operations with the Block N West development are generally expected to remain similar to without project conditions. In addition, Victoria Ward Limited continues to work with the City and County of Honolulu to incorporate bicycle and enhanced pedestrian facilities into the development plans for the Ward Villages project to encourage alternative modes of travel and further minimize the impact of the proposed project to the surrounding roadways. However, since the Ward Village Master Plan is expected to be developed in phases over a period of 10+ years, it is recommended that Traffic Impact Analysis Reports (TIARs) continue to be prepared for each phase of the project to verify future conditions and ensure necessary mitigation measures are implemented.

APPENDIX A

TRAFFIC COUNT DATA

Wilson Okamoto Corporation
 1907 S. Beretania Street, Suite 400
 Honolulu, HI 96826

Counted By: AH, GH
 Counters: D4-3889, D4-5674
 Weather: CLEAR

File Name : WAR QUE AM
 Site Code : 00000001
 Start Date : 3/7/2018
 Page No : 1

Ward Avenue Southbound										Queen Street Westbound										Ward Avenue Northbound										Queen Street Eastbound											
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total											
06:00 AM	4	131	18	0	153	1	14	1	6	22	5	21	3	1	30	5	9	10	6	30	6	30	235	235	235	235	235	235	235	235	235	235									
06:15 AM	7	141	21	3	172	1	9	5	6	21	4	37	2	1	44	6	10	9	4	29	6	10	9	4	29	6	10	9	4	29	6	10	9	4	29						
06:30 AM	3	132	28	0	163	7	25	2	6	40	10	39	6	1	56	8	19	15	6	48	15	19	15	6	48	15	19	15	6	48	15	19	15	6	48						
06:45 AM	8	157	31	3	199	8	25	4	1	38	10	65	2	2	79	8	22	9	5	44	14	30	11	5	44	14	30	11	5	44	14	30	11	5	44						
Total	22	561	98	6	687	17	73	12	19	121	29	162	13	5	209	27	60	43	21	151	1168	1168	1168	1168	1168	1168	1168	1168	1168	1168											
07:00 AM	7	138	47	5	197	7	37	9	11	64	7	81	11	0	99	19	17	7	12	55	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415		
07:15 AM	9	142	66	2	219	10	52	3	11	76	17	94	5	1	117	10	24	13	7	54	466	466	466	466	466	466	466	466	466	466	466	466	466	466	466	466	466	466	466		
07:30 AM	4	171	56	4	235	17	63	0	13	93	11	97	4	8	120	9	24	15	11	59	507	507	507	507	507	507	507	507	507	507	507	507	507	507	507	507	507	507	507		
07:45 AM	11	166	50	1	228	13	80	8	11	112	16	97	11	2	126	17	29	18	6	70	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536		
Total	31	617	219	12	819	47	232	20	46	345	51	369	31	11	462	55	94	53	36	238	1924	1924	1924	1924	1924	1924	1924	1924	1924	1924											
08:00 AM	7	166	73	5	251	12	70	8	8	98	11	86	7	2	106	14	30	11	8	63	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518		
08:15 AM	11	150	50	5	216	7	36	12	8	90	11	86	7	1	134	10	42	14	5	71	511	511	511	511	511	511	511	511	511	511	511	511	511	511	511	511	511	511	511		
08:30 AM	7	138	34	1	180	9	36	9	2	56	21	174	14	3	220	20	62	14	9	77	442	442	442	442	442	442	442	442	442	442	442	442	442	442	442	442	442	442	442		
08:45 AM	12	170	58	2	241	7	34	5	10	56	9	103	8	5	125	26	32	19	9	86	508	508	508	508	508	508	508	508	508	508	508	508	508	508	508	508	508	508	508		
Total	36	624	215	13	888	35	203	34	28	300	50	394	36	14	494	68	137	66	26	297	1979	1979	1979	1979	1979	1979	1979	1979	1979	1979											
Grand Total	89	1802	532	31	2454	99	508	66	93	766	130	925	80	30	1165	150	291	162	83	686	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	
Apprich %	3.6	73.4	21.7	1.3	12.9	66.3	8.6	12.1	11.2	79.4	6.9	2.6	2.6	2.6	21.9	21.9	42.4	23.6	12.1	686	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	5071	
Total %	1.8	35.5	10.5	0.6	48.4	2	10	1.3	1.8	15.1	2.6	18.2	1.6	2.6	2.6	2.6	2.6	2.6	5.7	3.2	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	
PHF	.750	.955	.784	.930	.721	.930	.721	.930	.721	.930	.721	.930	.721	.930	.721	.930	.721	.930	.721	.930	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955	.955

Ward Avenue Southbound										Queen Street Westbound										Ward Avenue Northbound										Queen Street Eastbound									
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total																													

Wilson Okamoto Corporation
1907 S. Beretania Street, Suite 400
Honolulu, HI 96826

Counted By: LF, FS
Counters: D4-5673, D4-5677
Weather: CLEAR

File Name : WAR HAL AM
Site Code : 00000002
Start Date : 3/7/2018
Page No : 1

Ward Avenue Southbound							Ward Avenue Northbound							Ward Avenue Northbound							
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total	
06:00 AM	1	103	47	151	15	20	3	5	43	10	1	7	6	24						218	
06:15 AM	0	102	44	146	5	35	0	8	48	6	1	10	10	27						221	
06:30 AM	0	95	47	142	2	48	0	12	62	9	1	6	32	48						252	
06:45 AM	1	113	49	163	2	57	1	20	80	21	0	6	40	67						310	
Total	2	413	187	602	24	160	4	45	233	46	3	29	88	166	1001						
07:00 AM	3	94	46	143	6	78	0	17	101	22	0	10	17	49						293	
07:15 AM	1	115	40	156	4	93	0	12	109	24	2	2	14	42						307	
07:30 AM	3	135	56	194	3	89	2	13	107	22	1	2	15	40						341	
07:45 AM	1	128	56	185	1	94	0	10	105	28	1	5	13	47						337	
Total	8	472	198	678	14	354	2	52	422	96	4	19	59	178	1278						
08:00 AM	2	129	42	173	4	86	1	12	103	20	1	5	14	40						316	
08:15 AM	0	119	38	157	9	105	0	16	130	30	1	5	15	51						338	
08:30 AM	4	105	37	146	7	107	2	10	126	15	2	11	8	36						308	
08:45 AM	4	124	36	164	1	86	0	8	95	33	2	7	9	51						310	
Total	10	477	153	640	21	384	3	46	454	98	6	28	46	178	1272						
Grand Total	20	1362	538	1920	59	898	9	143	1109	240	13	76	193	522						3551	
Apprch %	1	70.9	28	5.3	81	0.8	12.9			46	2.5	14.6	37								
Total %	0.6	38.4	15.2	54.1	1.7	25.3	0.3	4	31.2	6.8	0.4	2.1	5.4	14.7							
PHF																				.975	

Ward Avenue Southbound							Ward Avenue Northbound							Ward Avenue Northbound						
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 06:00 AM to 06:45 AM - Peak 1 of 1																				
07:30 AM	3	135	56	194	3	89	2	94	94	94	2	17	94	22	1	2	25	2	75	313
07:45 AM	1	128	56	185	1	86	1	91	95	95	2	20	91	28	1	5	34	2	75	314
08:00 AM	2	129	42	173	2	86	1	91	91	91	2	19	91	20	1	5	26	2	75	290
08:15 AM	0	119	38	157	0	91	1	91	91	91	0	114	91	30	1	5	36	1	75	307
Total	6	511	192	709	17	374	3	394	394	394	0	100	4	17	17	1	5	121	1224	
Total Volume	0.8	72.1	27.1	91.4	4.3	94.9	0.8													
% App. Total																				
PHF																				

Wilson Okamoto Corporation
1907 S. Beretania Street, Suite 400
Honolulu, HI 96826

Counted By: LF, FS
Counters: D4-5673, D4-5677
Weather: CLEAR

File Name : WAR HAL PM
Site Code : 00000002
Start Date : 3/7/2018
Page No : 1

Ward Avenue Southbound							Ward Avenue Northbound							Ward Avenue Northbound							
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total	
Peak Hour Analysis From 06:00 AM to 06:45 AM - Peak 1 of 1																					
07:30 AM	3	135	56	194	3	89	2	94	94	94	2	17	94	22	1	2	25	2	75	313	
07:45 AM	1	128	56	185	1	86	1	91	95	95	2	20	91	28	1	5	34	2	75	314	
08:00 AM	2	129	42	173	2	86	1	91	91	91	0	114	91	30	1	5	36	1	75	290	
08:15 AM	0	119	38	157	0	91	1	91	91	91	0	114	91	30	1	5	36	1	75	290	
Total	11	494	117	622	26	533	7	98	664	169	7	51	122	349	1635						

Wilson Okamoto Corporation
1907 S. Beretania Street, Suite 400
Honolulu, HI 96826

1907 S. Beretania Street, Suite 400
Honolulu, HI 96826

Counted By: MM, EV
Counters: D4-3888, D4-5675
Weather: CLEAR

Wilson Okamoto Corporation
1907 S. Beretania Street, Suite 400
Honolulu, HI 96826

1907 S. Beretania Street, Suite 400
Honolulu, HI 96826

Counted By: MM, EV
Counters: D4-3888, D4-5675
Weather: CLEAR

File Name : WAR AUA AM
Site Code : 00000003
Start Date : 3/7/2018
Page No : 1

Counted By: MM, EV
Counters: D4-3888, D4-5675
Weather: CLEAR

		Ward Avenue Southbound						Auahi Street Westbound						Ward Avenue Northbound						Auahi Street Eastbound								
		Groups Printed- Unshifted			Groups Printed- Unshifted			Groups Printed- Unshifted			Groups Printed- Unshifted			Groups Printed- Unshifted			Groups Printed- Unshifted			Groups Printed- Unshifted			Groups Printed- Unshifted					
Start Time	Left	Thru	Right	Peds	App Total	Left	Thru	Right	Peds	App Total	Left	Thru	Right	Peds	App Total	Left	Thru	Right	Peds	App Total	Left	Thru	Right	Peds	App Total	Int. Total		
06:00 AM	29	65	5	5	104	5	9	8	14	36	4	30	15	2	51	2	2	5	10	19	2	4	4	11	21	210		
06:15 AM	28	48	8	4	88	3	4	10	10	27	6	26	10	6	66	2	2	4	4	11	2	4	4	8	23	202		
06:30 AM	17	58	5	12	92	11	3	9	14	37	9	35	20	3	67	2	5	8	8	23	2	5	8	1	8	219		
06:45 AM	19	78	8	3	108	5	8	9	7	29	14	48	12	6	80	1	9	4	8	22	1	9	4	8	22	239		
Total	93	249	26	24	392	24	24	36	45	129	33	139	71	21	264	7	20	21	37	85	7	20	21	37	85	870		
07:00 AM	16	63	3	3	85	18	11	11	8	48	19	54	5	3	81	3	9	4	5	21	3	9	4	5	21	235		
07:15 AM	12	85	14	1	112	11	22	15	6	54	18	69	12	2	101	4	9	7	1	21	4	9	7	1	21	288		
07:30 AM	9	105	11	3	128	15	14	10	6	45	18	73	6	1	98	6	5	17	2	30	1	5	17	2	30	301		
07:45 AM	15	90	12	5	122	26	18	14	6	64	12	75	6	3	96	3	12	7	2	24	3	12	7	2	24	306		
Total	52	343	40	12	447	70	65	50	26	211	67	271	29	9	376	16	35	35	10	96	10	35	35	10	96	1130		
08:00 AM	15	85	7	5	112	12	17	17	5	51	11	61	13	1	86	4	6	5	5	20	4	6	5	5	20	269		
08:15 AM	18	78	8	3	107	13	11	11	11	46	17	69	14	0	100	4	8	3	2	17	0	8	3	2	17	270		
08:30 AM	11	67	13	6	97	13	8	16	3	40	19	92	12	0	123	6	18	10	3	37	3	18	10	3	37	297		
08:45 AM	18	84	11	7	120	11	15	9	7	42	11	67	21	3	102	5	19	6	5	35	5	19	6	5	35	299		
Total	62	314	39	21	436	49	51	53	26	179	58	289	60	4	411	19	51	24	15	109	109	51	24	15	109	1135		
Grand Total	207	906	105	57	1275	143	140	139	97	519	158	699	160	34	1051	42	106	80	62	290	145	106	80	62	290	3135		
Apprich %	16.2	71.1	8.2	4.5	1275	27.6	27	26.8	18.7	519	15	66.5	15.2	3.2	1051	42	106	80	62	290	14.5	36.6	27.6	21.4	290	3135		
Total %	6.6	28.9	3.3	1.8	407	4.6	4.5	4.4	3.1	16.6	5	22.3	5.1	1.1	33.5	1.3	34	2.6	2.1	2.1	1.1	33.5	1.3	34	2.6	2.1	2.1	3.3

Start Time	Ward Avenue Southbound			Auahi Street Westbound			Ward Avenue Northbound			Auahi Street Eastbound		
	Left	Thru	Right									
Peak Hour Analysis From 06:00 AM to 08:45 AM - Peak of 1												
07:15 AM	12	85	14	111	11	22	15	48	18	69	12	99
07:30 AM	9	105	11	125	15	14	10	39	18	73	6	97
07:45 AM	15	90	12	117	26	18	14	58	12	75	6	93
08:00 AM	15	85	7	107	12	17	46	11	61	13	85	4
Total Volume	51	365	44	460	64	71	56	191	59	278	37	374
% App. Total	11.1	79.3	9.6	33.5	37.2	29.3	15.3	74.3	9.9	17	37.2	36

Wilson Okamoto Coronation

Michigan Cranberry Supply
1907 S. Beretania Street, Suite 400

Counted By: BE, EV
Counters: D4-3889, D4-5675
W... CLEAD

		Ward Avenue Southbound				Auahi Street Westbound				Ward Avenue Northbound				Auahi Street Eastbound				
		Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
		03:00 PM	27	90	16	35	168	41	22	45	8	116	14	77	14	1	106	6
		03:15 PM	26	91	16	23	156	59	14	55	13	141	11	57	15	3	86	9
		03:30 PM	26	86	15	29	156	57	14	54	26	151	15	86	22	13	136	8
		03:45 PM	22	83	13	5	123	29	11	41	9	90	16	63	12	4	95	9
		Total	101	350	60	92	603	186	61	195	56	498	56	283	63	21	423	32
		04:00 PM	34	82	11	15	142	19	25	35	7	86	9	74	14	3	100	9
		04:15 PM	34	87	19	11	151	27	13	33	6	79	10	77	11	3	101	7
		04:30 PM	30	115	13	28	186	16	16	15	18	65	3	81	16	3	103	10
		04:45 PM	40	94	12	21	167	23	12	20	16	71	6	73	17	3	99	9
		Total	138	378	55	75	646	85	66	103	47	301	28	305	58	12	403	35
		05:00 PM	44	92	12	14	162	30	19	9	10	68	5	90	14	2	111	10
		05:15 PM	33	110	11	17	171	15	17	13	7	52	15	61	17	6	99	6
		05:30 PM	53	112	8	6	179	19	12	16	1	48	10	85	17	2	114	6
		05:45 PM	46	99	12	16	173	16	18	32	9	75	6	49	17	0	72	4
		Total	176	413	43	53	685	80	66	70	27	243	36	285	65	10	396	26
Grand Total			415	1141	158	220	1934	351	193	368	130	1042	120	873	186	43	1222	93
Approch %			21.5	59	8.2	11.4	33.7	18.5	35.3	12.5	9.8	71.4	15.2	3.5	45.5	26.7	13	

Start Time	Ward Avenue Southbound				Auahi Street Westbound				Ward Avenue Northbound				Auahi Street Eastbound			
	Left	Right	App. Total	Thru	Left	Right	App. Total	Thru	Left	Right	App. Total	Thru	Left	Right	App. Total	Thru
Peak Hour Analysis From 03:00 PM to 05:45 PM - Peak 1 of 1																
03:00 PM	27	90	116	133	41	22	45	108	14	77	14	105	6	19	11	36
03:15 PM	26	91	116	133	59	14	55	128	11	57	15	83	9	19	15	43
03:30 PM	26	86	115	127	57	14	54	125	15	86	22	123	8	21	15	44
03:45 PM	22	83	113	118	29	11	41	81	16	63	12	91	9	22	13	44
Total Volume	10.8	350	69.5	61.7	51.1	195	442	56	283	63	402	32	81	54	167	1522
% App. Total					42.4	12.9	44.1		42.6	78.4		45.2	10.2	40.2	33.2	

Wilson Okamoto Corporation

1907 S. Beretania Street, Suite 400

Honolulu HI, 96826

Counted By: CD, SDR
Counters: TU-2050, TU-2840
Weather: Clear

File Name : WarAua AM
Site Code : 00000003
Start Date : 8/30/2022
Page No : 1

Start Time	Ward Avenue Southbound				Auahi Street Westbound				Ward Avenue Northbound				Auahi Street Eastbound								
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
06:30 AM	19	68	7	3	97	8	3	4	18	8	25	8	5	46	0	5	0	3	8	169	
06:45 AM	18	67	4	4	93	2	1	8	10	21	12	32	5	68	1	3	3	3	10	192	
Total	37	135	11	7	190	10	4	11	14	39	20	57	10	114	1	8	3	6	18	361	
07:00 AM	10	56	5	2	73	10	8	4	2	24	9	39	15	1	64	2	8	4	7	21	182
07:15 AM	9	71	8	2	90	12	4	8	4	28	13	51	12	7	83	2	4	6	1	13	214
07:30 AM	7	78	10	4	99	4	8	4	3	19	12	55	12	3	82	0	2	9	4	15	215
07:45 AM	12	81	9	5	107	4	9	4	2	19	20	70	9	15	114	3	5	4	1	13	253
Total	38	286	32	13	369	30	29	20	11	90	54	215	48	26	343	7	19	23	13	62	864
08:00 AM	10	95	4	8	117	7	4	2	2	15	14	63	5	3	85	3	4	3	4	14	231
08:15 AM	17	91	9	2	119	9	7	5	5	26	6	53	9	1	69	2	6	2	2	12	226
Grand Total	102	607	56	30	795	56	44	38	32	170	94	388	89	40	611	13	37	31	25	106	1682
Approch %	12.8	76.4	7	3.8	32.9	25.9	22.4	18.8	15.4	63.5	14.6	6.5	12.3	34.9	29.2	23.6	43	4.9	1.5	6.3	861
Total %	6.1	36.1	3.3	1.8	47.3	3.3	2.6	2.3	1.9	10.1	5.6	23.1	5.3	2.4	36.3	0.8	2.2	1.8	1.5	.500	.896
PHF	.676	.908	.800	.904	.667	.778	.750	.798	.650	.861	.729	.828	.667	.708	.500	.896	.500	.896	.500	.896	.936

Start Time	Ward Avenue Southbound				Auahi Street Westbound				Ward Avenue Northbound				Auahi Street Eastbound								
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 06:30 AM to 08:15 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:30 AM																					
07:30 AM	7	78	10	4	95	4	8	4	16	12	55	12	12	79	0	2	9	11	1	201	
07:45 AM	12	81	9	4	102	4	9	4	17	20	70	9	9	99	3	5	4	12	3	237	
08:00 AM	10	95	4	109	7	4	2	13	14	63	5	84	8	82	3	4	3	10	4	321	
08:15 AM	17	91	9	117	9	7	5	21	6	64	6	79	15	9	110	2	14	4	11	3	322
Total Volume	46	345	32	423	24	28	15	67	52	241	35	328	8	328	9	17	18	43	10	121	
% App. Total	10.9	81.6	7.6	35.8	41.8	22.4	15.9	73.5	15.9	73.5	10.7	18.6	39.5	41.9	37	57	35	10	121	1262	
PHF	.676	.908	.800	.904	.667	.778	.750	.798	.650	.861	.729	.828	.667	.708	.500	.896	.500	.896	.500	.896	.936

Wilson Okamoto Corporation

1907 S. Beretania Street, Suite 400

Honolulu HI, 96826

Counted By: CD, LP
Counters: TU-2050, TU-2840
Weather: Clear

File Name : WarAua PM
Site Code : 00000003
Start Date : 8/30/2022
Page No : 1

Start Time	Ward Avenue Southbound				Auahi Street Westbound				Ward Avenue Northbound				Auahi Street Eastbound								
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	17	72	9	5	103	27	3	16	3	49	11	62	19	108	7	15	8	2	32	292	
04:15 PM	34	94	9	5	142	16	7	20	3	46	12	97	9	120	6	10	2	1	19	327	
04:30 PM	29	78	3	9	119	20	14	21	3	58	6	84	7	110	2	14	4	11	34	321	
04:45 PM	33	61	6	11	111	11	9	28	6	64	8	79	15	9	111	4	18	11	3	36	322
Total	113	305	27	30	475	84	33	85	15	217	37	322	53	37	449	19	57	35	10	121	1262
05:00 PM	21	76	9	15	121	25	14	32	3	74	8	70	23	19	120	6	21	11	10	48	363
05:15 PM	31	73	6	5	115	22	7	23	1	53	8	87	16	4	115	3	14	5	7	29	312
05:30 PM	28	78	7	10	120	14	15	23	5	57	6	69	21	2	98	0	16	12	7	35	310

Wilson Okamoto Corporation

1907 S. Beretania Street, Suite 400

Honolulu HI, 96826

Counted By: DY, YS
 Counters: D4-3890, D4-5671
 Weather: CLEAR

File Name : ALA WAR AM1
 Site Code : 00000004
 Start Date : 3/7/2018
 Page No : 1

	Ward Avenue Southbound				Ala Moana Boulevard Westbound				Groups Printed- Unshifted				Ward Avenue Northbound				Ala Moana Boulevard Eastbound					
	Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds		
06:00 AM	36	17	15	0	0	68	13	157	11	5	186	0	3	3	0	6	32	206	0	4	242	502
06:15 AM	21	22	9	3	55	6	188	11	5	210	0	2	4	5	11	43	231	0	3	277	553	
06:30 AM	28	23	12	2	65	15	256	22	6	299	0	3	4	5	12	50	273	2	5	330	706	
06:45 AM	36	30	28	1	95	15	301	29	2	347	0	4	3	1	8	61	365	1	3	430	880	
Total	121	92	64	6	283	49	902	73	18	1042	0	12	14	11	37	186	1075	3	15	1279	2641	
07:00 AM	44	30	28	6	108	15	343	26	4	388	0	6	12	7	25	53	352	1	5	411	932	
07:15 AM	29	25	35	3	92	29	427	37	2	495	0	14	10	4	28	59	376	6	1	420	1025	
07:30 AM	50	33	42	5	130	33	386	46	7	472	0	8	7	6	21	54	367	1	4	422	1050	
07:45 AM	39	34	40	2	115	35	415	42	1	493	2	7	14	1	24	54	367	1	1	423	1055	
Total	162	122	145	16	445	112	1571	151	14	1848	2	35	43	18	98	220	1460	9	11	1700	4091	
08:00 AM	34	14	34	4	86	27	358	37	3	425	0	8	9	2	19	50	379	3	5	437	967	
08:15 AM	39	42	10	3	94	24	365	47	8	444	1	15	9	2	27	53	368	1	6	428	993	
08:30 AM	30	43	34	2	109	35	293	47	3	378	0	11	6	4	21	59	351	1	2	413	921	
08:45 AM	30	27	32	2	91	27	291	33	4	355	0	14	15	0	29	56	336	0	2	394	869	
Total	133	126	110	11	380	113	1307	164	18	1602	1	48	39	8	96	218	1434	5	15	1672	3750	
Grand Total	416	340	319	33	1108	274	3780	388	50	4492	3	95	96	37	231	624	3969	17	41	4651	10482	
Apprich %	37.5	30.7	28.8	3	6.1	84.1	8.6	1.1	0.5	42.9	0	1.3	41.1	16	0.4	2.2	6	13.4	85.3	0.4	0.9	44.4
Total %	4	3.2	3	0.3	10.6	3.7	36.1	2.6	2.6	42.9	0	0.9	0.9	0.4	2.2	6	37.9	0.2	0.4	44.4	970	

	Ward Avenue Southbound				Ala Moana Boulevard Westbound				Groups Printed- Unshifted				Ward Avenue Northbound				Ala Moana Boulevard Eastbound				
	Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	
Peak Hour Analysis From 06:00 AM to 08:45 AM - Peak 1 of 1																					
07:15 AM	29	25	35	1	89	29	427	37	3	493	0	14	10	5	24	59	376	6	441	1047	
07:30 AM	50	33	42	125	125	33	386	46	6	465	0	8	7	15	54	365	1	420	1025		
07:45 AM	39	34	40	113	35	415	42	2	492	2	7	14	23	54	367	1	422	1050			
08:00 AM	34	14	34	82	27	358	37	3	422	0	8	9	17	50	379	3	432	953			
Total Volume	152	106	151	409	124	1586	162	2	1872	2	37	40	79	217	1487	11	1715	4075			
% App. Total	37.2	25.9	36.9	6.6	84.7	8.7	2.5	46.8	50.6	0.6	2.5	12.7	86.7	0.6	2.2	6	37.9	0.2	0.4	44.4	
Total	268	60	231	24	583	45	1244	186	40	1515	5	96	137	39	277	174	1723	2	10	1909	4284
Grand Total	652	177	734	84	1647	139	3746	626	90	4601	14	262	323	88	687	574	5223	6	52	5855	12790
Apprich %	39.6	10.7	44.6	5.1	0.7	12.9	1.1	29.3	4.9	0.7	36	0.1	2	38.1	47	12.8	5.4	4.5	40.8	0.4	45.8
Total %	5.1	1.4	5.7	0.7																	
PHF	.760	.788	.897	.944	.734	.883	.921	.895	.375	.728	.721	.788	.904	.250	.922	.953					

Counted By: DY, HM
 Counters: D4-3890, D4-5671
 Weather: CLEAR

Wilson Okamoto Corporation
 1907 S. Beretania Street, Suite 400
 Honolulu, HI 96826

File Name : ALA WAR PM
 Site Code : 00000004
 Start Date : 3/7/2018
 Page No : 1

	Ward Avenue Southbound				Ala Moana Boulevard Westbound				Groups Printed- Unshifted				Ward Avenue Northbound				Ala Moana Boulevard Eastbound			
	Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds										

Wilson Okamoto Corporation

1907 S. Beretania Street, Suite 400
Honolulu, HI 96826

Counted By: FS, GH
Counters: D4-5672, D4-5674
Weather: CLEAR

File Name : KAM AUA AM
Site Code : 00000001
Start Date : 3/13/2018
Page No : 1

Kamakee Street Southbound							Auahi Street Westbound							Groups Printed-Unshifted							Auahi Street Eastbound										
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	
06:00 AM	2	14	9	3	28	0	4	3	6	13	2	9	3	2	16	0	6	1	0	7	64	31	7	12	2	11	75	21	111		
06:15 AM	2	13	5	3	33	1	9	2	2	14	7	7	1	1	16	2	5	3	2	2	345	11	11	5	2	3	11	95	111		
06:30 AM	3	17	10	11	41	0	8	9	8	25	2	12	0	4	18	1	5	2	3	3	345	21	21	7	2	3	11	95	111		
06:45 AM	0	18	12	7	37	0	7	7	5	19	7	17	4	6	34	8	8	8	3	3	345	21	21	7	2	3	11	95	111		
Total	7	62	44	26	139	1	28	21	21	71	18	45	8	13	84	11	24	8	8	51	345	111	111	7	2	3	11	95	111		
07:00 AM	2	27	21	7	57	3	15	9	5	32	7	8	2	3	20	4	12	3	4	23	132	31	31	12	2	7	25	136	135		
07:15 AM	3	28	20	4	55	4	13	8	2	27	5	13	6	5	29	4	12	2	7	25	132	31	31	12	2	7	25	136	135		
07:30 AM	2	25	20	5	52	4	21	9	5	39	7	13	3	5	28	1	8	4	3	16	123	39	39	13	4	3	16	123	135		
07:45 AM	2	23	19	6	50	6	14	6	2	28	3	32	9	1	45	0	12	9	2	23	146	39	39	13	4	3	16	123	135		
Total	9	103	80	22	214	17	63	32	14	126	22	66	20	14	122	9	44	18	16	87	349	111	111	7	2	3	11	95	111		
08:00 AM	5	39	20	7	71	4	15	9	2	30	6	23	5	3	37	3	21	5	1	30	168	31	31	12	2	7	25	136	135		
08:15 AM	4	37	23	8	72	0	14	9	3	26	10	18	11	7	46	3	19	1	5	28	172	31	31	12	2	7	25	136	135		
08:30 AM	5	30	23	24	87	10	19	9	8	40	2	10	9	4	25	7	22	7	9	45	175	31	31	12	2	7	25	136	135		
08:45 AM	7	31	21	13	72	3	12	12	12	39	3	21	9	3	30	3	29	3	4	39	180	31	31	12	2	7	25	136	135		
Total	21	137	86	36	280	11	60	39	25	135	21	72	28	17	138	16	91	16	19	142	695	111	111	7	2	3	11	95	111		
Grand Total	37	302	210	84	633	29	151	92	60	332	61	183	56	44	344	36	159	42	43	280	1589	111	111	7	2	3	11	95	111		
Appr %	5.8	47.7	33.2	13.3	5.3	39.8	8.7	45.5	27.7	18.1	32	53.2	16.3	12.8	34.4	36	12.9	56.8	15	15.4	280	1589	111	111	7	2	3	11	95	111	
Total %	2.3	19	13.2	5.3																											
PHF	.750	.878	.935	.953	.688	.789	.813	.859	.893	.953	.525	.783	.636	.776	.571	.784	.571	.784	.571	.854	.965										

Kamakee Street Southbound							Auahi Street Westbound							Groups Printed-Unshifted							Auahi Street Eastbound								
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total				
Peak Hour Analysis From 06:00 AM to 06:45 AM - Peak 1 of 1																													
Peak Hour for Entire Intersection Begins at 06:00 AM																													
08:00 AM	5	39	20	4	111	13	27	17	24	81	7	17	11	25	60	6	56	5	20	87	339	111	111	7	2	3	11	95	111
08:15 AM	4	37	23	3	108	8	18	9	29	85	9	18	11	23	61	12	37	13	25	87	341	111	111	7	2	3	11	95	111
08:30 AM	5	30	22	4	87	10	27	15	23	93	5	17	6	23	51	13	53	6	25	78	291	111	111	7	2	3	11	95	111
08:45 AM	7	31	21	3	121	12	27	3	21	93	5	14	8	13	40	14	56	7	20	86	258	111	111	7	2	3	11	95	111
Total	35	136	83	123	377	37	110	62	93	302	26	66	36																

Wilson Okamoto Corporation

1907 S. Beretania Street, Suite 400
Honolulu HI, 96826

160025

Counted By: CD, MA
Counters: TU-2049, TU-2605
Weather: Clear

File Name : KamAua AM
Site Code : 00000005
Start Date : 8/31/2022
Page No : 1

Start Time	Kamakee Street Southbound						Auahi Street Westbound						Kamakee Street Northbound						Auahi Street Eastbound							
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
06:30 AM	3	20	7	12	42	0	3	1	11	15	3	11	5	9	28	2	8	4	9	23	108					
06:45 AM	0	11	5	5	21	5	7	11	15	38	4	22	1	24	51	6	12	3	2	23	133					
Total	3	31	12	17	63	5	10	12	26	53	7	33	6	33	79	8	20	7	11	46	241					
07:00 AM	3	19	7	4	33	2	9	15	11	37	3	22	3	6	34	7	6	6	2	21	125					
07:15 AM	4	28	7	20	59	7	4	19	17	47	1	17	7	4	29	2	7	0	1	10	145					
07:30 AM	5	36	2	13	56	2	6	16	14	38	1	25	8	4	38	5	15	0	9	29	161					
07:45 AM	4	34	7	7	52	6	7	14	13	40	0	22	5	16	43	6	16	3	17	42	177					
Total	16	117	23	44	200	17	26	64	55	162	5	86	23	30	144	20	44	9	29	102	608					
08:00 AM	6	30	6	4	46	7	6	11	23	47	1	30	10	9	50	2	19	3	15	39	182					
08:15 AM	12	29	7	9	57	6	7	8	19	40	2	29	9	4	44	3	9	4	8	24	165					
Grand Total	37	207	48	74	366	35	49	95	123	302	15	178	48	76	317	33	92	23	63	211	1196					
Approch %	10.1	56.6	13.1	20.2	11.6	16.2	31.5	40.7	4.7	56.2	15.1	24	15.6	43.6	10.9	29.9	15.6	43.6	10.9	29.9						
Total %	3.1	17.3	4	6.2	30.6	2.9	4.1	7.9	10.3	25.3	1.3	14.9	4	6.4	26.5	2.8	7.7	1.9	5.3	17.6						

		Kamakee Street Southbound				Auahi Street Westbound				Kamakee Street Northbound				Auahi Street Eastbound			
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 06:30 AM to 08:15 AM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:30 AM																	
07:30 AM	5	36	2	43	2	6	16	24	1	25	8	34	5	15	0	20	121
07:45 AM	4	34	7	45	6	7	14	27	0	22	5	27	6	16	3	25	124
08:00 AM	6	30	6	42	7	6	11	24	1	30	10	41	2	19	3	24	131
08:15 AM	12	29	7	48	6	7	8	21	2	29	9	40	3	9	4	16	125
Total Volume	27	129	22	178	21	26	49	96	4	106	32	142	16	59	10	85	501
% App. Total	15.2	72.5	12.4	92.7	21.9	27.1	51	88.9	2.8	74.6	22.5	.883	18.8	69.4	11.8		
PHF	.563	.896	.786	.750	.929	.766	.889	.500	.866	.883	.800	.866	.667	.776	.625	.850	.956

Wilson Okamoto Corporation
1907 S. Beretania Street, Suite 400

Honolulu HI, 96826

Start Time	Kameke Street Southbound						Auahi Street Westbound						Kameke Street Northbound						Groups Printed- Unshifted						Auahi Street Eastbound		
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total	
04:00 PM	13	58	14	26	111	4	14	16	50	3	24	18	21	66	8	22	1	18	49	276						276	
04:15 PM	8	47	18	16	89	9	15	17	20	61	6	39	7	17	69	7	21	5	25	58	277						277
04:30 PM	17	59	19	18	113	5	20	18	17	60	6	32	8	10	56	7	37	4	20	68	297						297
04:45 PM	8	45	15	22	90	9	13	20	20	62	5	29	5	15	54	13	34	6	25	78	284						284
Total	46	209	66	82	403	27	62	71	73	233	20	124	38	63	245	35	114	16	88	253	1134						
05:00 PM	16	64	13	11	104	4	19	14	29	66	9	42	14	25	90	20	40	6	17	83	343						343
05:15 PM	5	45	10	19	79	5	21	20	29	75	6	52	8	31	97	11	44	6	25	86	337						337
05:30 PM	16	56	15	24	111	6	16	22	26	70	6	45	17	21	89	17	30	10	32	89	359						359
05:45 PM	11	45	10	29	95	5	16	10	16	47	6	41	7	23	77	7	24	3	42	76	295						295
Total	48	210	48	83	389	20	72	66	100	258	27	180	46	100	353	55	138	25	116	334	1334						
Grand Total	94	419	114	165	792	47	134	137	173	491	47	304	84	163	598	90	252	41	204	587	2468						
Approach %	11.9	52.9	14.4	20.8		9.6	27.3	27.9	35.2		7.9	50.8	14	27.3		15.3	42.9	7	34.8								

Wilson Okamoto Corporation
 1907 S. Beretania Street, Suite 400
 Honolulu, HI 96826

Counted By: LF
 Counters: D4-5673
 Weather: CLEAR

File Name : KAM MID AM
 Site Code : 00000002
 Start Date : 3/13/2018
 Page No : 1

Groups Printed- Unshifted									
Kamakee Street									
Southbound					Northbound				
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left
06:00 AM	27	2	0	29	0	10	0	10	1
06:15 AM	19	6	1	26	3	8	3	14	0
06:30 AM	24	3	3	30	3	24	2	29	0
06:45 AM	27	7	2	36	4	28	1	33	0
Total	97	18	6	121	10	70	6	86	1
07:00 AM	46	7	4	57	5	19	1	25	1
07:15 AM	49	3	3	55	5	22	1	28	2
07:30 AM	44	6	3	53	0	24	4	28	3
07:45 AM	43	7	0	50	1	35	0	36	0
Total	182	23	10	215	11	100	6	117	8
08:00 AM	62	2	2	66	4	30	0	34	4
08:15 AM	56	7	2	65	0	30	0	30	2
08:30 AM	54	6	0	60	2	24	2	28	3
08:45 AM	54	5	1	60	0	35	1	36	2
Total	226	20	5	251	6	119	3	128	11
Grand Total	505	61	21	587	27	289	15	331	20
Apprch %	86	10.4	3.6	8.2	87.3	4.5	33.3	26	31
Total %	50.8	6.1	2.1	5.9	2.7	29	1.5	33.3	3.1

Groups Printed- Unshifted									
Kamakee Street									
Southbound					Northbound				
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left
Peak Hour Analysis From 06:00 AM to 08:45 AM - Peak 1 of 1									
Peak Hour for Entire Intersection Begins at 08:00 AM									
08:00 AM	62	2	2	64	4	30	0	34	4
08:15 AM	56	7	0	63	0	30	1	50	2
08:30 AM	54	6	2	60	2	24	0	44	3
08:45 AM	54	5	59	59	0	35	0	38	7
Total Volume	226	20	246	6	119	125	11	125	11
Total Volume	91.9	8.1	4.8	95.2	4.8	95.2	1.5	54.2	13
% App. Total									
PHF	.911	.714	.961	.375	.850	.893	.688	.542	.750
Grand Total	505	61	21	587	27	289	15	331	20
Apprch %	86	10.4	3.6	8.2	87.3	4.5	33.3	26	31
Total %	50.8	6.1	2.1	5.9	2.7	29	1.5	33.3	3.1

Wilson Okamoto Corporation
 1907 S. Beretania Street, Suite 400
 Honolulu, HI 96826

Counted By: LF
 Counters: D4-5673
 Weather: CLEAR

File Name : KAM MID PM
 Site Code : 00000002
 Start Date : 3/13/2018
 Page No : 1

Groups Printed- Unshifted									
Kamakee Street									
Southbound					Northbound				
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left
Peak Hour Analysis From 03:00 PM to 05:45 PM - Peak 1 of 1									
Peak Hour for Entire Intersection Begins at 04:30 PM									
04:30 PM	81	14	2	97	3	34	6	43	12
04:45 PM	72	8	7	87	2	47	1	50	8
05:00 PM	60	21	2	83	5	36	2	43	3
05:15 PM	74	18	10	102	10	29	0	39	3
Total	261	66	21	348	22	129	12	163	28
Grand Total	763	175	64	1002	49	424	23	496	95
Apprch %	76.1	17.5	6.4	9.9	85.5	4.6	4.6	41.5	26.2
Total %	44.2	10.1	3.7	58	2.8	24.6	1.3	28.7	5.5

Groups Printed- Unshifted									
Kamakee Street									
Southbound					Northbound				
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left
Peak Hour Analysis From 03:00 PM to 05:45 PM - Peak 1 of 1									
Peak Hour for Entire Intersection Begins at 04:30 PM									
04:30 PM	72	11	1	83	4	29	0	33	1
04:45 PM	60	22	7	82	2	38	1	45	8
05:00 PM	60	12	5	72	5	35	0	41	3
05:15 PM	67	15	82	5	36	41	6	41.5	4
Total	259	60	319	18	115	138	156	31	58.5
Grand Total	81.2	18.8	.961	.643	.908	.867	.861	.550	.736
Apprch %									
PHF	899	682							

Wilson Okamoto Corporation

1907 S. Beretania Street, Suite 400
Honolulu HI, 96826

Counted By: SH
Counters: D4-5675
Weather: CLEAR

1907 S. Beretania Street, Suite 400

Honolulu HI, 96826

File Name : KAM HAL AM
Site Code : 00000001
Start Date : 8/14/2018
Page No : 1

Kamakee St Southbound							Kamakee St Northbound							Groups Printed- Unshifted Kamakee St Northbound							Halekauwila St Eastbound						
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Left	Right	Peds	App. Total	Left	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total		
07:30 AM	55	11	2	68	4	28	1	33	3	4	10	17	17	118													
07:45 AM	50	15	5	70	12	35	2	49	5	17	15	37	37	156													
Total	105	26	7	138	16	63	3	82	8	21	25	54	54	274													
08:00 AM	52	16	3	71	7	35	4	46	6	7	6	19	19	136													
08:15 AM	49	9	7	65	4	36	3	43	9	17	5	31	31	139													
Grand Total	206	51	17	274	27	134	10	171	23	45	36	104	104	549													
Apprch %	75.2	18.6	6.2	15.8	78.4	5.8	24.4	1.8	31.1	4.2	8.2	6.6	18.9														
Total %	37.5	9.3	3.1	49.9	4.9																						

Kamakee St Southbound							Kamakee St Northbound							Groups Printed- Unshifted Kamakee St Northbound							Halekauwila St Eastbound						
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Left	Right	Peds	App. Total	Left	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total		
Peak Hour Analysis From 07:30 AM to 08:15 AM - Peak 1 of 1																											
Peak Hour for Entire Intersection Begins at 07:30 AM																											
07:30 AM	55	11	66	4	28	32	3	3	3	4	7	7															
07:45 AM	50	15	65	12	35	47	5	47	5	17	22	22															
08:00 AM	52	16	68	7	35	42	6	42	6	17	13	13															
08:15 AM	49	9	58	4	36	40	9	40	9	17	26	26															
Total Volume	206	51	257	27	134	161	23	161	23	45	68	68															
% App. Total	80.2	19.8	16.8	83.2	.931	.856	.639	.856	.639	.654	.907																
PHF	.936	.797	.945	.563																							

Kamakee St Southbound							Kamakee St Northbound							Groups Printed- Unshifted Kamakee St Northbound							Halekauwila St Eastbound						
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Left	Right	Peds	App. Total	Left	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total		
Peak Hour Analysis From 07:30 AM to 08:15 AM - Peak 1 of 1																											
Peak Hour for Entire Intersection Begins at 07:30 AM																											
07:30 AM	55	11	66	4	28	32	3	3	3	4	7	7															
07:45 AM	50	15	65	12	35	47	5	47	5	17	22	22															
08:00 AM	52	16	68	7	35	42	6	42	6	17	26	26															
08:15 AM	49	9	58	4	36	40	9	40	9	17	26	26															
Total Volume	206	51	257	27	134	161	23	161	23	45	68	68															
% App. Total	80.2	19.8	16.8	83.2	.931	.825	.708	.825	.708	.707	.853	.853															
PHF	.936	.797	.945	.563																							

Kamakee St Southbound							Kamakee St Northbound
--------------------------	--	--	--	--	--	--	--------------------------

Wilson Okamoto Corporation

1907 S. Beretania Street, Suite 400
Honolulu, HI 96826

Counted By: EV, YS
Counters: D4-5675, D4-3889
Weather: CLEAR

Kamakee Street Southbound										Queen Street Westbound										Kamakee Street Northbound										Kamakee Street Eastbound									
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total									
06:00 AM	5	17	2	0	24	6	2	0	0	8	3	6	0	2	11	2	13	2	1	18	6	1	2	4	4	22	116	12	106	8	116								
06:15 AM	7	15	7	0	29	11	8	1	1	21	1	5	0	0	6	5	11	2	4	78	23	19	1	2	4	21	96	21	126	32	127								
06:30 AM	5	20	6	1	32	4	18	0	2	24	3	7	8	1	19	1	12	4	4	52	12	35	1	3	5	29	125	118	126	33	125								
06:45 AM	2	22	15	0	39	8	16	4	2	30	5	15	5	2	27	2	19	3	5	29	14	10	0	0	0	29	125	118	126	33	125								
Total	19	74	30	1	124	29	44	5	5	83	12	33	5	63	10	55	11	14	90	360	18	2	1	1	18	61	22	4	4	22	78								
07:00 AM	4	32	9	1	46	21	46	1	1	69	1	13	6	1	21	3	14	4	3	24	160	10	3	3	3	24	160	10	3	3	160								
07:15 AM	4	31	14	0	49	17	58	6	0	81	1	20	4	1	26	3	20	6	3	32	188	12	3	3	3	32	188	12	3	3	188								
07:30 AM	4	24	23	2	53	12	84	5	1	102	4	14	1	2	21	3	36	6	9	54	230	11	1	1	1	54	230	11	1	1	230								
07:45 AM	6	23	17	1	47	27	79	3	0	61	6	7	10	12	10	35	1	42	10	0	48	196	8	0	0	0	48	196	8	0	0	196							
Total	18	110	63	4	195	77	267	15	4	363	10	72	17	5	104	12	89	20	19	140	802	24	3	2	2	22.1	22.1	22.1	22.1	22.1	22.1	22.1	22.1	22.1	22.1				
08:00 AM	4	33	10	5	52	31	66	11	1	109	0	9	11	2	22	1	46	5	3	55	238	13	3	3	3	55	238	13	3	3	238								
08:15 AM	6	28	12	4	50	26	44	4	1	75	10	17	8	5	40	3	42	10	0	58	223	12	3	3	3	58	223	12	3	3	223								
08:30 AM	7	25	14	6	52	23	33	5	0	61	6	7	10	12	10	43	8	51	12	11	82	283	11	1	1	1	82	283	11	1	1	283							
08:45 AM	14	28	8	9	59	21	30	4	1	56	3	5	7	5	20	7	37	7	2	53	210	11	1	1	1	55	210	11	1	1	210								
Total	31	114	44	24	213	101	173	24	3	301	19	38	36	24	117	12	162	32	8	214	845	24	3	3	3	24	845	24	3	3	845								
Grand Total	68	298	137	29	532	207	484	44	12	747	41	143	66	34	284	34	306	63	41	444	2007	14	3	3	3	444	2007	14	3	3	2007								
Apprich %	12.8	56	25.8	5.5	27.7	64.8	5.9	1.6	4.4	50.4	23.2	12	1.2	7.7	68.9	14.2	9.2	4.1	4.1	444	2007	14	3	3	3	444	2007	14	3	3	2007								
Total %	3.4	14.8	6.8	1.4	26.5	10.3	24.1	2.2	0.6	37.2	2	7.1	3.3	1.7	14.2	1.7	15.2	3.1	2	22.1	809	14	3	3	3	22.1	809	14	3	3	809								
PHF	.833	.818	.674	.931	.774	.813	.523	.899	.450	.650	.591	.779	.833	.777	.777	.777	.777	.777	.777	.777	.957	.957	14	3	3	3	.957	.957	14	3	3	.957							

Kamakee Street Southbound										Queen Street Westbound										Kamakee Street Northbound										Queen Street Eastbound									
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total									
Peak Hour Analysis From 06:00 AM to 06:45 AM - Peak 1 of 1																																							
Peak Hour for Entire Intersection Begins at 07:30 AM																																							
07:30 AM	4	24	23	1	51	12	84	5	0	101	4	14	1	1	19	3	36	6	45	216	12	7	7	7	75	300	12	7	7	75									
07:45 AM	6	23	17	4	56	27	79	3	1	109	4	25																											

Wilson Okamoto Corporation

1907 S. Beretania Street, Suite 400

Honolulu HI, 96826

Counted By: GC, LF
Counters: TU-2606, TU-0654
Weather: Clear

File Name : KanQue AM
Site Code : 00000004
Start Date : 8/31/2022
Page No : 1

Start Time	Kamakee Street Southbound				Queen Street Westbound				Groups Printed- Unshifted				Kamakee Street Northbound				Queen Street Eastbound									
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds		
06:30 AM	6	15	14	0	35	5	22	3	9	39	1	4	5	6	16	6	13	4	5	28	118					
06:45 AM	5	13	17	2	37	8	24	6	4	42	2	23	7	5	37	6	20	2	12	40	156					
Total	11	28	31	2	72	13	46	9	13	81	3	27	12	11	53	12	33	6	17	68	274					
07:00 AM	7	18	16	3	44	8	34	6	12	60	4	16	18	13	51	4	19	2	13	38	193					
07:15 AM	11	19	9	3	42	10	35	3	7	55	6	12	15	12	45	1	31	9	52	194	283					
07:30 AM	7	18	21	7	53	15	53	7	5	80	5	19	16	12	52	4	31	11	26	72	257					
07:45 AM	9	14	16	5	44	21	65	3	17	106	9	21	6	14	50	4	39	10	15	68	268					
Total	34	69	62	18	183	54	187	19	41	301	24	68	55	51	198	13	120	34	63	230	912					
08:00 AM	10	26	20	9	65	15	62	7	6	90	7	17	9	17	50	7	37	8	10	62	267					
08:15 AM	8	16	13	9	46	24	57	5	10	96	4	16	9	14	43	7	44	6	41	98	283					
Grand Total	63	139	126	38	366	106	352	40	70	568	38	128	85	93	344	39	234	54	131	458	1736					
Apprich %	17.2	38	34.4	10.4		18.7	62	7	12.3		11	37.2	24.7	27	8.5	51.1	11.8	28.6								
Total %	3.6	8	7.3	2.2		21.1	6.1	20.3	2.3		4	32.7	2.2	7.4	4.9	5.4	19.8	2.2	13.5	3.1	7.5	26.4				
PHF	.850	.712	.833	.795		.781	.912																			

Start Time	Kamakee Street Southbound				Queen Street Westbound				Groups Printed- Unshifted				Kamakee Street Northbound				Queen Street Eastbound									
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds		
06:30 AM	9	24	20	4	57	43	76	15	18	152	6	30	10	29	75	23	108	12	38	181	465					
06:45 AM	16	26	10	0	52	25	76	13	8	122	3	35	19	12	69	16	68	15	23	122	365					
07:00 AM	10	31	23	3	67	38	83	9	9	139	9	37	14	33	93	20	89	30	49	188	487					
07:15 AM	19	24	14	6	63	35	93	11	12	151	8	29	16	38	91	15	115	15	35	190	495					
Total	54	105	67	13	239	141	328	48	47	564	26	131	59	112	328	84	380	72	145	681	1812					
07:30 AM	7	18	21																							
07:45 AM	14	16	39																							
Total Volume	34	74	70	178																						
% App. Total	19.1	41.6	39.3	22.5																						
PHF	.850	.712	.833	.795																						

Start Time	Kamakee Street Southbound				Queen Street Westbound				Groups Printed- Unshifted				Kamakee Street Northbound				Queen Street Eastbound									
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds		
07:30 AM	7	18	21																							
07:45 AM	14	16	39																							
Total	54	105	67	13	239	141	328	48	47	564	26	131	59	112	328	84	380	72	145	681	1812					
08:00 AM	10	26	20	4	57	43	76	15	18	152	6	30	10	29	75	23	108	12	38	181	465					

Wilson Okamoto Corporation

1907 S. Beretania Street, Suite 400

Honolulu, HI 96826

Counted By: FS, GH
Counters: D4-5677, D4-5673
Weather: CLEAR

File Name : ALA KAM AM
Site Code : 00000001
Start Date : 3/14/2018
Page No : 1

Kamakee Street										Ala Moana Boulevard										Ala Moana Park Drive										Ala Moana Boulevard												
Southbound					Westbound					Northbound					Eastbound					Northbound					Eastbound					Northbound					Eastbound							
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total							
06:00 AM	1	3	6	4	14	1	176	3	11	191	4	1	0	1	6	7	194	19	220	431																						
06:15 AM	5	9	7	4	25	0	148	6	4	158	5	20	1	3	29	9	191	14	214	426																						
06:30 AM	2	3	13	3	21	1	276	9	8	294	4	1	4	5	14	12	258	21	291	620																						
06:45 AM	8	6	13	4	31	2	301	7	10	320	8	0	2	5	15	22	351	24	397	763																						
Total	16	21	39	15	91	4	901	25	33	963	21	22	7	14	64	50	994	78	1122	2240																						
07:00 AM	5	1	22	9	37	3	371	8	14	396	9	6	2	4	21	13	359	19	391	845																						
07:15 AM	8	7	23	5	43	2	432	14	15	463	22	2	3	4	31	20	381	15	416	953																						
07:30 AM	5	4	19	7	35	5	417	4	20	446	26	6	2	7	41	16	355	26	397	885																						
07:45 AM	2	8	21	12	43	2	431	16	13	462	19	4	5	5	33	18	322	20	360	868																						
Total	20	20	85	33	158	12	1651	42	62	1767	76	18	12	20	64	50	994	78	1122	2240																						
08:00 AM	7	8	32	3	50	3	426	11	7	447	15	8	3	2	28	14	367	23	404	929																						
08:15 AM	3	7	26	4	40	3	318	3	7	331	13	5	6	6	30	14	318	24	356	757																						
08:30 AM	6	12	18	6	42	6	335	6	9	356	19	6	2	5	32	20	323	25	368	798																						
08:45 AM	3	8	31	7	49	2	274	4	9	289	19	2	6	2	29	9	284	22	315	682																						
Total	19	35	107	20	181	14	1353	24	32	1423	66	21	17	15	119	57	1292	94	1443	3166																						
Grand Total	55	76	231	68	430	30	3905	91	127	4153	61	36	49	309	174	3703	252	4129	9021																							
Apprch %	12.8	17.7	53.7	15.8	0.8	2.6	0.8	4.8	0.3	43.3	1	1.4	0.6	1.8	0.7	0.4	0.5	3.4	1.9	41	45.8																					
Total %	0.6	0.8	2.6	0.8																																						

Kamakee Street										Ala Moana Boulevard										Ala Moana Park Drive										Ala Moana Boulevard									
Southbound					Westbound					Northbound					Eastbound					Northbound					Eastbound					Northbound					Eastbound				
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru																																

APPENDIX B
LEVEL OF SERVICE DEFINITIONS

LEVEL OF SERVICE DEFINITIONS

LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

Level of Service (LOS) for signalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. Specifically, level-of-service (LOS) criteria are stated in terms of the average control delay per vehicle, typically a 15-min analysis period. The criteria are given in the following table.

**Table 1: Level-of-Service Criteria for
Signalized Intersections**

Level of Service	Control Delay per Vehicle (sec/veh)
A	≤ 10.0
B	>10.0 and ≤ 20.0
C	>20.0 and ≤ 35.0
D	>35.0 and ≤ 55.0
E	>55.0 and ≤ 80.0
F	>80.0

Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group.

Level of Service A describes operations with low control delay, up to 10 sec per vehicle. This level of service occurs when progression is extremely favorable and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.

Level of Service B describes operations with control delay greater than 10 and up to 20 sec per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.

Level of Service C describes operations with control delay greater than 20 and up to 35 sec per vehicle. These higher delays may result from only fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a given green phase does not serve queued vehicles and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

Level of Service D describes operations with control delay greater than 35 and up to 55 sec per vehicle. At level of service D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

LEVEL OF SERVICE DEFINITIONS

Level of Service E describes operation with control delay greater than 55 and up to 80 sec per vehicle. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent.

Level of Service F describes operations with control delay in excess of 80 sec per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity lane groups. It may also occur at high v/c ratios with many individual cycle failures. Poor progression and long cycle lengths may also contribute significantly to high delay levels.

LEVEL-OF-SERVICE CRITERIA FOR UNSIGNALIZED INTERSECTIONS

Level of Service (LOS) criteria are given in Table 1. As used here, control delay is defined as the total elapsed time from the time a vehicle stops at the end of the queue to the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position, including deceleration of vehicles from free-flow speed to the speed of vehicles in the queue.

The average total delay for any particular minor movement is a function of the service rate or capacity of the approach and the degree of saturation. If the degree of saturation is greater than about 0.9, average control delay is significantly affected by the length of the analysis period.

Table 1: Level-of-Service Criteria for Unsignalized Intersections

Level of Service	Average Control Delay (Sec/Veh)
A	≤10.0
B	>10.0 and ≤15.0
C	>15.0 and ≤25.0
D	>25.0 and ≤35.0
E	>35.0 and ≤50.0
F	>50.0

APPENDIX C

CAPACITY ANALYSIS CALCULATIONS
BASELINE PEAK PERIOD TRAFFIC ANALYSIS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑	↑	↑	↑↑	↑	↑↑	
Traffic Volume (vph)	62	172	36	59	310	57	49	423	82	66	618	198
Future Volume (vph)	62	172	36	59	310	57	49	423	82	66	618	198
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	0.95
Frpb, ped/bikes	1.00	1.00	0.89	1.00	1.00	0.98	1.00	0.97	1.00	0.99	1.00	0.99
Flpb, ped/bikes	0.99	1.00	1.00	0.92	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	1.00	0.96	1.00	0.96
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Satd. Flow (prot)	1759	1863	1406	1630	1863	1548	1770	3356	1770	3368		
Flt Permitted	0.41	1.00	1.00	0.64	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Satd. Flow (perm)	761	1863	1406	1095	1863	1548	1770	3356	1770	3368		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	65	181	38	62	326	60	52	445	86	69	651	208
RTOR Reduction (vph)	0	0	27	0	0	42	0	18	0	0	34	0
Lane Group Flow (vph)	65	181	11	62	326	18	52	513	0	69	825	0
Confl. Peds. (#/hr)	15		146	146		15			144			30
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Prot	NA		
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8						
Actuated Green, G (s)	19.1	19.1	19.1	19.1	19.1	19.1	3.4	25.0		6.0	27.6	
Effective Green, g (s)	19.1	19.1	19.1	19.1	19.1	19.1	3.4	25.0		6.0	27.6	
Actuated g/C Ratio	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.05	0.38	0.09	0.42	
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	223	546	412	321	546	454	92	1288		163	1427	
v/s Ratio Prot		0.10			c0.18		0.03	0.15		c0.04	c0.24	
v/s Ratio Perm	0.09		0.01	0.06		0.01						
v/c Ratio	0.29	0.33	0.03	0.19	0.60	0.04	0.57	0.40		0.42	0.58	
Uniform Delay, d1	17.8	18.0	16.4	17.2	19.7	16.4	30.1	14.6		27.9	14.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.7	0.4	0.0	0.3	1.8	0.0	7.7	0.2		1.8	0.6	
Delay (s)	18.5	18.4	16.4	17.5	21.5	16.5	37.9	14.8		29.7	14.9	
Level of Service	B	B	B	B	C	B	D	B		C	B	
Approach Delay (s)		18.1			20.3			16.8			16.0	
Approach LOS		B			C			B			B	
Intersection Summary												
HCM 2000 Control Delay					17.3				HCM 2000 Level of Service		B	
HCM 2000 Volume to Capacity ratio					0.60							
Actuated Cycle Length (s)					65.1				Sum of lost time (s)		15.0	
Intersection Capacity Utilization					71.8%				ICU Level of Service		C	
Analysis Period (min)					15							
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
15: Ward Ave & Queen St

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	82	374	72	79	279	92	51	630	113	144	605	90
Future Volume (vph)	82	374	72	79	279	92	51	630	113	144	605	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95			
Frpb, ped/bikes	1.00	1.00	0.87	1.00	1.00	0.88	1.00	0.94	1.00	0.99		
Flpb, ped/bikes	0.93	1.00	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00		
Fr	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	1.00	0.98		
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1651	1863	1381	1672	1863	1389	1770	3252	1770	3432		
Flt Permitted	0.42	1.00	1.00	0.26	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	726	1863	1381	462	1863	1389	1770	3252	1770	3432		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	86	394	76	83	294	97	54	663	119	152	637	95
RTOR Reduction (vph)	0	0	55	0	0	70	0	15	0	0	12	0
Lane Group Flow (vph)	86	394	21	83	294	27	54	767	0	152	720	0
Confl. Peds. (#/hr)	136		142	142		136		294		52		
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Prot	NA		
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8						
Actuated Green, G (s)	21.4	21.4	21.4	21.4	21.4	21.4	3.7	29.7		11.6	37.6	
Effective Green, g (s)	21.4	21.4	21.4	21.4	21.4	21.4	3.7	29.7		11.6	37.6	
Actuated g/C Ratio	0.28	0.28	0.28	0.28	0.28	0.28	0.05	0.38		0.15	0.48	
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	199	513	380	127	513	382	84	1243		264	1660	
v/s Ratio Prot		c0.21			0.16		0.03	c0.24		c0.09	0.21	
v/s Ratio Perm	0.12		0.02	0.18		0.02						
v/c Ratio	0.43	0.77	0.06	0.65	0.57	0.07	0.64	0.62		0.58	0.43	
Uniform Delay, d1	23.2	25.9	20.7	24.9	24.2	20.8	36.4	19.4		30.8	13.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.5	6.8	0.1	11.5	1.6	0.1	15.6	0.9		3.0	0.2	
Delay (s)	24.7	32.7	20.8	36.3	25.8	20.9	52.0	20.3		33.8	13.3	
Level of Service	C	C	C	D	C	C	D	C		C	B	
Approach Delay (s)	29.8			26.6			22.4			16.8		
Approach LOS		C			C		C			B		
Intersection Summary												
HCM 2000 Control Delay	22.8			HCM 2000 Level of Service		C						
HCM 2000 Volume to Capacity ratio	0.66											
Actuated Cycle Length (s)	77.7			Sum of lost time (s)		15.0						
Intersection Capacity Utilization	77.4%			ICU Level of Service		D						
Analysis Period (min)	15									15		
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
16: Kamakee St & Queen St

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑
Traffic Volume (vph)	28	212	39	112	261	21	25	119	91	30	111	73
Future Volume (vph)	28	212	39	112	261	21	25	119	91	30	111	73
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	0.95		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	0.99		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.94
Flpb, ped/bikes	1.00		1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	1.00	1.00
Fr	0.98		1.00	0.99	1.00	1.00	0.93	1.00	0.93	1.00	0.98	0.85
Flt Protected	1.00		0.95	1.00	1.00	1.00	0.95	1.00	0.95	1.00	0.99	1.00
Satd. Flow (prot)	3417		1770	3494		1694	1730		1842	1483		
Flt Permitted	0.90		0.95	1.00		0.66	1.00		0.89	1.00		
Satd. Flow (perm)	3097		1770	3494		1183	1730		1662	1483		
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	29	221	41	117	272	22	26	124	95	31	116	76
RTOR Reduction (vph)	0	14	0	0	7	0	0	35	0	0	0	57
Lane Group Flow (vph)	0	277	0	117	287	0	26	184	0	0	147	19
Confl. Peds. (#/hr)	12		64			12	73		5	5		73
Turn Type	Perm	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases		2			1	6		8		4		
Permitted Phases	2							8		4		
Actuated Green, G (s)	16.0			7.1	28.1		12.4	12.4				

HCM Signalized Intersection Capacity Analysis
16: Kamakee St & Queen St

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑
Traffic Volume (vph)	103	439	104	270	392	36	23	152	106	58	132	70
Future Volume (vph)	103	439	104	270	392	36	23	152	106	58	132	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	0.95	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	0.96	1.00	1.00	1.00	0.97		1.00	0.63				
Flpb, ped/bikes	1.00	1.00	1.00	0.74	1.00		0.99	1.00				
Fr	0.98	1.00	0.99	1.00	0.94		1.00	0.85				
Flt Protected	0.99	0.95	1.00	0.95	1.00		0.99	1.00				
Satd. Flow (prot)	3289	1770	3482		1315	1703		1817	998			
Flt Permitted	0.79	0.95	1.00	0.56	1.00		0.69	1.00				
Satd. Flow (perm)	2610	1770	3482	782	1703		1277	998				
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	107	457	108	281	408	38	24	158	110	60	138	73
RTOR Reduction (vph)	0	18	0	0	8	0	0	28	0	0	0	55
Lane Group Flow (vph)	0	654	0	281	438	0	24	240	0	0	198	18
Confl. Peds. (#/hr)	25		190		25	179		48	48		179	
Turn Type	Perm	NA	Prot	NA	Perm	NA	Perm	NA	Perm			
Protected Phases	2		1	6		8		4		4		
Permitted Phases	2				8		4		4			
Actuated Green, G (s)	25.4	16.6	47.0	18.8	18.8		18.8	18.8				
Effective Green, g (s)	25.4	16.6	47.0	18.8	18.8		18.8	18.8				
Actuated g/C Ratio	0.34	0.22	0.62	0.25	0.25		0.25	0.25				
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0				
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0				
Lane Grp Cap (vph)	874	387	2159	193	422		316	247				
v/s Ratio Prot		c0.16	0.13		0.14							
v/s Ratio Perm		c0.25			0.03		c0.16	0.02				
v/c Ratio		0.75	0.73	0.20	0.12	0.57		0.63	0.07			
Uniform Delay, d1	22.4	27.5	6.3	22.1	25.0		25.4	21.8				
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00				
Incremental Delay, d2	3.5	6.6	0.0	0.3	1.8		3.8	0.1				
Delay (s)	25.9	34.1	6.3	22.4	26.7		29.2	22.0				
Level of Service	C	C	A	C	C		C	C				
Approach Delay (s)	25.9		17.1		26.4		27.3					
Approach LOS	C		B		C		C					
Intersection Summary												
HCM 2000 Control Delay	22.9	HCM 2000 Level of Service			C							
HCM 2000 Volume to Capacity ratio	0.70											
Actuated Cycle Length (s)	75.8	Sum of lost time (s)			15.0							
Intersection Capacity Utilization	84.8%	ICU Level of Service			E							
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
24: Ward Ave & Halekauwila St

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑	1↑
Traffic Volume (vph)	85	17	14	3	15	27	44	428	6	26	482	192
Future Volume (vph)	85	17	14	3	15	27	44	428	6	26	482	192
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.98		1.00	0.96		1.00	1.00		1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.96	1.00		1.00	1.00	1.00
Fr	1.00	0.93		1.00	0.90		1.00	1.00		1.00	1.00	0.96
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	1698		1770	1621		1701	3529		1770	3269	
Flt Permitted	0.73	1.00		0.74	1.00		0.37	1.00		0.49	1.00	
Satd. Flow (perm)	1358	1698		1372	1621		656	3529		919	3269	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	88	18	14	3	15	28	45	441	6	27	497	198
RTOR Reduction (vph)	0	10	0	0	20	0	0	1	0	0	48	0
Lane Group Flow (vph)	88	22	0	3	23	0	45	446	0	27	647	0
Confl. Peds. (#/hr)		78			47	85		47			85	
Turn Type	Perm	NA	Prot	NA	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4			8			2		6		
Permitted Phases		4				8		2		6		
Actuated Green, G (s)	14.9	14.9	14.9	14.9	24.6	24.6	24.6	24.6				
Effective Green, g (s)	14.9	14.9	14.9	14.9	24.6	24.6	24.6	24.6				
Actuated g/C Ratio	0.30	0.30	0.30	0.30	0.50	0.50	0.50	0.50</td				

HCM Signalized Intersection Capacity Analysis
24: Ward Ave & Halekauwila St

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑		↑	↑↑		↑	↑↑	
Traffic Volume (vph)	176	45	61	9	19	27	49	554	15	38	576	109
Future Volume (vph)	176	45	61	9	19	27	49	554	15	38	576	109
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.93		1.00	0.93		1.00	1.00		1.00	0.96	
Flpb, ped/bikes	0.90	1.00		0.90	1.00		0.93	1.00		0.93	1.00	
Fr	1.00	0.91		1.00	0.91		1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1590	1579		1595	1582		1641	3509		1649	3327	
Flt Permitted	0.73	1.00		0.69	1.00		0.32	1.00		0.39	1.00	
Satd. Flow (perm)	1215	1579		1151	1582		553	3509		684	3327	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	183	47	64	9	20	28	51	577	16	40	600	114
RTOR Reduction (vph)	0	38	0	0	17	0	0	2	0	0	19	0
Lane Group Flow (vph)	183	73	0	9	31	0	51	591	0	40	695	0
Confl. Peds. (#/hr)	121		185	185		121	160		121	121		160
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	22.0	22.0		22.0	22.0		21.8	21.8		21.8	21.8	
Effective Green, g (s)	22.0	22.0		22.0	22.0		21.8	21.8		21.8	21.8	
Actuated g/C Ratio	0.41	0.41		0.41	0.41		0.41	0.41		0.41	0.41	
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	496	645		470	646		224	1421		277	1348	
v/s Ratio Prot		0.05			0.02			0.17			c0.21	
v/s Ratio Perm	c0.15			0.01			0.09			0.06		
v/c Ratio	0.37	0.11		0.02	0.05		0.23	0.42		0.14	0.52	
Uniform Delay, d1	11.1	9.9		9.5	9.6		10.5	11.4		10.1	12.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.1		0.0	0.0		0.5	0.2		0.2	0.3	
Delay (s)	11.5	9.9		9.5	9.6		11.0	11.6		10.3	12.4	
Level of Service	B	A		A	A		B	B		B	B	
Approach Delay (s)		10.9			9.6			11.6			12.3	
Approach LOS		B			A			B			B	
Intersection Summary												
HCM 2000 Control Delay	11.7											
HCM 2000 Level of Service		B										
HCM 2000 Volume to Capacity ratio	0.44											
Actuated Cycle Length (s)	53.8							10.0				
Intersection Capacity Utilization	58.0%											
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
34: Ward Ave & Pohukaina St/Auahi St

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑		↑	↑↑		↑	↑↑	
Traffic Volume (vph)	71	43	81	58	70	117	76	276	46	32	377	89
Future Volume (vph)	71	43	81	58	70	117	76	276	46	32	377	89
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.97		1.00	0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		0.97	1.00		0.97	1.00		0.97	1.00	
Fr	1.00	0.90		1.00	0.91		1.00	0.91		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1761	1635		1724	1669		1720	3431		1718	3389	
Flt Permitted	0.64	1.00		0.67	1.00		0.48	1.00		0.55	1.00	
Satd. Flow (perm)	1177	1635		1224	1669		860	3431		993	3389	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	74	45	84	60	73	122	79	288	48	33	393	93
RTOR Reduction (vph)	0	57	0	0	76	0	0	16	0	0	25	0
Lane Group Flow (vph)	74	72	0	60	119	0	79	320	0	33	461	0
Confl. Peds. (#/hr)	14		67	67		14	75		63	63		75
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	13.1	13.1		13.1	13.1		18.2	18.2		18.2	18.2	
Effective Green, g (s)	13.1	13.1		13.1	13.1		18.2	18.2		18.2	18.2	
Actuated g/C Ratio	0.32	0.32		0.32	0.32		0.44	0.44		0.44	0.44	
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	373	518		388	529		378	1511		437	1493	
v/s Ratio Prot		0.04	</									

HCM Signalized Intersection Capacity Analysis
34: Ward Ave & Pohukaina St/Auahi St

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑		↑	↑	↑	↑	↑	
Traffic Volume (vph)	44	93	55	102	83	168	63	376	124	149	349	100
Future Volume (vph)	44	93	55	102	83	168	63	376	124	149	349	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97		1.00	0.91		1.00	0.95		1.00	0.97	
Flpb, ped/bikes	0.92	1.00	0.94	1.00	0.97	1.00	0.91	1.00	0.97	1.00	0.98	1.00
Fr	1.00	0.94		1.00	0.90		1.00	0.96		1.00	0.97	
Flt Protected	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Satd. Flow (prot)	1631	1706		1668	1532		1709	3222		1606	3330	
Flt Permitted	0.56	1.00	0.65	1.00	0.46	1.00	0.42	1.00	0.46	1.00	0.70	1.00
Satd. Flow (perm)	957	1706		1149	1532		823	3222		710	3330	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	48	102	60	112	91	185	69	413	136	164	384	110
RTOR Reduction (vph)	0	22	0	0	76	0	0	43	0	0	35	0
Lane Group Flow (vph)	48	140	0	112	200	0	69	506	0	164	459	0
Confl. Peds. (#/hr)	200		122	122		200	66		194	194		96
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	24.0	24.0		24.0	24.0		24.9	24.9		24.9	24.9	
Effective Green, g (s)	24.0	24.0		24.0	24.0		24.9	24.9		24.9	24.9	
Actuated g/C Ratio	0.41	0.41	0.41	0.41	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	389	695		468	624		347	1362		300	1407	
v/s Ratio Prot	0.08			c0.13			0.16			0.14		
v/s Ratio Perm	0.05			0.10			0.08			c0.23		
v/c Ratio	0.12	0.20		0.24	0.32		0.20	0.37		0.55	0.33	
Uniform Delay, d1	10.9	11.3		11.5	11.9		10.7	11.6		12.8	11.4	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.1	0.1		0.3	0.3		0.3	0.2		2.0	0.1	
Delay (s)	11.0	11.4		11.7	12.2		11.0	11.8		14.8	11.5	
Level of Service	B	B		B	B		B	B		B	B	
Approach Delay (s)	11.3			12.1			11.7			12.3		
Approach LOS	B			B			B			B		
Intersection Summary												
HCM 2000 Control Delay	12.0			HCM 2000 Level of Service			B					
HCM 2000 Volume to Capacity ratio	0.44											
Actuated Cycle Length (s)	58.9			Sum of lost time (s)			10.0					
Intersection Capacity Utilization	78.6%			ICU Level of Service			D					
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
35: Kamakee St & Auahi St

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑		↑	↑	↑	↑	↑	
Traffic Volume (vph)	74	13	85	20	40	105	10	78	9	1	164	128
Future Volume (vph)	74	13	85	20	40	105	10	78	9	1	164	128
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.96		1.00	1.00	0.95	1.00	1.00	0.96	1.00	1.00	0.92
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.98	1.00	1.00
Fr	1.00	0.87		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Satd. Flow (prot)	1770	1549		1770	1863		1506	1680	1863	1512	1729	1863
Flt Permitted	0.95	1.00	0.95	1.00	0.95	1.00	0.65	1.00	1.00	0.70	1.00	1.00
Satd. Flow (perm)	1770	1549		1770	1863		1506	1148	1863	1512	1282	1863
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	77	14	89	21	42	109	10	81	9	1	171	133
RTOR Reduction (vph)	0	61	0	0	0	82	0	0	5	0	0	81
Lane Group Flow (vph)	77	42	0	21	42	27	10	81	4	1	171	52
Confl. Peds. (#/hr)				51			36	63		25	25	63
Turn Type	Prot	NA		Prot	NA		Perm	Perm	NA	Perm	NA	Perm
Protected Phases		7	4				3	8		2	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	4.7	17.3		1.2	13.8		13.8	21.6		21.6	21.6	21.6
Effective Green, g (s)	4.7	17.3		1.2	13.8		13.8	21.6		21.6	21.6	21.6
Actuated g/C Ratio	0.09	0.31		0.02	0.25		0.25	0.39		0.39	0.39	0.39
Clearance Time (s)	5.0	5.0	</									

HCM Signalized Intersection Capacity Analysis
35: Kamakee St & Auahi St

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	3	4	5	6	7	8	9	10	11	12
Traffic Volume (vph)	96	111	82	21	94	207	57	66	1	31	240	165
Future Volume (vph)	96	111	82	21	94	207	57	66	1	31	240	165
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.93		1.00	1.00	0.82	1.00	1.00	0.78	1.00	1.00	0.71
Flpb, ped/bikes	1.00	1.00		1.00	1.00	0.82	1.00	1.00	0.81	1.00	1.00	1.00
Fr	1.00	0.94		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1626		1770	1863	1290	1447	1863	1228	1433	1863	1127
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.52	1.00	1.00	0.71	1.00	1.00
Satd. Flow (perm)	1770	1626		1770	1863	1290	797	1863	1228	1076	1863	1127
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	98	113	84	21	96	211	58	67	1	32	245	168
RTOR Reduction (vph)	0	29	0	0	0	126	0	0	1	0	0	118
Lane Group Flow (vph)	98	168	0	21	96	85	58	67	0	32	245	50
Confl. Peds. (#/hr)	161		147	147		161	177		141	141		177
Turn Type	Prot	NA		Prot	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases	7	4		3	8			2			6	
Permitted Phases						8	2		2	6		6
Actuated Green, G (s)	6.5	33.4		1.7	28.6	28.6	21.0	21.0	21.0	21.0	21.0	21.0
Effective Green, g (s)	6.5	33.4		1.7	28.6	28.6	21.0	21.0	21.0	21.0	21.0	21.0
Actuated g/C Ratio	0.09	0.47		0.02	0.40	0.40	0.30	0.30	0.30	0.30	0.30	0.30
Clearance Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	161	763		42	749	518	235	550	362	317	550	332
v/s Ratio Prot	c0.06	c0.10		0.01	0.05		0.04			c0.13		
v/s Ratio Perm						0.07	0.07		0.00	0.03		0.04
v/c Ratio	0.61	0.22		0.50	0.13	0.16	0.25	0.12	0.00	0.10	0.45	0.15
Uniform Delay, d1	31.1	11.1		34.3	13.4	13.6	19.0	18.3	17.7	18.2	20.3	18.5
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	6.4	0.1		9.1	0.1	0.1	0.6	0.1	0.0	0.1	0.6	0.2
Delay (s)	37.5	11.3		43.3	13.5	13.7	19.6	18.4	17.7	18.3	20.9	18.7
Level of Service	D	B		D	B	B	B	B	B	C	B	
Approach Delay (s)	20.0				15.6			18.9			19.9	
Approach LOS	B			B			B			B		
Intersection Summary												
HCM 2000 Control Delay	18.6			HCM 2000 Level of Service	B							
HCM 2000 Volume to Capacity ratio	0.34											
Actuated Cycle Length (s)	71.1			Sum of lost time (s)		15.0						
Intersection Capacity Utilization	66.0%			ICU Level of Service	C							
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
41: Ala Moana Blvd & Ward Ave

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	3	4	5	6	7	8	9	10	11	12
Traffic Volume (vph)	180	1418	4	96	1461	161	3	22	34	237	77	156
Future Volume (vph)	180	1418	4	96	1461	161	3	22	34	237	77	156
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00		0.95	1.00	0.91	0.91	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.84		1.00	0.93	1.00	0.95	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Fr	1.00	1.00		1.00	1.00	0.85		1.00	0.85	1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.99	1.00	0.95	0.99	
Satd. Flow (prot)	1770	5083		1770	5085	1337		3519	1473	1610	2926	
Flt Permitted	0.95	1.00		0.95	1.00	1.00		0.99	1.00	0.95	0.99	
Satd. Flow (perm)	1770	5083		1770	5085	1337		3519	1473	1610	2926	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	189	1493	4	101	1538	169	3	23	36	249	81	164
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	189	1497	0	101	1538	84	0	26	36	169	325	0
Confl. Peds. (#/hr)				13			94			51		73
Turn Type	Prot	NA		Prot	NA	Perm	Split	NA	Perm	Split	NA	
Protected Phases	5	2		1	6			8			4	4
Permitted Phases						6					8	
Actuated Green, G (s)	17.5	52.7		11.5	46.7	46.7		25.2	25.2	25.8	25.8	
Effective Green, g (s)	17.5	52.7		11.5	46.7	46.7		25.2	25.2	25.8	25.8	
Actuated g/C Ratio	0.13	0.39		0.09</td								

HCM Signalized Intersection Capacity Analysis
41: Ala Moana Blvd & Ward Ave

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑↑		↑	↑↑↑	↑	↑	↑↑	↑	↑↑		
Traffic Volume (vph)	228	2129	4	58	1448	210	4	90	93	280	65	235
Future Volume (vph)	228	2129	4	58	1448	210	4	90	93	280	65	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	0.91	1.00	0.91	1.00	0.95	1.00	0.91	0.91			
Frpb, ped/bikes	1.00	1.00	1.00	1.00	0.80	1.00	0.86	1.00	0.96			
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Fr	1.00	1.00	1.00	1.00	0.85	1.00	0.85	1.00	0.91			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00	1.00	0.95	0.99			
Satd. Flow (prot)	1770	5083		1770	5085	1262		3532	1367	1610	2930	
Flt Permitted	0.95	1.00	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (perm)	1770	5083		1770	5085	1262		3532	1367	1610	2930	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	240	2241	4	61	1524	221	4	95	98	295	68	247
RTOR Reduction (vph)	0	0	0	0	0	110	0	0	0	0	0	0
Lane Group Flow (vph)	240	2245	0	61	1524	111	0	99	98	212	398	0
Confl. Peds. (#/hr)			41			107			94			31
Turn Type	Prot	NA		Prot	NA	Perm		Split	NA			
Protected Phases	5	2		1	6		8	8		4	4	
Permitted Phases					6			8				
Actuated Green, G (s)	22.0	69.1		6.0	53.1	53.1		35.0	35.0	27.8	27.8	
Effective Green, g (s)	22.0	69.1		6.0	53.1	53.1		35.0	35.0	27.8	27.8	
Actuated g/C Ratio	0.14	0.44		0.04	0.34	0.34		0.22	0.22	0.18	0.18	
Clearance Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0	5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	246	2224		67	1710	424		782	303	283	515	
v/s Ratio Prot	c0.14	c0.44		0.03	0.30		0.03		0.13	c0.14		
v/s Ratio Perm					0.09				c0.07			
v/c Ratio	0.98	1.01		0.91	0.89	0.26		0.13	0.32	0.75	0.97dr	
Uniform Delay, d1	67.7	44.4		75.7	49.7	38.2		49.2	51.5	61.7	62.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	50.1	21.4		79.0	6.3	0.3		0.1	0.6	10.4	7.1	
Delay (s)	117.8	65.8		154.7	56.0	38.5		49.3	52.1	72.1	69.1	
Level of Service	F	E		F	E	D		D	E	E		
Approach Delay (s)	70.8			57.2				50.7		70.2		
Approach LOS		E			E			D		E		
Intersection Summary												
HCM 2000 Control Delay	65.1				HCM 2000 Level of Service	E						
HCM 2000 Volume to Capacity ratio	0.80											
Actuated Cycle Length (s)	157.9				Sum of lost time (s)	20.0						
Intersection Capacity Utilization	102.8%				ICU Level of Service	G						
Analysis Period (min)	15											
dr	Defacto Right Lane. Recode with 1 though lane as a right lane.											
c	Critical Lane Group											

HCM Signalized Intersection Capacity Analysis
43: Ala Moana Park Dr/Kamakee St & Ala Moana Blvd

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑↑		↑	↑↑↑	↑	↑	↑↑	↑	↑↑		
Traffic Volume (vph)	70	1584	84	12	1554	0	82	20	13	93	27	123
Future Volume (vph)	70	1584	84	12	1554	0	82	20	13	93	27	123
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	0.91	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr	1.00	0.99			1.00	1.00			1.00	0.94		
Flt Protected	0.95	1.00			0.95	1.00			0.95	1.00		
Satd. Flow (prot)	1770	5034		1770	5085		1770	1713			1724	1583
Flt Permitted	0.95	1.00			0.95	1.00			0.66	1.00		
Satd. Flow (perm)	1770	5034		1770	5085		1226	1713			1350	1583
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	72	1633	87	12	1602	0	85	21	13	96	28	127
RTOR Reduction (vph)	0	4	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	72	1716	0	12	1602	0	85	34	0	0	124	127
Confl. Peds. (#/hr)			18				27			55	55	
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4		3	8		2			6	6	
Permitted Phases							2			6	6	
Actuated Green, G (s)	8.0	61.6		1.3	54.9		27.0	27.0		27.0	27.0	
Effective Green, g (s)	8.0	61.6		1.3	54.9		27.0	27.0		27.0	27.0	
Actuated g/C Ratio	0.08	0.59		0.01	0.52		0.26	0.26		0.26	0.2	

HCM Signalized Intersection Capacity Analysis
43: Ala Moana Park Dr/Kamakee St & Ala Moana Blvd

02/10/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑↑		↑	↑↑↑		↑	↑		↑↑	↑	↑
Traffic Volume (vph)	89	2259	181	33	1492	0	56	34	42	97	59	180
Future Volume (vph)	89	2259	181	33	1492	0	56	34	42	97	59	180
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0			5.0	5.0			5.0	5.0
Lane Util. Factor	1.00	0.91	1.00	0.91			1.00	1.00			1.00	1.00
Frpb, ped/bikes	1.00	0.99	1.00	1.00			1.00	0.95			1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00			1.00	1.00			0.95	1.00
Fr	1.00	0.99	1.00	1.00			1.00	0.92			1.00	0.85
Flt Protected	0.95	1.00	0.95	1.00			0.95	1.00			0.97	1.00
Satd. Flow (prot)	1770	4991	1770	5085			1770	1615			1717	1583
Flt Permitted	0.95	1.00	0.95	1.00			0.53	1.00			0.76	1.00
Satd. Flow (perm)	1770	4991	1770	5085			983	1615			1342	1583
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	92	2329	187	34	1538	0	58	35	43	100	61	186
RTOR Reduction (vph)	0	5	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	92	2511	0	34	1538	0	58	78	0	0	161	186
Confl. Peds. (#/hr)		33			35			65	65			
Turn Type	Prot	NA	Prot	NA	Perm	NA	Perm	NA	Perm			
Protected Phases	7	4		3	8			2			6	
Permitted Phases						2			6		6	
Actuated Green, G (s)	12.7	95.9		6.4	89.6		33.5	33.5		33.5	33.5	
Effective Green, g (s)	12.7	95.9		6.4	89.6		33.5	33.5		33.5	33.5	
Actuated g/C Ratio	0.08	0.64		0.04	0.59		0.22	0.22		0.22	0.22	
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	149	3173		75	3021		218	358		298	351	
v/s Ratio Prot	c0.05	c0.50		0.02	0.30			0.05				
v/s Ratio Perm						0.06			c0.12	0.12		
v/c Ratio	0.62	0.79		0.45	0.51		0.27	0.22		0.54	0.53	
Uniform Delay, d1	66.7	20.1		70.5	17.8		48.5	47.9		51.8	51.7	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	7.4	1.4		4.3	0.1		0.7	0.3		2.0	1.4	
Delay (s)	74.1	21.5		74.8	17.9		49.1	48.2		53.8	53.2	
Level of Service	E	C		E	B		D	D		D	D	
Approach Delay (s)		23.4			19.2			48.6			53.5	
Approach LOS		C			B			D			D	
Intersection Summary												
HCM 2000 Control Delay	24.9		HCM 2000 Level of Service			C						
HCM 2000 Volume to Capacity ratio	0.73											
Actuated Cycle Length (s)	150.8		Sum of lost time (s)			15.0						
Intersection Capacity Utilization	89.2%		ICU Level of Service			E						
Analysis Period (min)	15											
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
47: Kamakee St & Halekauwilia St

02/10/2023

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑↑	↑
Traffic Volume (veh/h)	64	85	68	179	180	90
Future Volume (Veh/h)	64	85	68	179	180	90
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	67	89	72	188	189	95
Pedestrians	99			30	74	
Lane Width (ft)	12.0			12.0	12.0	
Walking Speed (ft/s)	4.0			4.0	4.0	
Percent Blockage	8			3	6	
Right turn flare (veh)			3			
Median type				None	None	
Median storage veh)						
Upstream signal (ft)				334	243	
pX, platoon unblocked						
vC, conflicting volume	742	271	383			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	742	271	383			
tC, single (s)	*5.8	*5.9	4.1			
tC, 2 stage (s)						
tF (s)	*3.0	*3.0	2.2			
p0 queue free %	83	88	93			
cM capacity (veh/h)	391	769	1075			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	156	72	188	126	158	
Volume Left	67	72	0	0	0	
Volume Right	89	0	0	0	95	
cSH	911	1075	1700	1700	1700	
Volume to Capacity	0.17	0.07	0.11	0.07	0.09	
Queue Length 95th (ft)	15	5	0	0	0	
Control Delay (s)	12.8	8.6	0.0	0.0	0.0	
Lane LOS	B	A				
Approach Delay (s)	12.8	2.4			0.0	
Approach LOS		B				
Intersection Summary						
Average Delay					3.7	
Intersection Capacity Utilization				36.7%		ICU Level of Service
Analysis Period (min)				15		A

* User Entered Value

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	↖	↖	↖	↑	↑↗	
Traffic Volume (veh/h)	72	69	101	239	380	115
Future Volume (Veh/h)	72	69	101	239	380	115
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	79	76	111	263	418	126
Pedestrians	143			12	71	
Lane Width (ft)	12.0			12.0	12.0	
Walking Speed (ft/s)	4.0			4.0	4.0	
Percent Blockage	12			1	6	
Right turn flare (veh)		3				
Median type			None	None		
Median storage veh						
Upstream signal (ft)			342	236		
pX, platoon unblocked						
vC, conflicting volume	1180	427	687			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1180	427	687			
tC, single (s)	*5.8	*5.9	4.1			
tC, 2 stage (s)						
tF (s)	*3.0	*3.0	2.2			
p0 queue free %	61	88	86			
cM capacity (veh/h)	201	618	795			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	155	111	263	279	265	
Volume Left	79	111	0	0	0	
Volume Right	76	0	0	0	126	
cSH	394	795	1700	1700	1700	
Volume to Capacity	0.39	0.14	0.15	0.16	0.16	
Queue Length 95th (ft)	46	12	0	0	0	
Control Delay (s)	23.1	10.3	0.0	0.0	0.0	
Lane LOS	C	B				
Approach Delay (s)	23.1	3.0		0.0		
Approach LOS	C					
Intersection Summary						
Average Delay		4.4				
Intersection Capacity Utilization		38.5%	ICU Level of Service		A	
Analysis Period (min)		15				

* User Entered Value

APPENDIX D

TRIP GENERATIONS CALCULATIONS

Trip Generation										9th Edition										
Number of Units	Units	Land Use Number	Land Use	Land Use No./Type	Land Use No./Type	Weekday Total Trips per Unit	Trip Rate per Unit	Number of Trips	In % Rate	In % Rate	AM PEAK	Out % Rate	Out % Rate	Out Trips	Trip Rate per Unit	Number of Trips	In % Rate	In % Rate	PM PEAK	
Block N West - Phase 5																				
Proposed																				
465	units	222	High-Rise Apartment	4.45	2069	0.31	144	24	0.07	35	76	0.24	109	0.36	167	61	0.22	102	39	0.14
8,066	ksf	820	Shopping Center	37.75	304	0.94	8	62	0.58	5	38	0.36	3	3.81	31	48	1.83	15	52	1.98
4,034	ksf	932	High-Turnover (Sit-Down) Restaurant (formerly #83)	112.18	453	9.94	40	55	5.47	22	45	4.47	18	9.77	39	62	6.06	24	38	3.71
			110 General Light Industrial	6.37	0	0.92	0	88	0.81	0	12	0.11	0	0.97	0	12	0.116	0	88	0.854
Block N West - Residential Alt Mode Trip Reduction																				
Block N West Residential																				
Block N West - Residential																				
Retail SubTotal (no reductions)																				
Block N West - Trip Reduction																				
Block N West -																				
Block N West Retail (to Block H)																				
Block N West Total																				

APPENDIX E

CAPACITY ANALYSIS CALCULATIONS PROJECTED YEAR 2030 PEAK PERIOD TRAFFIC ANALYSIS WITHOUT PROJECT

HCM Signalized Intersection Capacity Analysis
15: Ward Ave & Queen St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑	↑	↑↑	↑	↑↑	↑↑	↑
Traffic Volume (vph)	62	186	36	59	326	57	49	459	82	66	654	198
Future Volume (vph)	62	186	36	59	326	57	49	459	82	66	654	198
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95		
Frpb, ped/bikes	1.00	1.00	0.89	1.00	1.00	0.98	1.00	0.97	1.00	0.99		
Flpb, ped/bikes	0.99	1.00	1.00	0.92	1.00	1.00	1.00	1.00	1.00	1.00		
Fr	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	1.00	0.97		
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1759	1863	1404	1632	1863	1548	1770	3367	1770	3374		
Flt Permitted	0.39	1.00	1.00	0.61	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	717	1863	1404	1052	1863	1548	1770	3367	1770	3374		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	65	196	38	62	343	60	52	483	86	69	688	208
RTOR Reduction (vph)	0	0	27	0	0	42	0	17	0	0	32	0
Lane Group Flow (vph)	65	196	11	62	343	18	52	552	0	69	864	0
Confl. Peds. (#/hr)	15		146	146		15		144			30	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Prot	NA		
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8						
Actuated Green, G (s)	19.7	19.7	19.7	19.7	19.7	19.7	3.4	25.5		6.0	28.1	
Effective Green, g (s)	19.7	19.7	19.7	19.7	19.7	19.7	3.4	25.5		6.0	28.1	
Actuated g/C Ratio	0.30	0.30	0.30	0.30	0.30	0.30	0.05	0.39		0.09	0.42	
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	213	554	417	313	554	460	90	1296		160	1432	
v/s Ratio Prot	0.11			c0.18			0.03	0.16		c0.04	c0.26	
v/s Ratio Perm	0.09		0.01	0.06			0.01					
v/c Ratio	0.31	0.35	0.03	0.20	0.62	0.04	0.58	0.43		0.43	0.60	
Uniform Delay, d1	18.0	18.3	16.5	17.4	20.0	16.5	30.7	15.0		28.5	14.7	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.8	0.4	0.0	0.3	2.1	0.0	8.7	0.2		1.9	0.7	
Delay (s)	18.8	18.6	16.5	17.7	22.1	16.6	39.4	15.2		30.3	15.5	
Level of Service	B	B	B	B	C	B	D	B		C	B	
Approach Delay (s)	18.4				20.8			17.2			16.5	
Approach LOS	B				C			B			B	
Intersection Summary												
HCM 2000 Control Delay	17.8											
HCM 2000 Level of Service												
	B											
HCM 2000 Volume to Capacity ratio	0.62											
Actuated Cycle Length (s)	66.2											
Sum of lost time (s)								15.0				
Intersection Capacity Utilization	71.8%											
ICU Level of Service								C				
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
16: Kamakee St & Queen St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑↑	↑↑	↑	↑↑	↑↑	↑	↑	↑	↑	↑↑	↑↑	↑
Traffic Volume (vph)	28	219	39	112	276	21	25	119	91	30	111	73
Future Volume (vph)	28	219	39	112	276	21	25	119	91	30	111	73
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0							5.0	5.0			
Lane Util. Factor	0.95							1.00	0.95			
Frpb, ped/bikes	0.99							1.00	1.00			
Flpb, ped/bikes	1.00							1.00	1.00			
Fr	0.98							1.00	0.99			
Flt Protected	1.00							0.95	1.00			
Satd. Flow (prot)	3420							1770	3496			
Flt Permitted	0.90							0.95	1.00			
Satd. Flow (perm)	3097							1770	3496			
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	29	228	41	117	288	22	26	124	95	31	116	76
RTOR Reduction (vph)	0	14	0	0	6	0	0	35	0	0	0	57
Lane Group Flow (vph)	0	284	0	117	304	0	26	184	0	0	147	19
Confl. Peds. (#/hr)	12		64				12	73		5	5	73
Turn Type	Perm	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases		2			1	6				8		4
Permitted Phases	2									8		4
Actuated Green, G (s)	16.1				7.1	28.2		12.4	12.4			12.4
Effective Green, g (s)	16.1				7.1	28.2		12.4	12.4			12.4
Actuated g/C Ratio	0.32				0.14	0.56		0.25	0.25			0.25
Clearance Time (s)	5.0				5.0	5.0		5.0	5.0			5.0
Vehicle Extension (s)	3.0				3.0	3.0		3.0				

HCM Signalized Intersection Capacity Analysis
24: Ward Ave & Halekauwila St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	3	4	5	6	7	8	9	10	11	12
Traffic Volume (vph)	85	17	14	3	15	27	44	461	6	26	512	192
Future Volume (vph)	85	17	14	3	15	27	44	461	6	26	512	192
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.98	1.00	0.96	1.00	1.00	1.00	0.97	1.00	1.00	0.99	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	1.00	1.00	0.97	1.00
Fr	1.00	0.93	1.00	0.90	1.00	1.00	1.00	0.96	1.00	1.00	0.98	1.00
Flt Protected	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Satd. Flow (prot)	1770	1698	1770	1620	1704	3530	1770	3279				
Flt Permitted	0.73	1.00	0.74	1.00	0.35	1.00	0.48	1.00				
Satd. Flow (perm)	1358	1698	1372	1620	628	3530	889	3279				
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	88	18	14	3	15	28	45	475	6	27	528	198
RTOR Reduction (vph)	0	10	0	0	20	0	0	1	0	0	45	0
Lane Group Flow (vph)	88	22	0	3	23	0	45	480	0	27	681	0
Confl. Peds. (#/hr)					78		47	85		47		85
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	14.9	14.9	14.9	14.9	25.4	25.4	25.4	25.4				
Effective Green, g (s)	14.9	14.9	14.9	14.9	25.4	25.4	25.4	25.4				
Actuated g/C Ratio	0.30	0.30	0.30	0.30	0.50	0.50	0.50	0.50				
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0				
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0				
Lane Grp Cap (vph)	402	502	406	479	317	1782	448	1655				
v/s Ratio Prot		0.01			0.01		0.14			c0.21		
v/s Ratio Perm	c0.06			0.00			0.07			0.03		
v/c Ratio	0.22	0.04		0.01	0.05		0.14	0.27		0.06	0.41	
Uniform Delay, d1	13.3	12.6		12.5	12.6		6.6	7.1		6.4	7.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.3	0.0		0.0	0.0		0.2	0.1		0.1	0.2	
Delay (s)	13.6	12.7		12.5	12.7		6.8	7.2		6.4	7.9	
Level of Service	B	B		B	B		A	A		A	A	
Approach Delay (s)	13.3			12.7			7.2			7.9		
Approach LOS	B			B			A			A		
Intersection Summary												
HCM 2000 Control Delay	8.2			HCM 2000 Level of Service			A					
HCM 2000 Volume to Capacity ratio	0.34											
Actuated Cycle Length (s)	50.3			Sum of lost time (s)			10.0					
Intersection Capacity Utilization	58.5%			ICU Level of Service			B					
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
34: Ward Ave & Pohukaina St/Auahi St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	3	4	5	6	7	8	9	10	11	12
Traffic Volume (vph)	94	50	103	58	73	117	77	287	46	32	394	99
Future Volume (vph)	94	50	103	58	73	117	77	287	46	32	394	99
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97	1.00	0.99	1.00	0.99	1.00	0.99	1.00	1.00	0.99	1.00
Flpb, ped/bikes	1.00	1.00	0.98	1.00	0.98	1.00	0.97	1.00	0.97	1.00	0.97	1.00
Fr	1.00	0.90	1.00	0.91	1.00	0.91	1.00	0.98	1.00	1.00	0.97	1.00
Flt Protected	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Satd. Flow (prot)	1761	1627	1726	1672	1721	3434	1719	3381				
Flt Permitted	0.63	1.00	0.66	1.00	0.46	1.00	0.46	1.00	0.54	1.00		
Satd. Flow (perm)	1174	1627	1192	1672	839	3434	983	3381				
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	98	52	107	60	76	122	80	299	48	33	410	103
RTOR Reduction (vph)	0	77	0	0	78	0	0	14	0	0	25	0
Lane Group Flow (vph)	98	82	0	60	120	0	80	333	0	33	488	0
Confl. Peds. (#/hr)	14		67	67		14	75		63	63		75
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	11.7	11.7		11.7	11.7		19.7	19.7		19.7	19.7	
Effective Green, g (s)	11.7	11.7		11.7	11.7		19.7	19.7		19.7	19.7	
Actuated g/C Ratio	0.28	0.28		0.28	0.28		0.48	0.48		0.48	0.48	
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3										

HCM Signalized Intersection Capacity Analysis
35: Kamakee St & Auahi St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑		↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	74	13	85	20	40	105	10	78	9	1	164	131
Future Volume (vph)	74	13	85	20	40	105	10	78	9	1	164	131
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.96		1.00	1.00	0.95	1.00	1.00	0.96	1.00	1.00	0.92
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.95	1.00	1.00	0.98	1.00	1.00
Fr	1.00	0.87		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1549		1770	1863	1506	1680	1863	1512	1729	1863	1452
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.65	1.00	1.00	0.70	1.00	1.00
Satd. Flow (perm)	1770	1549		1770	1863	1506	1148	1863	1512	1282	1863	1452
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	77	14	89	21	42	109	10	81	9	1	171	136
RTOR Reduction (vph)	0	61	0	0	0	82	0	0	5	0	0	83
Lane Group Flow (vph)	77	42	0	21	42	27	10	81	4	1	171	53
Confl. Peds. (#/hr)				51		36	63		25	25		63
Turn Type	Prot	NA		Prot	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases	7	4		3	8			2			6	
Permitted Phases						8	2		2	6		6
Actuated Green, G (s)	4.7	17.3		1.2	13.8	13.8	21.6	21.6	21.6	21.6	21.6	21.6
Effective Green, g (s)	4.7	17.3		1.2	13.8	13.8	21.6	21.6	21.6	21.6	21.6	21.6
Actuated g/C Ratio	0.09	0.31		0.02	0.25	0.25	0.39	0.39	0.39	0.39	0.39	0.39
Clearance Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	150	486		38	466	377	450	730	592	502	730	569
v/s Ratio Prot	c0.04	c0.03		0.01	0.02		0.04			c0.09		
v/s Ratio Perm						0.02	0.01		0.00	0.00		0.04
v/c Ratio	0.51	0.09		0.55	0.09	0.07	0.02	0.11	0.01	0.00	0.23	0.09
Uniform Delay, d1	24.1	13.3		26.7	15.8	15.8	10.3	10.6	10.2	10.2	11.2	10.6
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	2.9	0.1		16.2	0.1	0.1	0.0	0.1	0.0	0.0	0.2	0.1
Delay (s)	27.1	13.4		42.9	15.9	15.8	10.3	10.7	10.2	10.2	11.4	10.6
Level of Service	C	B		D	B	B	B	B	B	B	B	
Approach Delay (s)	19.2			19.2			10.6			11.1		
Approach LOS	B			B			B			B		
Intersection Summary												
HCM 2000 Control Delay	14.8											
HCM 2000 Level of Service												
HCM 2000 Volume to Capacity ratio	0.21											
Actuated Cycle Length (s)	55.1											
Sum of lost time (s)								15.0				
Intersection Capacity Utilization	57.9%											
ICU Level of Service												
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
41: Ala Moana Blvd & Ward Ave

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑		↑	↑↑		↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	188	1503	4	96	1526	188	3	22	34	266	77	162
Future Volume (vph)	188	1503	4	96	1526	188	3	22	34	266	77	162
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	0.95	1.00	0.91	0.91	0.91	0.91
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.84	1.00	0.93	1.00	0.95	0.95	0.95
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr	1.00	1.00		1.00	1.00	0.85	1.00	0.85	1.00	0.85	1.00	0.93
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.99	1.00	0.95	0.95	0.95	0.95
Satd. Flow (prot)	1770	5083		1770	5085	1335	3519	1466	1610	2933		
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.99	1.00	0.95	0.95	0.95	0.95
Satd. Flow (perm)	1770	5083		1770	5085	1335	3519	1466	1610	2933		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	198	1582	4	101	1606	198	3	23	36	280	81	171
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	198	1586	0	101	1606	103	0	26	36	182	350	0
Confl. Peds. (#/hr)				13			94			51		73
Turn Type	Prot	NA		Prot	NA	Perm	Split	NA	Perm	Split	NA	
Protected Phases	5	2		1	6					8		
Permitted Phases							6			8		
Actuated Green, G (s)	17.8	54.8		11.3	48.3	48.3		24.2	24.2</			

HCM Signalized Intersection Capacity Analysis
43: Ala Moana Park Dr/Kamakee St & Ala Moana Blvd

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑↓		↑	↑↑↓		↑	↑		↑	↑	↑
Traffic Volume (vph)	70	1673	84	12	1644	0	82	20	13	93	27	123
Future Volume (vph)	70	1673	84	12	1644	0	82	20	13	93	27	123
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.96	1.00	
Fr _t	1.00	0.99		1.00	1.00		1.00	0.94		1.00	0.85	
Fl _t Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.96	1.00	
Satd. Flow (prot)	1770	5036		1770	5085		1770	1712		1721	1583	
Fl _t Permitted	0.95	1.00		0.95	1.00		0.65	1.00		0.75	1.00	
Satd. Flow (perm)	1770	5036		1770	5085		1210	1712		1344	1583	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	72	1725	87	12	1695	0	85	21	13	96	28	127
RTOR Reduction (vph)	0	3	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	72	1809	0	12	1695	0	85	34	0	0	124	127
Confl. Peds. (#/hr)		18			27			55	55			
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases								6			6	
Actuated Green, G (s)	8.2	65.2		2.3	59.3		27.0	27.0		27.0	27.0	
Effective Green, g (s)	8.2	65.2		2.3	59.3		27.0	27.0		27.0	27.0	
Actuated g/C Ratio	0.07	0.60		0.02	0.54		0.25	0.25		0.25	0.25	
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	132	2998		37	2753		298	422		331	390	
v/s Ratio Prot	c0.04	c0.36		0.01	0.33			0.02				
v/s Ratio Perm							0.07			c0.09	0.08	
v/c Ratio	0.55	0.60		0.32	0.62		0.29	0.08		0.37	0.33	
Uniform Delay, d1	48.9	14.0		52.8	17.3		33.4	31.7		34.2	33.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.5	0.3		5.1	0.4		0.5	0.1		0.7	0.5	
Delay (s)	53.4	14.3		57.9	17.7		34.0	31.8		35.0	34.3	
Level of Service	D	B		E	B		C	C		C	C	
Approach Delay (s)	15.8			18.0			33.3			34.6		
Approach LOS	B			B			C			C		
Intersection Summary												
HCM 2000 Control Delay	18.5			HCM 2000 Level of Service	B							
HCM 2000 Volume to Capacity ratio	0.55											
Actuated Cycle Length (s)	109.5			Sum of lost time (s)			15.0					
Intersection Capacity Utilization	75.7%			ICU Level of Service	D							
Analysis Period (min)	15											
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
47: Kamakee St & Halekauwilia St

04/23/2025

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑↑	↑
Traffic Volume (veh/h)	64	85	68	179	183	90
Future Volume (Veh/h)	64	85	68	179	183	90
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	67	89	72	188	193	95
Pedestrians	99			30	74	
Lane Width (ft)	12.0			12.0	12.0	
Walking Speed (ft/s)	4.0			4.0	4.0	
Percent Blockage	8			3	6	
Right turn flare (veh)			3			
Median type				None	None	
Median storage veh)						
Upstream signal (ft)				334	243	
pX, platoon unblocked						
vC, conflicting volume	746	273	387			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	746	273	387			
tC, single (s)	*5.8	*5.9	4.1			
tC, 2 stage (s)						
tF (s)	*3.0	*3.0	2.2			
p0 queue free %	83	88	93			
cM capacity (veh/h)	389	767	1072			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	156	72	188	129	159	
Volume Left	67	72	0	0	0	
Volume Right	89	0	0	0	95	
cSH	906	1072	1700	1700	1700	
Volume to Capacity	0.17	0.07	0.11	0.08	0.09	
Queue Length 95th (ft)	15	5	0	0	0	
Control Delay (s)	12.8	8.6	0.0	0.0	0.0	
Lane LOS	B	A				
Approach Delay (s)	12.8	2.4		0.0		
Approach LOS	B					
Intersection Summary						
Average Delay					3.7	
Intersection Capacity Utilization				36.7%	ICU Level of Service	A
Analysis Period (min)				15		

* User Entered Value

HCM Signalized Intersection Capacity Analysis
15: Ward Ave & Queen St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	82	396	72	79	300	92	51	675	113	144	655	90
Future Volume (vph)	82	396	72	79	300	92	51	675	113	144	655	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95			
Frpb, ped/bikes	1.00	1.00	0.87	1.00	1.00	0.88	1.00	0.94	1.00	0.99		
Flpb, ped/bikes	0.94	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00		
Fr	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	1.00	0.98		
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1655	1863	1378	1676	1863	1386	1770	3265	1770	3438		
Flt Permitted	0.39	1.00	1.00	0.24	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	682	1863	1378	427	1863	1386	1770	3265	1770	3438		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	86	417	76	83	316	97	54	711	119	152	689	95
RTOR Reduction (vph)	0	0	54	0	0	69	0	14	0	0	11	0
Lane Group Flow (vph)	86	417	22	83	316	28	54	816	0	152	773	0
Confl. Peds. (#/hr)	136		142	142		136		294			52	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Prot	NA		
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8						
Actuated Green, G (s)	22.5	22.5	22.5	22.5	22.5	22.5	3.7	30.0		11.4	37.7	
Effective Green, g (s)	22.5	22.5	22.5	22.5	22.5	22.5	3.7	30.0		11.4	37.7	
Actuated g/C Ratio	0.29	0.29	0.29	0.29	0.29	0.05	0.38		0.14	0.48		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	194	531	392	121	531	395	83	1241		255	1642	
v/s Ratio Prot		c0.22			0.17		0.03	c0.25		c0.09	0.22	
v/s Ratio Perm	0.13		0.02	0.19		0.02						
v/c Ratio	0.44	0.79	0.06	0.69	0.60	0.07	0.65	0.66		0.60	0.47	
Uniform Delay, d1	23.1	26.0	20.5	25.1	24.3	20.6	37.0	20.2		31.6	13.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.6	7.5	0.1	14.9	1.8	0.1	16.8	1.3		3.7	0.2	
Delay (s)	24.7	33.5	20.5	40.0	26.1	20.6	53.7	21.5		35.3	14.1	
Level of Service	C	C	C	D	C	C	D	C		D	B	
Approach Delay (s)	30.5			27.3			23.4			17.5		
Approach LOS	C			C			C			B		
Intersection Summary												
HCM 2000 Control Delay	23.6				HCM 2000 Level of Service	C						
HCM 2000 Volume to Capacity ratio	0.69											
Actuated Cycle Length (s)	78.9				Sum of lost time (s)	15.0						
Intersection Capacity Utilization	77.4%				ICU Level of Service	D						
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
16: Kamakee St & Queen St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑	↑↑
Traffic Volume (vph)	103	458	104	270	417	36	23	158	106	58	140	70
Future Volume (vph)	103	458	104	270	417	36	23	158	106	58	140	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0			5.0		5.0		5.0		5.0		5.0
Lane Util. Factor	0.95			1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	0.96			1.00	1.00		1.00	0.97		1.00	0.62	
Flpb, ped/bikes	1.00			1.00	1.00		0.75	1.00		0.99	1.00	
Fr	0.98			1.00	0.99		1.00	0.94		1.00	0.85	
Flt Protected	0.99			0.95	1.00		0.95	1.00		0.99	1.00	
Satd. Flow (prot)	3294			1770	3485		1319	1706		1819	988	
Flt Permitted	0.78			0.95	1.00		0.55	1.00		0.67	1.00	
Satd. Flow (perm)	2602			1770	3485		758	1706		1245	988	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	107	477	108	281	434	38	24	165	110	60	146	73
RTOR Reduction (vph)	0	18	0	0	8	0	0	26	0	0	0	55
Lane Group Flow (vph)	0	674	0	281	464	0	24	249	0	0	206	18
Confl. Peds. (#/hr)	25		190			25	179		48	48		179
Turn Type	Perm	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases		2			1	6			8		4	4
Permitted Phases	2								8		4	4
Actuated Green, G (s)	26.5			16.6	48.1		19.0	19.0		19.0	19.0	
Effective Green, g (s)	26.5			16.6	48.1		19.0	19.0		19.0	19.0	
Actuated g/C Ratio	0.34			0.22	0.62		0.25	0.25		0.25	0.25	
Clearance Time (s)	5.0			5.0			5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0			3.0			3.0	3.0		3.0	3.0	
Lane Grp												

HCM Signalized Intersection Capacity Analysis
24: Ward Ave & Halekauwila St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	3	4	5	6	7	8	9	10	11	12
Traffic Volume (vph)	176	45	61	9	19	27	49	596	15	38	624	109
Future Volume (vph)	176	45	61	9	19	27	49	596	15	38	624	109
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95
Frpb, ped/bikes	1.00	0.93		1.00	0.93		1.00	1.00		1.00	0.97	
Flpb, ped/bikes	0.90	1.00		0.90	1.00		0.93	1.00		0.94	1.00	
Fr	1.00	0.91		1.00	0.91		1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1587	1578		1593	1581		1650	3511		1656	3339	
Flt Permitted	0.73	1.00		0.69	1.00		0.29	1.00		0.37	1.00	
Satd. Flow (perm)	1212	1578		1149	1581		512	3511		641	3339	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	183	47	64	9	20	28	51	621	16	40	650	114
RTOR Reduction (vph)	0	38	0	0	17	0	0	2	0	0	18	0
Lane Group Flow (vph)	183	73	0	9	31	0	51	635	0	40	746	0
Confl. Peds. (#/hr)	121		185	185		121	160		121	121		160
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	22.0	22.0		22.0	22.0		22.7	22.7		22.7	22.7	
Effective Green, g (s)	22.0	22.0		22.0	22.0		22.7	22.7		22.7	22.7	
Actuated g/C Ratio	0.40	0.40		0.40	0.40		0.41	0.41		0.41	0.41	
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	487	634		462	635		212	1457		266	1385	
v/s Ratio Prot		0.05			0.02			0.18			c0.22	
v/s Ratio Perm	c0.15			0.01			0.10			0.06		
v/c Ratio	0.38	0.11		0.02	0.05		0.24	0.44		0.15	0.54	
Uniform Delay, d1	11.5	10.2		9.9	10.0		10.4	11.4		10.0	12.1	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.1		0.0	0.0		0.6	0.2		0.3	0.4	
Delay (s)	12.0	10.3		9.9	10.0		11.0	11.6		10.2	12.5	
Level of Service	B	B		A	B		B	B		B	B	
Approach Delay (s)		11.4			10.0			11.6			12.4	
Approach LOS		B			A			B			B	
Intersection Summary												
HCM 2000 Control Delay		11.8		HCM 2000 Level of Service		B						
HCM 2000 Volume to Capacity ratio		0.46										
Actuated Cycle Length (s)		54.7		Sum of lost time (s)		10.0						
Intersection Capacity Utilization		59.3%		ICU Level of Service		B						
Analysis Period (min)		15										
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
34: Ward Ave & Pohukaina St/Auahi St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	3	4	5	6	7	8	9	10	11	12
Traffic Volume (vph)	44	99	75	102	91	168	114	392	124	149	364	127
Future Volume (vph)	44	99	75	102	91	168	114	392	124	149	364	127
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95
Frpb, ped/bikes	1.00	0.96		1.00	0.92		1.00	0.95		1.00	0.97	
Flpb, ped/bikes	0.92	1.00		0.94	1.00		0.97	1.00		0.91	1.00	
Fr	1.00	0.94		1.00	0.90		1.00	0.96		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1633	1681		1672	1542		1713	3231		1610	3296	
Flt Permitted	0.55	1.00		0.64	1.00		0.43	1.00		0.41	1.00	
Satd. Flow (perm)	938	1681		1122	1542		768	3231		692	3296	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	48	109	82	112	100	185	125	431	136	164	400	140
RTOR Reduction (vph)	0	28	0	0	68	0	0	41	0	0	48	0
Lane Group Flow (vph)	48	163	0	112	217	0	125	526	0	164	492	0
Confl. Peds. (#/hr)	200		122	122		200	66		194	194		96
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	24.0	24.0		24.0	24.0		25.1	25.1		25.1	25.1	
Effective Green, g (s)	24.0	24.0		24.0	24.0		25.1	25.1		25.1	25.1	
Actuated g/C Ratio	0.41	0.41		0.41	0.41		0.42	0.42		0.42	0.42	
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	380	682		455								

HCM Signalized Intersection Capacity Analysis

35: Kamakee St & Auahi St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑	↑	↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	102	146	82	21	109	192	42	81	1	31	240	173
Future Volume (vph)	102	146	82	21	109	192	42	81	1	31	240	173
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.94		1.00	1.00	0.81	1.00	1.00	0.77	1.00	1.00	0.71
Flpb, ped/bikes	1.00	1.00		1.00	1.00	0.81	1.00	1.00	0.81	1.00	1.00	1.00
Fr	1.00	0.95		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1659		1770	1863	1285	1435	1863	1220	1433	1863	1118
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.55	1.00	1.00	0.70	1.00	1.00
Satd. Flow (perm)	1770	1659		1770	1863	1285	834	1863	1220	1060	1863	1118
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	104	149	84	21	111	196	43	83	1	32	245	177
RTOR Reduction (vph)	0	25	0	0	0	130	0	0	1	0	0	114
Lane Group Flow (vph)	104	208	0	21	111	66	43	83	0	32	245	63
Confl. Peds. (#/hr)	161		147	147	161	177		141	141		177	
Turn Type	Prot	NA		Prot	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases	7	4		3	8			2		6		6
Permitted Phases					8	2		2	6			
Actuated Green, G (s)	7.1	30.0		1.7	24.6	24.6	26.0	26.0	26.0	26.0	26.0	26.0
Effective Green, g (s)	7.1	30.0		1.7	24.6	24.6	26.0	26.0	26.0	26.0	26.0	26.0
Actuated g/C Ratio	0.10	0.41		0.02	0.34	0.34	0.36	0.36	0.36	0.36	0.36	0.36
Clearance Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	172	684		41	630	434	298	666	436	379	666	399
v/s Ratio Prot	c0.06	c0.13		0.01	0.06			0.04		c0.13		
v/s Ratio Perm					0.05	0.05		0.00	0.03		0.06	
v/c Ratio	0.60	0.30		0.51	0.18	0.15	0.14	0.12	0.00	0.08	0.37	0.16
Uniform Delay, d1	31.5	14.3		35.1	16.9	16.8	15.8	15.7	15.0	15.5	17.3	15.9
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	5.9	0.3		10.4	0.1	0.2	0.2	0.1	0.0	0.1	0.3	0.2
Delay (s)	37.3	14.6		45.5	17.1	16.9	16.0	15.8	15.0	15.6	17.6	16.1
Level of Service	D	B		D	B	B	B	B	B	B	B	
Approach Delay (s)	21.6			18.8				15.9		16.9		
Approach LOS	C			B				B		B		
Intersection Summary												
HCM 2000 Control Delay	18.6				HCM 2000 Level of Service	B						
HCM 2000 Volume to Capacity ratio	0.38											
Actuated Cycle Length (s)	72.7				Sum of lost time (s)	15.0						
Intersection Capacity Utilization	66.3%				ICU Level of Service	C						
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis

41: Ala Moana Blvd & Ward Ave

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑		↑	↑↑	↑	↑	↑	↑	↑	↑↑	↑
Traffic Volume (vph)	237	2244	4	58	1512	268	4	90	93	311	65	245
Future Volume (vph)	237	2244	4	58	1512	268	4	90	93	311	65	245
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00		0.95	1.00	0.91	0.91	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	0.86	1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	1.00
Fr	1.00	1.00		1.00	1.00			1.00	1.00	0.85	1.00	0.91
Flt Protected	0.95	1.00		0.95	1.00			1.00	1.00	0.95	0.99	
Satd. Flow (prot)	1770	5083		1770	5085	1261		3532	1355	1610	2936	
Flt Permitted	0.95	1.00		0.95	1.00			1.00	1.00	0.95	0.99	
Satd. Flow (perm)	1770	5083		1770	5085	1261		3532	1355	1610	2936	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	249	2362	4	61	1592	282	4	95	98	327	68	258
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	249	2366	0	61	1592	148	0	99	98	226	427	0
Confl. Peds. (#/hr)				41				107		94		31
Turn Type	Prot	NA		Prot	NA	Perm	Perm	NA	Perm	Split	NA	
Protected Phases	5	2		1	6			8		8		4
Permitted Phases								6				
Actuated Green, G (s)	23.0	71.0		6.0	54.0	54.0		33.0	33.0	28.1	28.1	
Effective Green, g (s)	23.0	71.0		6.0	54.0	54.0		33.0	33.0	28.1	28.1	

HCM Signalized Intersection Capacity Analysis
43: Ala Moana Park Dr/Kamakee St & Ala Moana Blvd

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑↓		↑	↑↑↓		↑	↑		↑	↑	↑
Traffic Volume (vph)	89	2380	181	33	1608	0	56	34	42	97	59	180
Future Volume (vph)	89	2380	181	33	1608	0	56	34	42	97	59	180
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	0.94		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.95	1.00	
Fr _t	1.00	0.99		1.00	1.00		1.00	0.92		1.00	0.85	
Fl _t Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.97	1.00	
Satd. Flow (prot)	1770	4995		1770	5085		1770	1614		1716	1583	
Fl _t Permitted	0.95	1.00		0.95	1.00		0.52	1.00		0.76	1.00	
Satd. Flow (perm)	1770	4995		1770	5085		974	1614		1337	1583	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	92	2454	187	34	1658	0	58	35	43	100	61	186
RTOR Reduction (vph)	0	5	0	0	0	0	0	28	0	0	0	0
Lane Group Flow (vph)	92	2636	0	34	1658	0	58	50	0	0	161	186
Confl. Peds. (#/hr)		33			35			65	65			
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases						2			6		6	
Actuated Green, G (s)	12.5	98.3		6.0	91.8		33.3	33.3		33.3	33.3	
Effective Green, g (s)	12.5	98.3		6.0	91.8		33.3	33.3		33.3	33.3	
Actuated g/C Ratio	0.08	0.64		0.04	0.60		0.22	0.22		0.22	0.22	
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	144	3217		69	3058		212	352		291	345	
v/s Ratio Prot	c0.05	c0.53		0.02	0.33			0.03				
v/s Ratio Perm						0.06			c0.12	0.12		
v/c Ratio	0.64	0.82		0.49	0.54		0.27	0.14		0.55	0.54	
Uniform Delay, d ₁	67.9	20.5		71.8	18.0		49.6	48.1		53.0	52.9	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d ₂	9.0	1.7		5.4	0.2		0.7	0.2		2.3	1.6	
Delay (s)	76.8	22.2		77.3	18.2		50.3	48.3		55.3	54.5	
Level of Service	E	C		E	B		D	D		E	D	
Approach Delay (s)	24.0			19.4			49.2			54.9		
Approach LOS	C			B			D			D		
Intersection Summary												
HCM 2000 Control Delay	25.3			HCM 2000 Level of Service	C							
HCM 2000 Volume to Capacity ratio	0.76											
Actuated Cycle Length (s)	152.6			Sum of lost time (s)	15.0							
Intersection Capacity Utilization	91.5%			ICU Level of Service	F							
Analysis Period (min)	15											
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
47: Kamakee St & Halekauwilia St

04/23/2025

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑
Traffic Volume (veh/h)	72	69	101	239	388	115
Future Volume (Veh/h)	72	69	101	239	388	115
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	79	76	111	263	426	126
Pedestrians	143			12	71	
Lane Width (ft)	12.0			12.0	12.0	
Walking Speed (ft/s)	4.0			4.0	4.0	
Percent Blockage	12			1	6	
Right turn flare (veh)			3			
Median type				None	None	
Median storage veh						
Upstream signal (ft)				342	236	
pX, platoon unblocked						
vC, conflicting volume	1188	431	695			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1188	431	695			
tC, single (s)	*5.8	*5.9	4.1			
tC, 2 stage (s)						
tF (s)	*3.0	*3.0	2.2			
p0 queue free %	60	88	86			
cM capacity (veh/h)	199	615	790			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	155	111	263	284	268	
Volume Left	79	111	0	0	0	
Volume Right	76	0	0	0	126	
cSH	390	790	1700	1700	1700	
Volume to Capacity	0.40	0.14	0.15	0.17	0.16	
Queue Length 95th (ft)	47	12	0	0	0	
Control Delay (s)	23.4	10.3	0.0	0.0	0.0	
Lane LOS	C	B				
Approach Delay (s)	23.4	3.1		0.0		
Approach LOS	C					
Intersection Summary						
Average Delay					4.4	
Intersection Capacity Utilization				38.7%	ICU Level of Service	A
Analysis Period (min)				15		
* User Entered Value						

APPENDIX F
CAPACITY ANALYSIS CALCULATIONS
PROJECTED YEAR 2030 PEAK PERIOD TRAFFIC
ANALYSIS WITH PROJECT

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑	↑	↑↑	↑	↑	↑↑	↑↑
Traffic Volume (vph)	62	186	38	59	326	57	52	495	82	66	671	198
Future Volume (vph)	62	186	38	59	326	57	52	495	82	66	671	198
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	0.95
Frpb, ped/bikes	1.00	1.00	0.89	1.00	1.00	0.98	1.00	0.97	1.00	0.99	1.00	0.99
Flpb, ped/bikes	0.99	1.00	1.00	0.92	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	1.00	0.97	1.00	0.97
Fl _t Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Satd. Flow (prot)	1759	1863	1403	1631	1863	1548	1770	3377	1770	3377		
Fl _t Permitted	0.39	1.00	1.00	0.61	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	715	1863	1403	1050	1863	1548	1770	3377	1770	3377		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	65	196	40	62	343	60	55	521	86	69	706	208
RTOR Reduction (vph)	0	0	28	0	0	42	0	15	0	0	30	0
Lane Group Flow (vph)	65	196	12	62	343	18	55	592	0	69	884	0
Confl. Peds. (#/hr)	15		146	146		15			144		30	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Prot	NA		
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8						
Actuated Green, G (s)	19.8	19.8	19.8	19.8	19.8	19.8	3.4	25.8		6.0	28.4	
Effective Green, g (s)	19.8	19.8	19.8	19.8	19.8	19.8	3.4	25.8		6.0	28.4	
Actuated g/C Ratio	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.39		0.09	0.43	
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	212	553	417	312	553	460	90	1308		159	1440	
v/s Ratio Prot		0.11			c0.18		0.03	0.18		c0.04	c0.26	
v/s Ratio Perm	0.09		0.01	0.06		0.01						
v/c Ratio	0.31	0.35	0.03	0.20	0.62	0.04	0.61	0.45		0.43	0.61	
Uniform Delay, d ₁	18.1	18.4	16.6	17.5	20.2	16.6	31.0	15.2		28.7	14.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d ₂	0.8	0.4	0.0	0.3	2.2	0.0	11.7	0.2		1.9	0.8	
Delay (s)	18.9	18.8	16.6	17.8	22.3	16.7	42.6	15.4		30.6	15.6	
Level of Service	B	B	B	B	C	B	D	B		C	B	
Approach Delay (s)		18.5			21.0			17.7		16.7		
Approach LOS		B			C		B			B		
Intersection Summary												
HCM 2000 Control Delay				18.0						B		
HCM 2000 Volume to Capacity ratio				0.62								
Actuated Cycle Length (s)				66.6						15.0		
Intersection Capacity Utilization				72.1%						C		
Analysis Period (min)				15								
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
16: Kamakee St & Queen St

04/23/2025

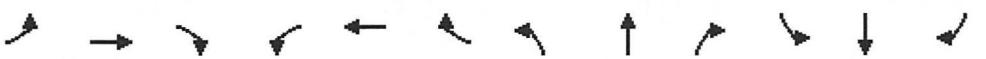
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Traffic Volume (vph)	28	219	39	122	276	21	25	119	114	30	111	73
Future Volume (vph)	28	219	39	122	276	21	25	119	114	30	111	73
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	0.95	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	0.99	1.00	1.00	1.00	0.99			1.00	0.99			
Flpb, ped/bikes	1.00	1.00	1.00	0.96	1.00			1.00	1.00			
Fr _t	0.98	1.00	0.99	1.00	0.93			1.00	0.85			
Fl _t Protected	1.00	0.95	1.00	0.95	1.00			0.99	1.00			
Satd. Flow (prot)	3420	1770	3496	1693	1713			1842	1482			
Fl _t Permitted	0.90	0.95	1.00	0.66	1.00			0.90	1.00			
Satd. Flow (perm)	3076	1770	3496	1183	1713			1673	1482			
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	29	228	41	127	288	22	26	124	119	31	116	76
RTOR Reduction (vph)	0	16	0	0	7	0	0	40	0	0	0	53
Lane Group Flow (vph)	0	282	0	127	303	0	26	203	0	0	147	23
Confl. Peds. (#/hr)	12	64			12	73		5	5		73	
Turn Type	Perm	NA	Prot	NA	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases	2	1	6		8		4		4			
Permitted Phases	2				8		4		4			
Actuated Green, G (s)	12.6	7.6	25.2		15.5	15.5		15.5	15.5			
Effective Green, g (s)	12.6	7.6	25.2		15.5	15.5		15.5	15.5			
Actuated g/C Ratio	0.25	0.15	0.50		0.31	0.31		0.31	0.31			
Clearance Time (s)	5.0	5.0	5.0		5.0	5.0		5.0	5.0			
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	764	265	1737		361	523		511	453			
v/s Ratio Prot		c0.07	0.09			c0.12						
v/s Ratio Perm		c0.09			0.02			0.09	0.02			
v/c Ratio	0.37	0.48	0.17		0.07	0.39		0.29	0.05			
Uniform Delay, d1	15.8	19.7	7.0		12.5	13.9		13.4	12.4			
Progression Factor	1.00	1.00	1.00		1.00	1.00		1.00	1.00			
Incremental Delay, d2	0.3	1.4	0.0		0.1	0.5		0.3	0.0			
Delay (s)	16.1	21.1	7.1		12.6	14.3		13.7	12.5			
Level of Service	B	C	A		B	B		B	B			
Approach Delay (s)	16.1		11.1			14.2		13.3				
Approach LOS	B		B		B		B		B		A	A
Intersection Summary												
HCM 2000 Control Delay	13.4				HCM 2000 Level of Service	B						
HCM 2000 Volume to Capacity ratio	0.40											
Actuated Cycle Length (s)	50.7				Sum of lost time (s)	15.0						
Intersection Capacity Utilization	72.2%				ICU Level of Service	C						
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
24: Ward Ave & Halekauwila St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Traffic Volume (vph)	85	17	14	16	41	66	44	461	22	44	512	192
Future Volume (vph)	85	17	14	16	41	66	44	461	22	44	512	192
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	0.95
Frpb, ped/bikes	1.00	0.98	1.00	0.97	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Fr _t	1.00	0.93			1.00	0.91		1.00	0.99		1.00	0.96
Fl _t Protected	0.95	1.00			0.95	1.00		0.95	1.00		0.95	1.00
Satd. Flow (prot)	1770	1702			1770	1638		1711	3504		1770	3292
Fl _t Permitted	0.69	1.00			0.74	1.00		0.36	1.00		0.47	1.00
Satd. Flow (perm)	1278	1702			1372	1638		654	3504		875	3292
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	88	18	14	16	42	68	45	475	23	45	528	198
RTOR Reduction (vph)	0	10	0	0	50	0	0	4	0	0	44	0
Lane Group Flow (vph)	88	22	0	16	60	0	45	494	0	45	682	0
Confl. Peds. (#/hr)	78				47	85		47			85	
Turn Type	Perm	NA	Prot	NA	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4				8			2		6	
Permitted Phases	4				8			2			6	
Actuated Green, G (s)	11.3	11.3			11.3	11.3		22.3	22.3		22.3	22.3
Effective Green, g (s)	11.3	11.3			11.3	11.3		22.3	22.3		22.3	22.3
Actuated g/C Ratio	0.26	0.26			0.26	0.26		0.51	0.51		0.51	0.51
Clearance Time (s)	5.0	5.0			5.0	5.0		5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0			3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	331	441			355	424		334	1792		447	1683
v/s Ratio Prot		0.01				0.04						

HCM Signalized Intersection Capacity Analysis
34: Ward Ave & Pohukaina St/Auahi St


04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑		↑	↑	↑	↑	↑	
Traffic Volume (vph)	96	50	103	58	73	117	77	301	46	32	403	103
Future Volume (vph)	96	50	103	58	73	117	77	301	46	32	403	103
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	0.95		
Frpb, ped/bikes	1.00	0.97		1.00	0.99		1.00	0.99	1.00	0.98		
Flpb, ped/bikes	1.00	1.00		0.98	1.00		0.97	1.00	0.97	1.00		
Fr	1.00	0.90		1.00	0.91		1.00	0.98	1.00	0.97		
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1761	1627		1726	1671		1722	3439	1720	3380		
Flt Permitted	0.63	1.00		0.66	1.00		0.46	1.00	0.54	1.00		
Satd. Flow (perm)	1174	1627		1192	1671		828	3439	970	3380		
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	100	52	107	60	76	122	80	314	48	33	420	107
RTOR Reduction (vph)	0	77	0	0	78	0	0	14	0	0	25	0
Lane Group Flow (vph)	100	82	0	60	120	0	80	348	0	33	502	0
Confl. Peds. (#/hr)	14		67	67		14	75		63	63		75
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	11.7	11.7		11.7	11.7		19.8	19.8	19.8	19.8		
Effective Green, g (s)	11.7	11.7		11.7	11.7		19.8	19.8	19.8	19.8		
Actuated g/C Ratio	0.28	0.28		0.28	0.28		0.48	0.48	0.48	0.48		
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	330	458		336	471		395	1640	462	1612		
v/s Ratio Prot		0.05			0.07			0.10		c0.15		
v/s Ratio Perm	c0.09			0.05			0.10		0.03			
v/c Ratio	0.30	0.18		0.18	0.25		0.20	0.21	0.07	0.31		
Uniform Delay, d1	11.7	11.3		11.3	11.5		6.3	6.3	5.9	6.7		
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.5	0.2		0.3	0.3		0.3	0.1	0.1	0.1		
Delay (s)	12.2	11.5		11.5	11.8		6.5	6.4	5.9	6.8		
Level of Service	B	B		B	B		A	A	A	A		
Approach Delay (s)	11.8			11.7			6.4		6.7			
Approach LOS	B			B			A		A			
Intersection Summary												
HCM 2000 Control Delay	8.3			HCM 2000 Level of Service	A							
HCM 2000 Volume to Capacity ratio	0.31											
Actuated Cycle Length (s)	41.5			Sum of lost time (s)	10.0							
Intersection Capacity Utilization	68.3%			ICU Level of Service	C							
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
35: Kamakee St & Auahi St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	↑	↑		↑	↑		↑	↑	↑	↑	↑		
Traffic Volume (vph)	74	13		85	20	40	105	10	78	9	1	187	131
Future Volume (vph)	74	13		85	20	40	105	10	78	9	1	187	131
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.96		1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.92
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.95	1.00	1.00	1.00
Fr	1.00	0.87		1.00	1.00		0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	1.00
Satd. Flow (prot)	1770	1549		1770	1863		1506	1683	1863	1512	1729	1863	1452
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.64	1.00	1.00	0.70
Satd. Flow (perm)	1770	1549		1770	1863		1506	1125	1863	1512	1282	1863	1452
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	77	14		89	21	42	109	10	81	9	1	195	136
RTOR Reduction (vph)	0	61	0	0	0	0	82	0	0	5	0	0	82
Lane Group Flow (vph)	77	42	0	21	42	27	10	81	4	1	195	54	
Confl. Peds. (#/hr)				51			36	63		25	25		63
Turn Type	Prot	NA		Prot	NA		Perm	Perm	NA	Perm	NA	Perm	
Protected Phases		7	4				3	8		2	2	6	6
Permitted Phases	7	4								2	2	6	6
Actuated Green, G (s)	4.6	17.1					1.2	13.7	13.7	21.9	21.9	21.9	21.9
Effective Green, g (s)	4.6	17.1			</td								

HCM Signalized Intersection Capacity Analysis
41: Ala Moana Blvd & Ward Ave

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1↑1	1	1	1↑1	1	1	1↑1	1	1	1↑1	1
Traffic Volume (vph)	192	1503	4	96	1526	198	3	22	34	266	77	171
Future Volume (vph)	192	1503	4	96	1526	198	3	22	34	266	77	171
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	0.91	1.00	0.91	1.00	0.95	1.00	0.91	0.91			
Frpb, ped/bikes	1.00	1.00	1.00	1.00	0.84	1.00	0.93	1.00	0.94			
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Fr	1.00	1.00	1.00	1.00	0.85	1.00	0.85	1.00	0.92			
Flt Protected	0.95	1.00	0.95	1.00	1.00	0.99	1.00	0.95	0.99			
Satd. Flow (prot)	1770	5083	1770	5085	1335	3519	1466	1610	2918			
Flt Permitted	0.95	1.00	0.95	1.00	1.00	0.99	1.00	0.95	0.99			
Satd. Flow (perm)	1770	5083	1770	5085	1335	3519	1466	1610	2918			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	202	1582	4	101	1606	208	3	23	36	280	81	180
RTOR Reduction (vph)	0	0	0	0	0	100	0	0	0	0	0	0
Lane Group Flow (vph)	202	1586	0	101	1606	108	0	26	36	188	353	0
Confl. Peds. (#/hr)			13			94			51		73	
Turn Type	Prot	NA		Prot	NA	Perm	Split	NA	Perm	Split	NA	
Protected Phases	5	2		1	6		8	8		4	4	
Permitted Phases					6			8				
Actuated Green, G (s)	17.8	54.8		11.3	48.3	48.3		24.2	24.2	26.0	26.0	
Effective Green, g (s)	17.8	54.8		11.3	48.3	48.3		24.2	24.2	26.0	26.0	
Actuated g/C Ratio	0.13	0.40		0.08	0.35	0.35		0.18	0.18	0.19	0.19	
Clearance Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0	5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	231	2043		146	1801	473		624	260	307	556	
v/s Ratio Prot	c0.11	0.31		0.06	c0.32		0.01		0.12	c0.12		
v/s Ratio Perm					0.08			c0.02				
v/c Ratio	0.87	0.78		0.69	0.89	0.23		0.04	0.14	0.61	0.63	
Uniform Delay, d1	58.2	35.4		60.8	41.5	30.9		46.4	47.3	50.5	50.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	28.6	1.9		13.2	6.0	0.2		0.0	0.2	3.6	2.4	
Delay (s)	86.7	37.3		74.0	47.6	31.2		46.5	47.5	54.1	53.2	
Level of Service	F	D		E	D	C		D	D	D	D	
Approach Delay (s)	42.9			47.2				47.1		53.5		
Approach LOS	D			D				D		D	C	
Intersection Summary												
HCM 2000 Control Delay	46.2				HCM 2000 Level of Service	D						
HCM 2000 Volume to Capacity ratio	0.67											
Actuated Cycle Length (s)	136.3				Sum of lost time (s)	20.0						
Intersection Capacity Utilization	89.1%				ICU Level of Service	E						
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
43: Ala Moana Park Dr/Kamakee St & Ala Moana Blvd

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1↑1	1	1	1↑1	1	1	1↑1	1	1	1↑1	1
Traffic Volume (vph)	70	1673	84	12	1654	0	82	20	13	116	27	123
Future Volume (vph)	70	1673	84	12	1654	0	82	20	13	116	27	123
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	0.91	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00
Fr	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	0.94	1.00	0.85	
Flt Protected	0.95	1.00	0.95	1.00	1.00	0.99	1.00	0.95	1.00	0.96	1.00	
Satd. Flow (prot)	1770	5036	1770	5085	1770	1712				1714	1583	
Flt Permitted	0.95	1.00	0.95	1.00	1.00	0.95	1.00	0.61	1.00	0.74	1.00	
Satd. Flow (perm)	1770	5036	1770	5085	1128	1712				1326	1583	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	72	1725	87	12	1705	0	85	21	13	120	28	127
RTOR Reduction (vph)	0	3	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	72	1809	0	12	1705	0	85	34	0	0	148	127
Confl. Peds. (#/hr)			18			27			55	55		
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4		3	8		2			6		6
Permitted Phases							2					
Actuated Green, G (s)	8.2	65.0		2.3	59.1		27.4	27.4				
Effective Green, g (s)	8.											

HCM Unsigned Intersection Capacity Analysis
47: Kamakee St & Halekauwilia St

04/23/2025

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	↑	↑	↑	↑↑		
Traffic Volume (veh/h)	87	104	68	179	183	100
Future Volume (Veh/h)	87	104	68	179	183	100
Sign Control	Stop		Free	Free		
Grade	0%		0%	0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	92	109	72	188	193	105
Pedestrians	99			30	74	
Lane Width (ft)	12.0			12.0	12.0	
Walking Speed (ft/s)	4.0			4.0	4.0	
Percent Blockage	8			3	6	
Right turn flare (veh)		3				
Median type			None	None		
Median storage veh)						
Upstream signal (ft)			334	243		
pX, platoon unblocked						
vC, conflicting volume	750	278	397			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	750	278	397			
tC, single (s)	*5.8	*5.9	4.1			
tC, 2 stage (s)						
tF (s)	*3.0	*3.0	2.2			
p0 queue free %	76	86	93			
cM capacity (veh/h)	387	763	1063			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	201	72	188	129	169	
Volume Left	92	72	0	0	0	
Volume Right	109	0	0	0	105	
cSH	845	1063	1700	1700	1700	
Volume to Capacity	0.24	0.07	0.11	0.08	0.10	
Queue Length 95th (ft)	23	5	0	0	0	
Control Delay (s)	13.6	8.6	0.0	0.0	0.0	
Lane LOS	B	A				
Approach Delay (s)	13.6	2.4		0.0		
Approach LOS	B					
Intersection Summary						
Average Delay		4.4				
Intersection Capacity Utilization		37.2%	ICU Level of Service	A		
Analysis Period (min)		15				
* User Entered Value						

HCM Signalized Intersection Capacity Analysis
15: Ward Ave & Queen St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑	↑	↑↑				
Traffic Volume (vph)	82	396	75	79	300	92	53	697	113	144	695	90
Future Volume (vph)	82	396	75	79	300	92	53	697	113	144	695	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	0.95
Frpb, ped/bikes	1.00	1.00	0.87	1.00	1.00	0.88	1.00	0.94	1.00	0.99	1.00	0.99
Flpb, ped/bikes	0.94	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	1.00	0.98	1.00	0.98
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Satd. Flow (prot)	1655	1863	1378	1676	1863	1385	1770	3272	1770	3443		
Flt Permitted	0.39	1.00	1.00	0.24	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	682	1863	1378	427	1863	1385	1770	3272	1770	3443		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	86	417	79	83	316	97	56	734	119	152	732	95
RTOR Reduction (vph)	0	0	56	0	0	69	0	14	0	0	10	0
Lane Group Flow (vph)	86	417	23	83	316	28	56	839	0	152	817	0
Confl. Peds. (#/hr)	136		142	142		136				294		52
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Prot	NA		
Protected Phases		4			8		5	2		1	6	
Permitted Phases		4		4	8							
Actuated Green, G (s)	22.6	22.6	22.6	22.6	22.6	22.6	3.7	30.1	11.4	37.8		
Effective Green, g (s)	22.6	22.6	22.6	22.6	22.6	22.6	3.7	30.1	11.4	37.8		
Actuated g/C Ratio	0.29	0.29	0.29	0.29	0.29	0.29	0.05	0.38	0.14	0.48		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	194	532	393	122	532	395	82	1245	255	1645		
v/s Ratio Prot		c0.22			0.17		0.03	c0.26	c0.09	c0.24		
v/s Ratio Perm		0.13		0.02	0.19		0.02					
v/c Ratio		0.44	0.78	0.06	0.68	0.59	0.07	0.68	0.67	0.60	0.50	
Uniform Delay, d1		23.1	26.0	20.5	25.0	24.3	20.6	37.1	20.4	31.7	14.1	
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		1.6	7.4	0.1	14.5	1.8	0.1	20.9	1.5	3.7	0.2	
Delay (s)		24.7	33.4	20.6	39.5	26.1	20.7	58.1	21.9	35.4	14.4	
Level of Service		C	C	C	D	C	C	E	C	D	B	
Approach Delay (s)		30.4			27.3			24.1		17.6		
Approach LOS		C			C		C		C		B	
Intersection Summary												
HCM 2000 Control Delay					23.7							
HCM 2000 Volume to Capacity ratio					0.70							
Actuated Cycle Length (s)					79.1							
Sum of lost time (s)											15.0	
Intersection Capacity Utilization					77.4%							
Analysis Period (min)					15							
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
16: Kamakee St & Queen St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑↑	↑↑		↑↑	↑↑		↑↑	↑↑		↑↑	↑↑	
Traffic Volume (vph)	103	458	104	293	417	36	23	158	121	58	140	70
Future Volume (vph)	103	458	104	293	417	36	23	158	121	58	140	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	0.95	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	0.96	1.00	1.00	1.00	0.97			1.00	0.62			
Flpb, ped/bikes	1.00	1.00	1.00	0.74	1.00			0.99	1.00			
Fr _t	0.98	1.00	0.99	1.00	0.94			1.00	0.85			
Flt Protected	0.99	0.95	1.00	0.95	1.00			0.99	1.00			
Satd. Flow (prot)	3292	1770	3485	1312	1693			1820	978			
Flt Permitted	0.78	0.95	1.00	0.54	1.00			0.64	1.00			
Satd. Flow (perm)	2597	1770	3485	749	1693			1173	978			
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	107	477	108	305	434	38	24	165	126	60	146	73
RTOR Reduction (vph)	0	17	0	0	7	0	0	30	0	0	0	55
Lane Group Flow (vph)	0	675	0	305	465	0	24	261	0	0	206	18
Confl. Peds. (#/hr)	25		190		25	179		48	48		179	
Turn Type	Perm	NA		Prot	NA		Perm	NA		Perm		
Protected Phases	2			1	6			8		4		
Permitted Phases	2					8			4		4	
Actuated Green, G (s)	26.4	17.8	49.2		19.3	19.3			19.3	19.3		
Effective Green, g (s)	26.4	17.8	49.2		19.3	19.3			19.3	19.3		
Actuated g/C Ratio	0.34	0.23	0.63		0.25	0.25			0.25	0.25		
Clearance Time (s)	5.0	5.0	5.0		5.0	5.0			5.0	5.0		
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0			3.0	3.0		
Lane Grp Cap (vph)	873	401	2184		184	416			288	240		
v/s Ratio Prot		c0.17	0.13			0.15						
v/s Ratio Perm		c0.26				0.03			c0.18	0.02		
v/c Ratio	0.77	0.76	0.21		0.13	0.63			0.72	0.07		
Uniform Delay, d1	23.4	28.4	6.3		23.1	26.4			27.1	22.7		
Progression Factor	1.00	1.00	1.00		1.00	1.00			1.00	1.00		
Incremental Delay, d2	4.3	8.3	0.0		0.3	2.9			8.2	0.1		
Delay (s)	27.7	36.6	6.4		23.4	29.3			35.3	22.9		
Level of Service	C		A		C	C			D	C		
Approach Delay (s)	27.7		18.2			28.9			32.0			
Approach LOS	C		B		C				C			
Intersection Summary												
HCM 2000 Control Delay	24.9			HCM 2000 Level of Service		C						
HCM 2000 Volume to Capacity ratio	0.75											
Actuated Cycle Length (s)	78.5			Sum of lost time (s)		15.0						
Intersection Capacity Utilization	86.4%			ICU Level of Service		E						
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
24: Ward Ave & Halekauwila St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑↑	↑↑		↑↑	↑↑		↑↑	↑↑		↑↑	↑↑	
Traffic Volume (vph)	176	45	61	18	36	51	49	596	48	81	624	109
Future Volume (vph)	176	45	61	18	36	51	49	596	48	81	624	109
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	0.95	1.00	0.95
Frpb, ped/bikes	1.00	0.93		1.00	0.93		1.00	0.99	1.00	0.97	1.00	0.97
Flpb, ped/bikes	0.90	1.00		0.90	1.00		0.93	1.00		0.94	1.00	
Fr _t	1.00	0.91		1.00	0.91		1.00	0.99	1.00	0.98	1.00	0.98
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1599	1579	1594	1582	1651	3457	1663	3340	1663	3340	1663	3340
Flt Permitted	0.70	1.00		0.69	1.00		0.29	1.00		0.35	1.00	
Satd. Flow (perm)	1175	1579	1150	1582	511	3457	608	3340	608	3340	608	3340
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	183	47	64	19	38	53	51	621	50	84	650	114
RTOR Reduction (vph)	0	38	0	0	32	0	0	8	0	0	18	0
Lane Group Flow (vph)	183	73	0	19	59	0	51	663	0	84	746	0
Confl. Peds. (#/hr)	121		185	185	121	160		121	121		160	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2		6		
Permitted Phases	4					8			2		6	
Actuated Green, G (s)	21.9	21.9		21.9	21.9		22.3	22.3		22.3	22.3	
Effective Green, g (s)	21.9	21.9		21.9	21.9		22.3	22.3		22.3	22.3	
Actuated g/C Ratio	0.40	0.40		0.40	0.40		0.41	0.41		0.41	0.41	
Clearance Time (s)	5.0</											

HCM Signalized Intersection Capacity Analysis
34: Ward Ave & Pohukaina St/Auahi St

04/23/2025

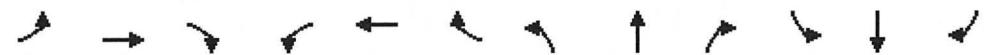
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑		↑	↑	↑	↑	↑	
Traffic Volume (vph)	48	99	75	102	91	168	114	423	124	149	370	130
Future Volume (vph)	48	99	75	102	91	168	114	423	124	149	370	130
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	0.95		
Frpb, ped/bikes	1.00	0.96		1.00	0.92		1.00	0.95	1.00	0.97		
Flpb, ped/bikes	0.92	1.00		0.94	1.00		0.97	1.00	0.91	1.00		
Fr	1.00	0.94		1.00	0.90		1.00	0.97	1.00	0.96		
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1631	1680		1670	1540		1713	3246	1617	3295		
Flt Permitted	0.54	1.00		0.64	1.00		0.42	1.00	0.39	1.00		
Satd. Flow (perm)	932	1680		1121	1540		757	3246	659	3295		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	
Adj. Flow (vph)	53	109	82	112	100	185	125	465	136	164	407	143
RTOR Reduction (vph)	0	28	0	0	69	0	0	37	0	0	48	0
Lane Group Flow (vph)	53	163	0	112	216	0	125	564	0	164	502	0
Confl. Peds. (#/hr)	200		122	122		200	66		194	194		96
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	24.1	24.1		24.1	24.1		25.8	25.8		25.8	25.8	
Effective Green, g (s)	24.1	24.1		24.1	24.1		25.8	25.8		25.8	25.8	
Actuated g/C Ratio	0.40	0.40		0.40	0.40		0.43	0.43		0.43	0.43	
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	374	675		451	619		326	1398		283	1419	
v/s Ratio Prot		0.10			c0.14			0.17			0.15	
v/s Ratio Perm	0.06			0.10			0.17			c0.25		
v/c Ratio	0.14	0.24		0.25	0.35		0.38	0.40		0.58	0.35	
Uniform Delay, d1	11.3	11.8		11.9	12.4		11.6	11.7		12.9	11.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.2		0.3	0.3		0.8	0.2		2.9	0.2	
Delay (s)	11.5	12.0		12.2	12.8		12.4	11.9		15.8	11.6	
Level of Service	B	B		B	B		B	B		B	B	
Approach Delay (s)		11.9			12.6			12.0			12.6	
Approach LOS		B			B			B			B	
Intersection Summary												
HCM 2000 Control Delay	12.3			HCM 2000 Level of Service			B					
HCM 2000 Volume to Capacity ratio	0.47											
Actuated Cycle Length (s)	59.9			Sum of lost time (s)			10.0					
Intersection Capacity Utilization	78.7%			ICU Level of Service			D					
Analysis Period (min)	15											
c Critical Lane Group												


HCM Signalized Intersection Capacity Analysis
35: Kamakee St & Auahi St

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑		↑	↑		↑	↑	
Traffic Volume (vph)	102	146	82	21	109	192	42	81	1	31	255	173
Future Volume (vph)	102	146	82	21	109	192	42	81	1	31	255	173
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.94		1.00	1.00		0.81	1.00	1.00	0.77	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.82	1.00	1.00	0.81	1.00
Fr	1.00	0.95		1.00	1.00		0.85	1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00		0.95	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1770	1659		1770	1863		1284	1445	1863	1219	1432	1863
Flt Permitted	0.95	1.00		0.95	1.00		1.00	0.53	1.00	1.00	0.70	1.00
Satd. Flow (perm)	1770	1659		1770	1863		1284	809	1863	1219	1060	1863
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	104	149	84	21	111	196	43	83	1	32	260	177
RTOR Reduction (vph)	0	25	0	0	0	130	0	0	1	0	0	114
Lane Group Flow (vph)	104	208	0	21	111	66	43	83	0	32	260	63
Confl. Peds. (#/hr)	161		147	147		161	177		141	141		177
Turn Type	Prot	NA		Prot	NA		Perm	Perm	NA	Perm	NA	Perm
Protected Phases		7	4				3	8		2	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	7.1	30.1			1.7	24.7		24.7	26.1	26.1	26.1	26.1
Effective Green, g (s)	7.1	30.1			1.7	24.7		24.7	26.1	26.1	26.1	26.1
Actuated g/C Ratio	0.10	0.41			0.02	0.34		0.34	0.36	0.36	0.36	0.36
Clearance Time (s)	5.0	5.0			5.0	5.0		5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	172											

HCM Signalized Intersection Capacity Analysis
41: Ala Moana Blvd & Ward Ave


04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1↑1↓		1	1↑1↓	1	1	1↑1↓	1	1↑1↓	1	1
Traffic Volume (vph)	245	2244	4	58	1512	291	4	90	93	311	65	251
Future Volume (vph)	245	2244	4	58	1512	291	4	90	93	311	65	251
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	0.95	1.00	0.91	0.91		
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.80	1.00	0.86	1.00	0.96		
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Fr	1.00	1.00		1.00	1.00	0.85	1.00	0.85	1.00	0.91		
Flt Protected	0.95	1.00		0.95	1.00	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (prot)	1770	5083		1770	5085	1261		3532	1355	1610	2931	
Flt Permitted	0.95	1.00		0.95	1.00	1.00		1.00	1.00	0.95	0.99	
Satd. Flow (perm)	1770	5083		1770	5085	1261		3532	1355	1610	2931	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	258	2362	4	61	1592	306	4	95	98	327	68	264
RTOR Reduction (vph)	0	0	0	0	0	146	0	0	0	0	0	0
Lane Group Flow (vph)	258	2366	0	61	1592	160	0	99	98	229	430	0
Confl. Peds. (#/hr)			41			107			94		31	
Turn Type	Prot	NA		Prot	NA	Perm	Split	NA	Perm	Split	NA	
Protected Phases	5	2		1	6		8	8		4	4	
Permitted Phases					6				8			
Actuated Green, G (s)	24.0	71.0		6.0	53.0	53.0		33.0	33.0	28.1	28.1	
Effective Green, g (s)	24.0	71.0		6.0	53.0	53.0		33.0	33.0	28.1	28.1	
Actuated g/C Ratio	0.15	0.45		0.04	0.34	0.34		0.21	0.21	0.18	0.18	
Clearance Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0	5.0	5.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	268	2282		67	1704	422		737	282	286	520	
v/s Ratio Prot	c0.15	c0.47		0.03	0.31		0.03		0.14	c0.15		
v/s Ratio Perm					0.13				c0.07			
v/c Ratio	0.96	1.04		0.91	0.93	0.38		0.13	0.35	0.80	1.03dr	
Uniform Delay, d1	66.6	43.5		75.8	50.9	40.0		50.9	53.4	62.3	62.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	44.5	29.2		79.0	10.0	0.6		0.1	0.7	14.8	10.4	
Delay (s)	111.1	72.7		154.8	60.8	40.6		51.0	54.1	77.1	73.0	
Level of Service	F	E		F	E	D		D	D	E	E	
Approach Delay (s)		76.5			60.6			52.6		74.4		
Approach LOS		E			E			D		E		
Intersection Summary												
HCM 2000 Control Delay	69.7											
HCM 2000 Level of Service												
HCM 2000 Volume to Capacity ratio	0.84											
Actuated Cycle Length (s)	158.1											
Sum of lost time (s)								20.0				
Intersection Capacity Utilization	103.7%											
ICU Level of Service												
Analysis Period (min)	15											
dr Defacto Right Lane. Recode with 1 though lane as a right lane.												
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
43: Ala Moana Park Dr/Kamakee St & Ala Moana Blvd

04/23/2025

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1↑1↓		1	1↑1↓	1	1	1↑1↓	1	1↑1↓	1	1
Traffic Volume (vph)	89	2380	181	33	1631	0	56	34	42	112	59	180
Future Volume (vph)	89	2380	181	33	1631	0	56	34	42	112	59	180
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00
Fr	1.00	0.99		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97
Satd. Flow (prot)	1770	4995		1770	5085		1770	1615		1709	1583	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.75
Satd. Flow (perm)	1770	4995		1770	5085		927	1615		1321	1583	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	92	2454	187	34	1681	0	58	35	43	115	61	186
RTOR Reduction (vph)	0	5	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	92	2636	0	34	1681	0	58	49	0	0	176	186
Confl. Peds. (#/hr)			33			35			65	65		
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4	</									

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑↑	↑
Traffic Volume (veh/h)	87	84	101	239	388	138
Future Volume (Veh/h)	87	84	101	239	388	138
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	96	92	111	263	426	152
Pedestrians	143			12	71	
Lane Width (ft)	12.0			12.0	12.0	
Walking Speed (ft/s)	4.0			4.0	4.0	
Percent Blockage	12			1	6	
Right turn flare (veh)		3				
Median type			None	None		
Median storage veh						
Upstream signal (ft)			342	236		
pX, platoon unblocked						
vC, conflicting volume	1201	444	721			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1201	444	721			
tC, single (s)	*5.8	*5.9	4.1			
tC, 2 stage (s)						
tF (s)	*3.0	*3.0	2.2			
p0 queue free %	51	85	86			
cM capacity (veh/h)	195	605	772			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	188	111	263	284	294	
Volume Left	96	111	0	0	0	
Volume Right	92	0	0	0	152	
cSH	381	772	1700	1700	1700	
Volume to Capacity	0.49	0.14	0.15	0.17	0.17	
Queue Length 95th (ft)	66	13	0	0	0	
Control Delay (s)	26.4	10.4	0.0	0.0	0.0	
Lane LOS	D	B				
Approach Delay (s)	26.4	3.1		0.0		
Approach LOS	D					
Intersection Summary						
Average Delay		5.4				
Intersection Capacity Utilization		40.2%		ICU Level of Service		A
Analysis Period (min)		15				

* User Entered Value

APPENDIX G

TRANSIT LOS CALCULATIONS

Multimodal Transit LOS Calculation															
From	To	Inputs	Transit Operations Information												
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ala Moana Blvd EB	Ala Moana Blvd WB	Ala Moana Blvd EB	Kapiolani Blvd WB	Kapiolani Blvd EB	Kapiolani Blvd WB	Auahi St EB	Auahi St WB	Kamakee St	Auahi St WB	Ward Ave SB	Queen St EB	Queen St SB	Kamakee St	Kamakee St	
Ward Ave Queen St	Ward Ave Queen St	Ward Ave Kamakee St	Ward Ave Kamakee St	Ward Ave Kamakee St	Ward Ave Kamakee St	Pikoi St	Pikoi St	Kamakee St	Kamakee St	Kapiolani Blvd	Kapoli Blvd	Kapoli Blvd	Auahi St	SB	
TRANSITABILITY DATA															
P_{sh}	Percent stops in segment with a shelter	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
P_{be}	Percent stops in segment with a bench	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
PEDESTRIAN ENVIRONMENT DATA															
W_A	Sidewalk width (Enter 0 if no sidewalk)	8.0	8.0	9.0	9.0	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	
W_{buf}	Buffer width from sidewalk to street (ft)	0.0	0.0	7.0	7.0	7.0	7.0	7.0	7.0	0.0	0.0	0.0	0.0	0.0	
t_{av}	Does a continuous barrier exist between the street and sidewalk?	No	No	Yes	Yes	No	No	No	No	No	No	No	No	No	
t_{av}	Is the street divided?	Yes	No	No	No	No	No	No	No	No	No	No	No	No	
A_{ps}	Are parking spaces striped?	No	No	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
P_{os}	Proportion of on-street parking occupied	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
W_{bl}	Bicycle lane width (ft)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
W_{sp}	Shoulder/parking lane width (ft)	10.0	10.0	12.0	12.0	12.0	12.0	12.0	12.0	10.0	10.0	10.0	10.0	10.0	
W_{os}	Outside travel lane (doestot sidewalk) width (ft)	600	600	400	400	400	400	400	400	300	300	400	200	200	
V_{av}	Outside lane demand flow rate at midsegment (veh/h)	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	25.0	25.0	
S_{av}	Average vehicle running speed, including intersection delay (mi/h)														
Calculations															
f_{tr}	Transit frequency (bus/h)	30	25	40	40	12	24	2	2	2	2	2	2	2	
f_h	Headway factor	3.81	3.78	3.86	3.86	3.55	3.77	1.95	1.95	1.95	1.95	1.95	1.95	1.95	
f_{pl}	Passenger load weighting factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
T_{av}	Perceived amenity/time rate (min/mi)	0.2	0.2	0.4	0.4	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	
T_{av}	Excess wait time rate due to late arrivals (min/mi)	0.6	0.3	1.2	0.7	1.5	0.9	1.8	2.1	1.9	2.1	1.7	0.8	0.8	
T_{tr}	Perceived travel time rate (min/mi)	5.3	6.0	6.9	5.7	7.7	7.5	8.7	7.1	9.0	8.5	10.8	6.5	6.5	
T_{tr}	Base travel time rate (min/mi)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
f_{tt}	Perceived travel time factor	0.89	0.85	0.81	0.87	0.78	0.78	0.74	0.80	0.73	0.75	0.69	0.83	0.83	
S_{tr}	Transit wait-time score	3.41	3.23	3.11	3.36	2.76	2.96	1.56	1.45	1.34	1.43	1.46	1.93	1.61	
f_{mv}	Motorized vehicle speed adjustment factor	0.49	0.49	0.49	0.49	0.49	0.49	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
f_{mv}	Motorized vehicle volume adjustment factor	1.37	1.37	0.91	0.91	0.91	0.91	0.34	0.68	0.68	0.91	0.91	0.46	0.46	
W_{sa}	Adjusted variable sidewalk width (ft)	8.0	8.0	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
f_{sw}	Sidewalk width coefficient	3.60	3.60	3.30	3.30	3.30	3.30	3.60	3.60	3.60	3.60	3.60	3.60	3.60	
f_b	Buffer area coefficient	1.00	1.00	5.37	5.37	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
W_t	Total width of outside lane, bike lane, and parking lane/sidewalk (ft)	10.0	10.0	12.0	12.0	10.0	10.0	15.0	17.0	17.0	17.0	17.0	10.0	10.0	
W_t	Effective total width as a function of traffic volume (ft)	10.0	10.0	12.0	12.0	10.0	10.0	18.8	18.8	18.8	18.8	18.8	10.0	10.0	
W_t	Effective width of combined bike lane and shoulder (ft)	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	5.0	5.0	0.0	0.0	
f_{cs}	Cross-section adjustment factor	-4.49	-4.49	-5.34	-5.34	-5.37	-5.34	-4.80	-4.80	-4.79	-4.79	-5.57	-4.49	-4.49	
f_p	Pedestrian environment score	3.41	3.41	2.11	2.11	2.08	2.11	1.83	1.83	2.19	2.19	1.63	2.26	2.26	
I_t	Transit LOS score	C	C	B	B	B	B	A	A	B	B	A	B	B	
Output															
Transit LOS															
		A	A	A	B	A	D	D	E	D	C	D	D	D	

From: Pascua, Kaily A
To: Jennylyn Tapat Morrill
Cc:
Subject: Andrade, Kamakaokalani M
Date: Ward Village Block N-West TIAR Update
Wednesday, July 23, 2025 9:09:52 AM

Hi Jenny,

The TIAR has been accepted.

Kaily Pascua
City and County of Honolulu
Traffic Review Branch
(808)768-8077

Appendix E

INFRASTRUCTURE AVAILABILITY REPORT

Block N West
Infrastructure Availability Report

Honolulu, Oahu, Hawaii
Tax Map Key: 2-3-002:116

Prepared for
Victoria Ward, Ltd.
1240 Ala Moana Boulevard, Suite 200
Honolulu, HI 96814

Prepared by
Wilson Okamoto Corporation
1907 South Beretania Street, Suite 400
Honolulu, HI 96826

Revised September 2025
May 2023

TABLE OF CONTENTS

	<u>Page</u>
1 INTRODUCTION	1-1
1.1 Purpose	1-1
1.2 Proposed Project Location and Description	1-1
1.3 Existing Topography	1-1
1.4 Flood Hazard	1-1
1.5 Sea Level Rise	1-2
1.6 Climate Resilient Development	1-2
2 UTILITIES	2-1
2.1 Sanitary Sewer System	2-1
2.2 Water System	2-3
2.2.1 Potable Water	2-3
2.2.2 Fire Protection	2-3
2.3 Site Drainage and Low Impact Development	2-5
2.4 Electrical Power Facilities	2-7
2.5 Telephone System	2-7
2.6 Cable Television System	2-7
2.7 Gas System	2-7
3 TRAFFIC	3-1
3.1 Traffic Impact Analysis Report	3-1

LIST OF FIGURES

Figure 1-1	Vicinity Map	1-3
Figure 1-2	Location Map	1-4
Figure 1-3	Topographic Survey	1-5
Figure 1-4	Flood Hazard	1-6
Figure 1-5	Sea Level Rise	1-7
Figure 2-1	Existing Sewer System	2-2
Figure 2-2	Existing Water System	2-4
Figure 2-3	Existing Drainage System	2-6

LIST OF APPENDICES

APPENDIX A

- City and County of Honolulu - Department of Planning and Permitting, Wastewater Branch: Sewer Connection Application Letter and Approved Sewer Connection Application
- Honolulu Board of Water Supply: Request Letter and Adequacy Letter
- Honolulu Fire Department: HFD Email Correspondence
- City and County of Honolulu – Department of Planning and Permitting, Civil Engineering Branch: LID Correspondence with Keith Miyashiro
- Hawaiian Electric Company: Will Serve Letter
- Hawaiian Telcom: Will Serve Letter
- Spectrum (Formerly Oceanic and Charter Communications): Will Serve Letter
- Hawaii Gas – Email Correspondence
- Traffic Review Branch: Email Correspondence

1 INTRODUCTION

1.1 Purpose

The purpose of this report is to confirm the availability of infrastructure utilities to accommodate the demands proposed by the project. After a revision to the proposed programming of the building in 2025, the report was revised to include the updated feedback from infrastructure companies. The utilities researched include water, sanitary sewer, drainage, electrical, communication, cable, and gas.

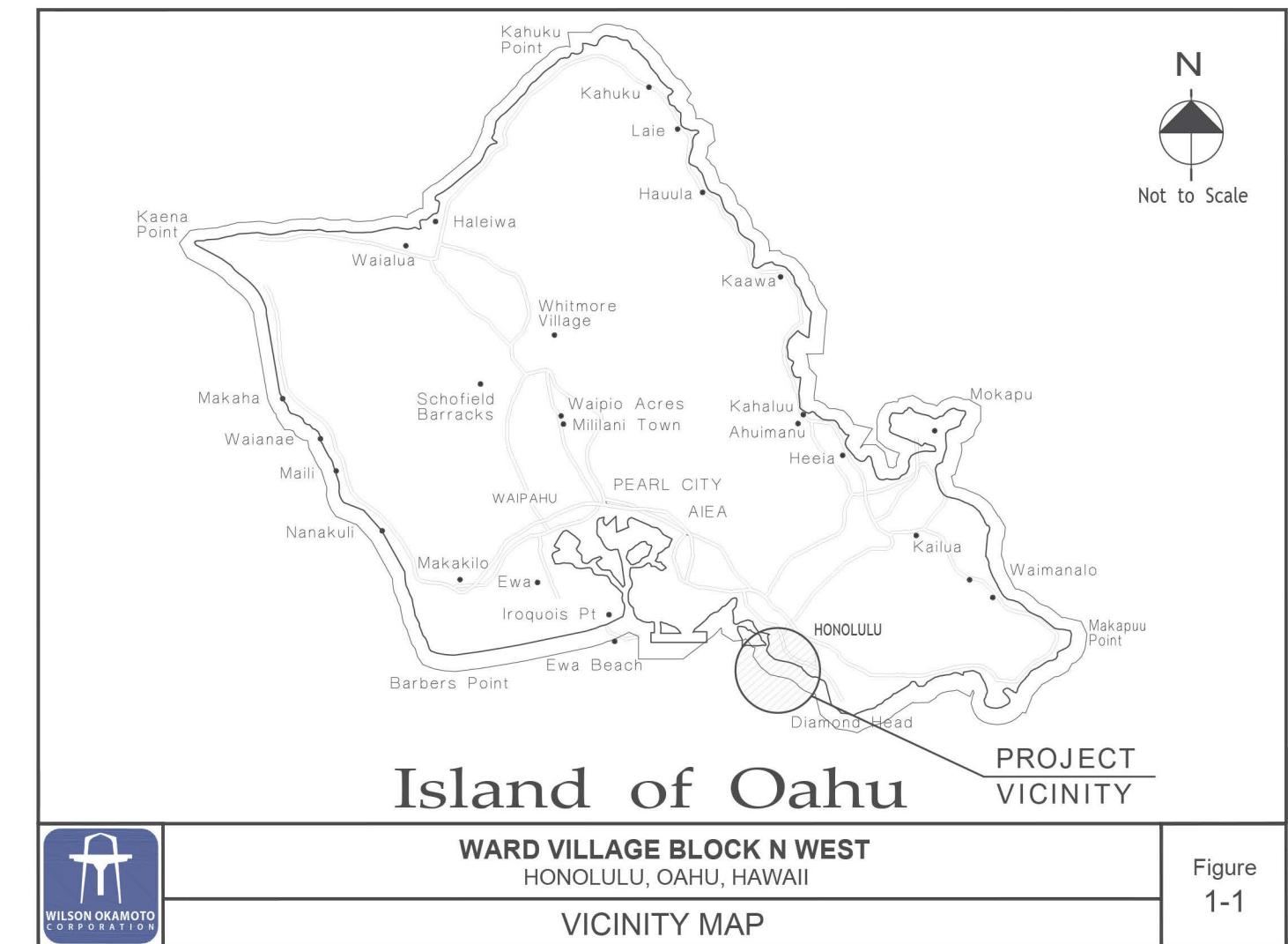
1.2 Proposed Project Location and Description

Victoria Ward Limited VWL proposes the development of a 465-unit high-rise condominium tower and commercial building on the island of Oahu see Figures 1-1 and 1-2). The project site is approximately 1.69 acres, generally located at TMK: 2-3-002:116. The project site will be bounded by Ward Avenue to the west, proposed Halekauwila Street to the south and A'ali'i to the east.

1.3 Existing Topography

The project site is currently occupied by an AC parking lot and demolished commercial/retail building. Sewer manholes are located in a Private Drive (Private Drive 2), and along the sewer easement that runs within the property. Drain inlets, trench drain, and catch basin are observed within the property. See Figure 1-3 for topographic survey prepared June 29, 2020 by Control Point Surveying Inc.

1.4 Flood Hazard

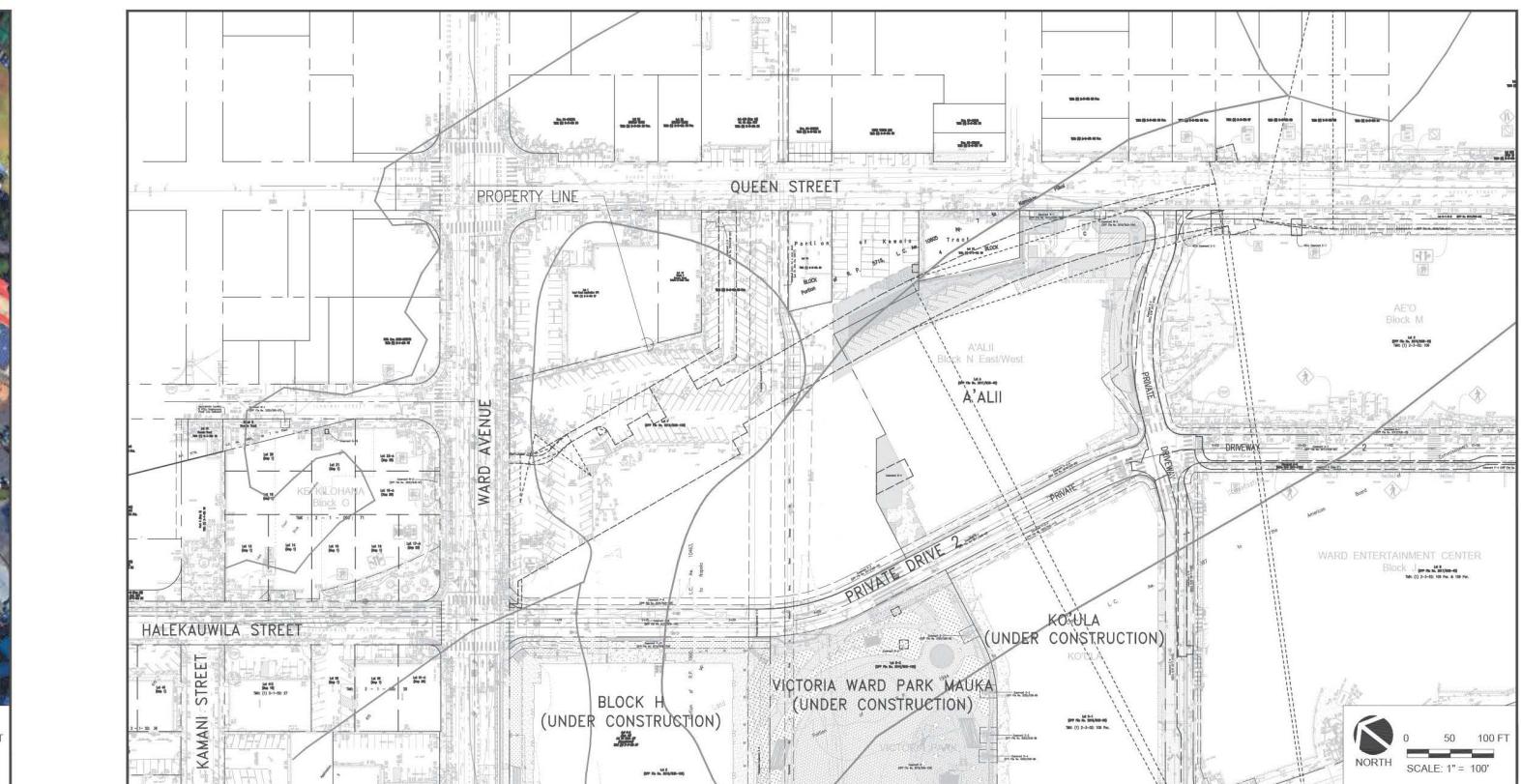

The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Community Panel No: 15003C0362G dated January 19, 2011 shows that the project is located in Zone AE (6 feet), Zone AE (7 feet) and Zone X see Figure 1-4. Zone AE is characterized as a special flood hazard area, where the annual chance of flooding (100-year flood) is determined as 1%. Zone X is characterized as areas determined to be outside the 0.2% annual chance floodplain. The proposed finish floor elevation at Level 1 for the project is 7.25 feet.

1.5 Sea Level Rise

The Pacific Islands Ocean Observing System (PacIOOS) Hawai'i Sea Level Rise Viewer shows that a small portion of the project site is shown within the 3.2-ft sea level rise by the year 2100 due to combined passive flooding and annual high wave flooding (see Figure 1-5). The portions that are shown within the area of sea level rise are at the eastern sides of the project area (see Figure 1-5). With the project proposing to raise the grades in those areas by about 3 feet and the proposed finish floor of the building residing above the Base Flood Elevation - which is higher than the projected sea level rise - the project site considers and will not be impacted by the 3.2-ft sea level rise.

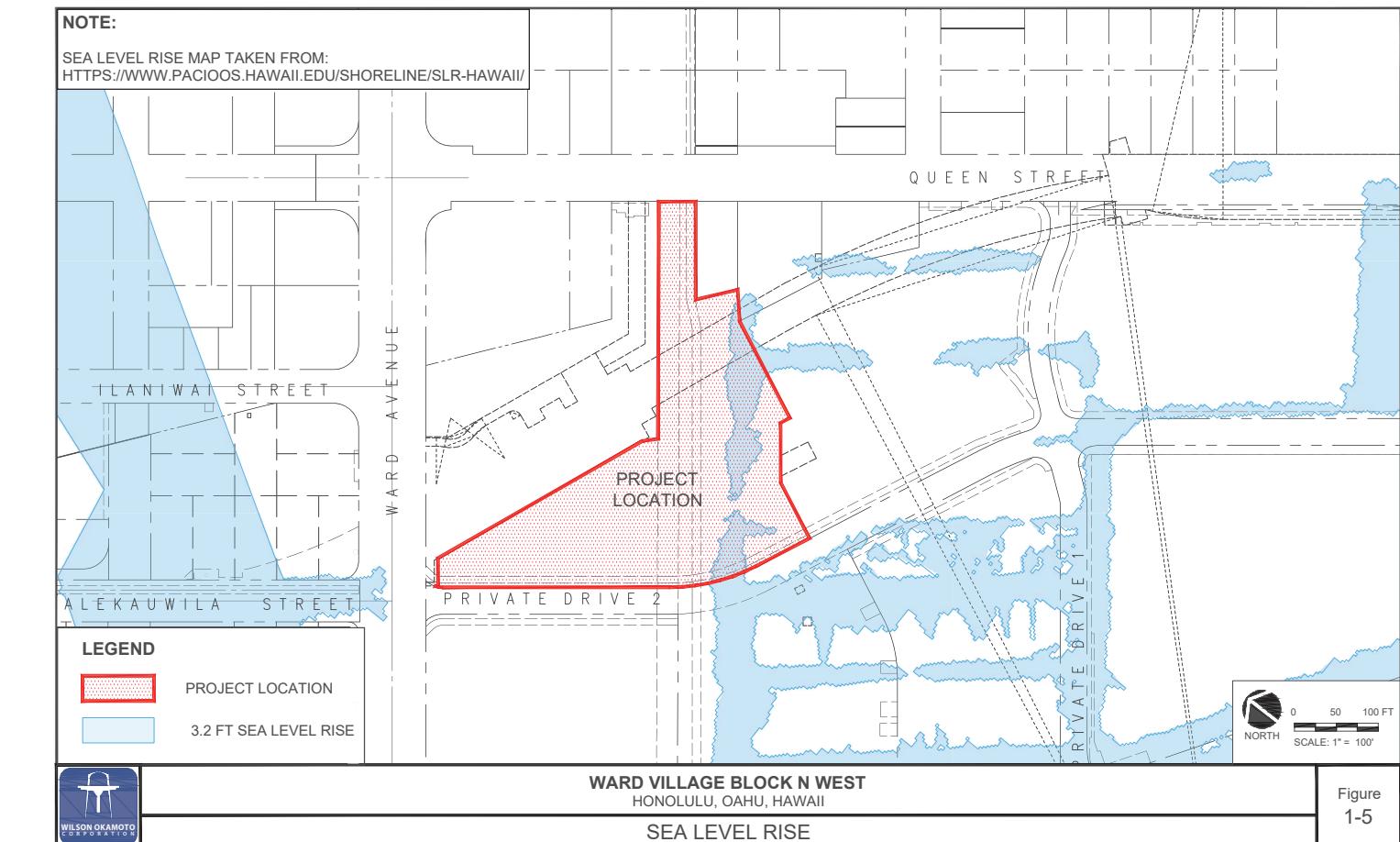
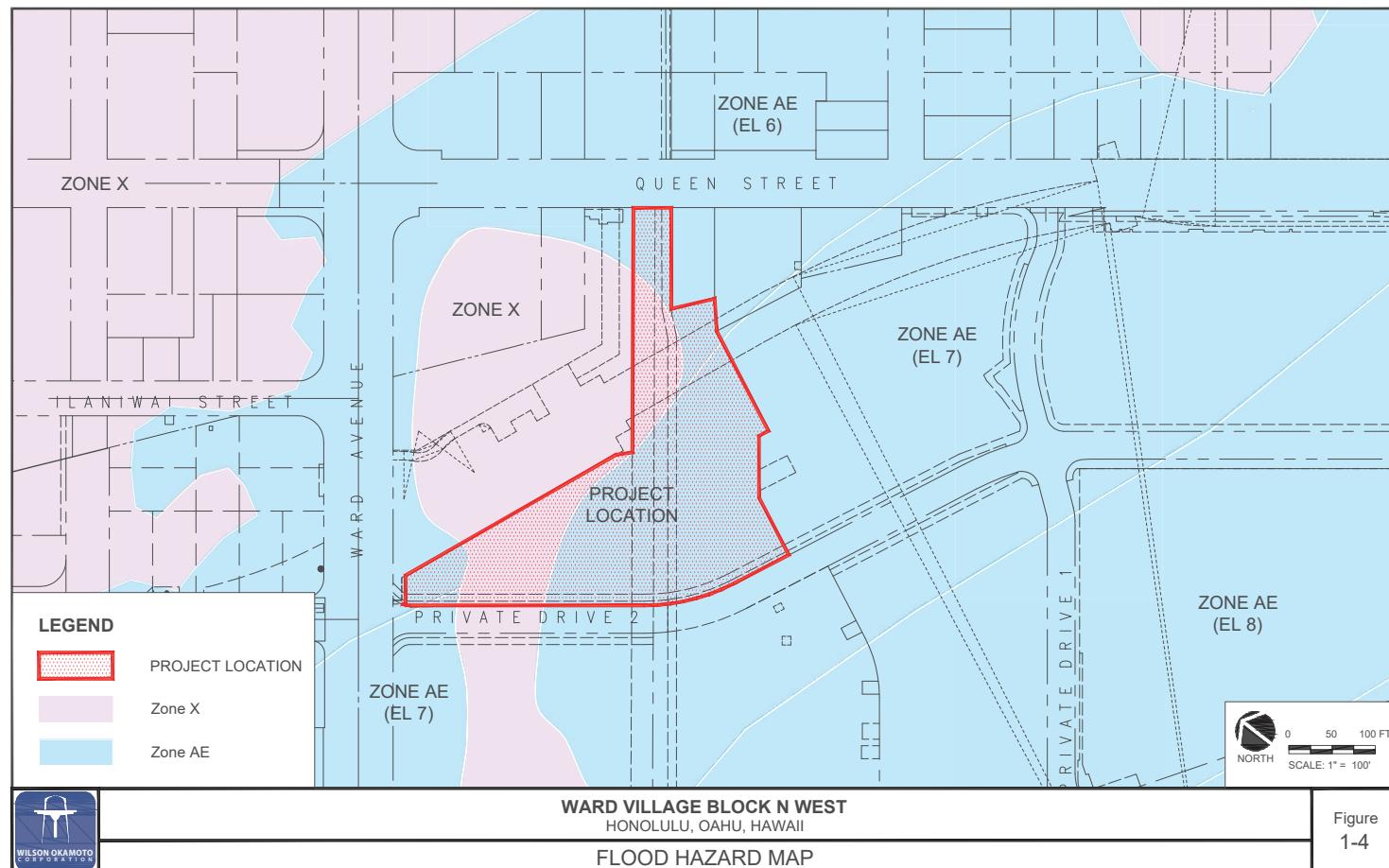
1.6 Climate Resilient Development

The project considers the impacts of climate change and climate-resilient development in its design. The building will utilize design solutions and best practices to weather-proof utility elements, while also employing low impact development strategies within the site drainage design (see Section 2.3). Furthermore, the condominium is targeting LEED certification in an effort to reduce the development's impact on the environment and its resources, thereby bolstering the focus on sustainability efforts throughout Ward Village as a whole.



WARD VILLAGE BLOCK N WEST
HONOLULU, OAHU, HAWAII

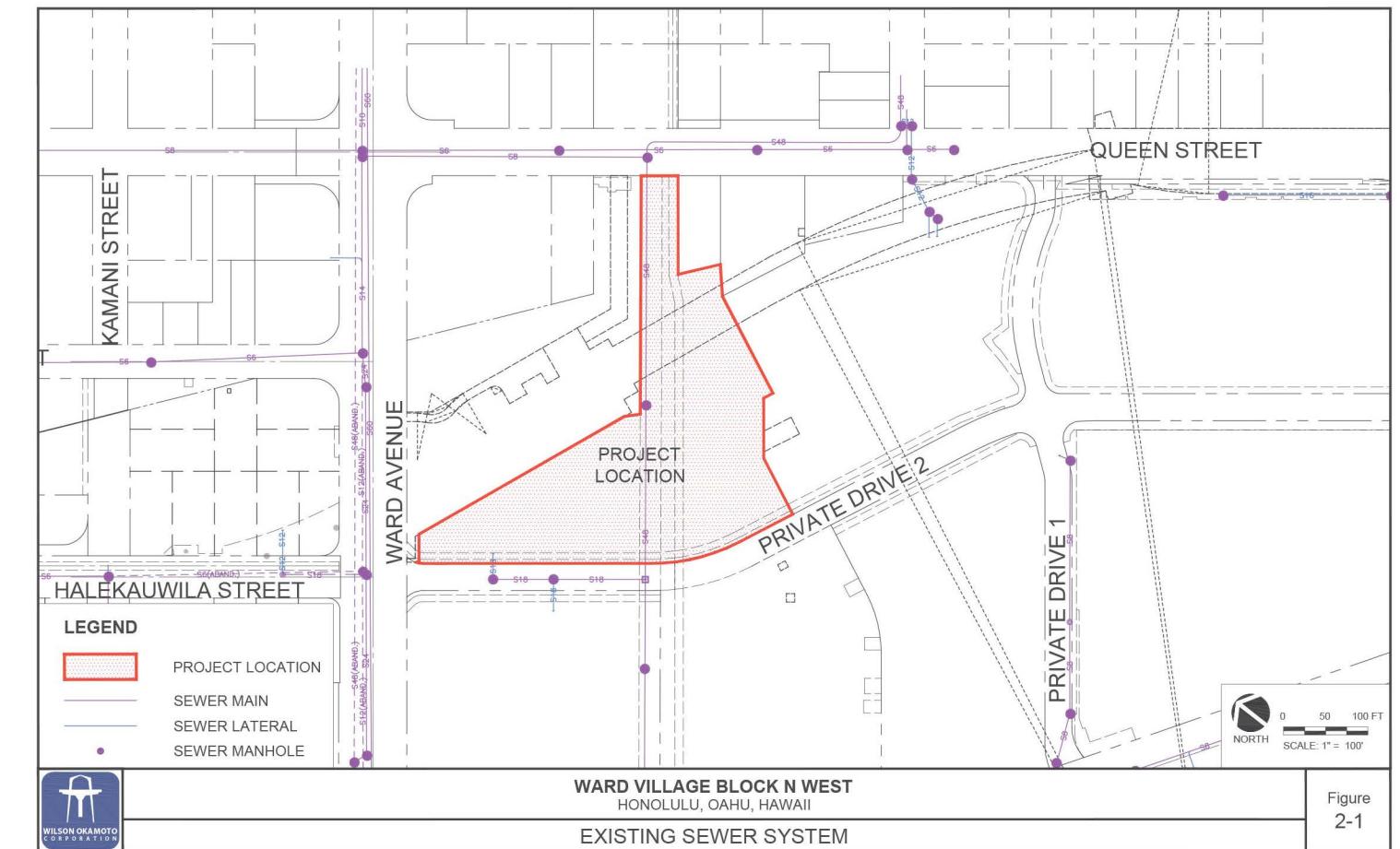
LOCATION MAP



Figure
1-2

WARD VILLAGE BLOCK N WEST
HONOLULU, OAHU, HAWAII

TOPOGRAPHIC SURVEY MAP

Figure
1-3


2 UTILITIES

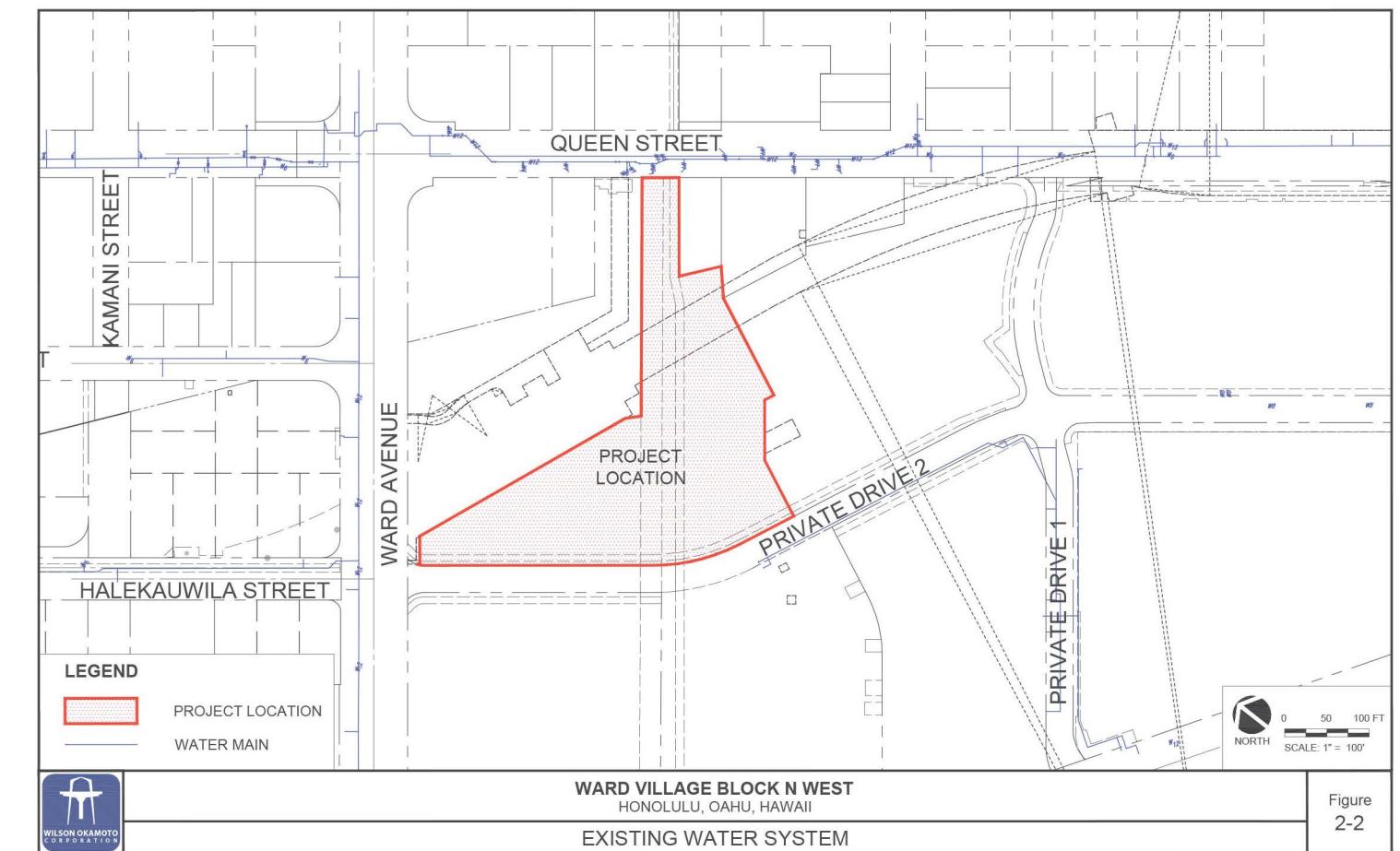
2.1 Sanitary Sewer System

The sanitary sewer system servicing the Kaka'ako Makai area and the project area is owned by the City and County of Honolulu (City) and maintained by its Department of Environmental Services (ENV). The wastewater flow from the project area is discharged into the Ala Moana Wastewater Pump Station and is then conveyed to the City's Sand Island Wastewater Treatment Plant, which serves the Honolulu area from Kuliouou to Moanalua.

The project proposes to connect to the existing 18" sewer main within Private Drive 2 that connected to the existing 48" East End Relief sewer. See Figure 2-1 which identifies the existing sewer system within the project vicinity.

An updated sewer connection application with the revised programming was submitted on April 10, 2025 to the City Department of Planning and Permitting (DPP), Wastewater Branch (WWB) to confirm the existing sanitary sewer system can accommodate the project. An approved sewer connection application dated September 19, 2025 was received confirming available capacity (see Appendix A).

2.2 Water System

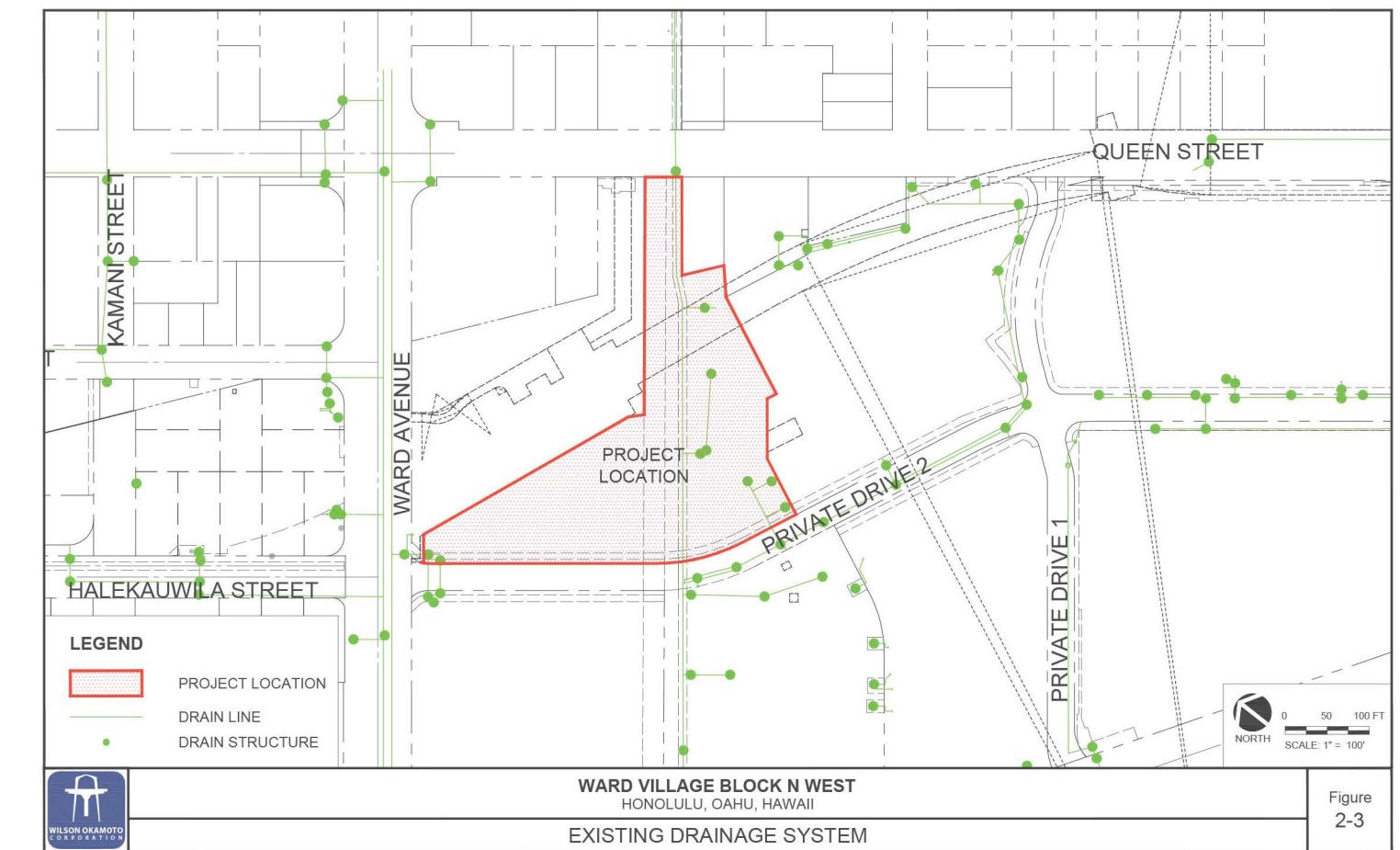

2.2.1 Potable Water

Potable water service for the project will be provided by the City and County of Honolulu's Board of Water Supply (BWS). The BWS's water system in the project area consists of a system of looped transmission mains, fire hydrants and water meters.

The project proposes connection to an existing 12-inch water main in Queen Street to accommodate both the residential tower and the commercial space. The size and location of the laterals will be confirmed during the final design phase. See Figure 2-2 which identifies the existing water system within the project vicinity. An updated letter request to BWS dated April 10, 2025 was sent to confirm that the existing water system can accommodate the project. An adequacy letter dated April 23, 2025 was received confirming available capacity (see Appendix A).

2.2.2 Fire Protection

Fire protection will be provided by private fire hydrants. Water supply from a private fire hydrant must be within 400 feet to the closest point from the building. A fire sprinkler system will be provided for the project. The size and location of the fire line that will supply for the sprinkler system will be confirmed during the final design phase. The Honolulu Fire Department (HFD) was consulted on April 28, 2025 to discuss the project and proposed fire protection methods. A figure was prepared as per the recommendations by HFD (see Appendix A). Recommendations provided by HFD will be maintained during the final design phase.



2.3 Site Drainage and Low Impact Development

The drainage system within the City right-of-way and City drainage easements servicing the Kaka'ako Makai area and the project area is owned by its Department of Facilities Maintenance (DFM). Drainage systems within private property are owned and maintained by the respective property owner.

The runoff from the project site will be collected within a private drainage system owned and maintained by VWL with a series of trench drains, drain inlets and catch basins. It is anticipated that the drainage pattern of the project site will be maintained and the peak flow rate and volume will not increase. For this reason, the project will not adversely impact the existing performance of the City system. See Figure 2-3 for the existing drainage system within the project site.

The project proposes to treat the overall storm water quality for the site with manufactured treatment device and green roof. Storm water will be collected by the drain inlets and will be directed to the existing catch basin located at Ward Avenue (City) and Private Drive (Private Drive 2) where it will be discharged into the City Drainage System. Email correspondence for the LID Site Design Strategies is attached in Appendix A.

2.4 Electrical Power Facilities

The Hawaiian Electric Company HECo was consulted again on April 14, 2025 by Ronald N. S. Ho Associates, Inc. to confirm that the existing electrical system can accommodate the project's updated programming. An acknowledgement letter dated June 24, 2025 was received from HECo, confirming HECo's intent to provide service to the Block N West project (see Appendix A).

2.5 Telephone System

The Hawaiian Telecom Inc. was consulted on April 14, 2025 by Ronald N. S. Ho Associates, Inc. to confirm that the existing communication system can accommodate the project. An assessment letter dated May 30, 2025 was received confirming available service connection for the Block N West project (see Appendix A).

2.6 Cable Television System

The Spectrum (formerly Oceanic and Charter Communications) was consulted on April 14, 2025 by Ronald N. S. Ho Associates, Inc. to confirm that the existing cable system can accommodate the project. An assessment letter dated April 25, 2025 was received confirming available service connection for the Block N West project (see Appendix A).

2.7 Gas System

Hawaii Gas was consulted on April 10, 2025 to confirm that the existing gas system can accommodate the project. Email correspondence received on April 10, 2025 confirmed service availability for the Block N West project (see Appendix A).

3 TRAFFIC

3.1 Traffic Impact Analysis Report

An updated Traffic Impact Analysis Report (TIAR) was submitted on May 16, 2025 to the City Department of Planning and Permitting (DPP), Traffic Review Branch (TRB) to identify and assess the potential traffic impacts resulting from the Block N West development. An email correspondence was received on July 23, 2025 confirming that the findings in the report are acceptable (see Appendix A).

APPENDIX A

- City and County of Honolulu - Department of Planning and Permitting, Wastewater Branch: Sewer Connection Application Letter and Approved Sewer Connection Application
- Honolulu Board of Water Supply: Request Letter and Adequacy Letter
- Honolulu Fire Department: HFD Email Correspondence
- City and County of Honolulu – Department of Planning and Permitting, Civil Engineering Branch: LID Correspondence with Keith Miyashiro
- Hawaiian Electric Company: Email Correspondence and Will Serve Letter
- Hawaiian Telcom: Email Correspondence and Will Serve Letter
- Spectrum (Formerly Oceanic and Charter Communications): Email Correspondence and Will Serve Letter
- Hawaii Gas: Email Correspondence
- Traffic Review Branch: Email Correspondence

**City and County of Honolulu - Department of Planning and Permitting
Wastewater Branch****Sewer Connection Application Letter
Approved Sewer Connection Application**

CITY AND COUNTY OF HONOLULU
DEPARTMENT OF PLANNING & PERMITTING
650 South King Street, Honolulu, Hawaii 96813

SITE DEVELOPMENT DIVISION MASTER APPLICATION FORM

All required documents and fees must accompany this application form. Please visit www.honoluludpp.org for applicable procedures and fees under the menu heading Application & Forms, Site Engineering and Subdivision Permits. Electronic submittal of permit applications and other permit-related documents constitutes agreement by the applicant or authorized representative to transact business electronically with this department, in accordance with HRS Chapter 489E.

I. PERMIT	VARIANCE	APPROVAL
Check one or more as appropriate:		
<input type="checkbox"/> Grading	<input checked="" type="checkbox"/> Sewer Connection	<input type="checkbox"/> Flood Hazard Variance
<input type="checkbox"/> Grubbing		<input type="checkbox"/> Flood Determination
<input type="checkbox"/> Stockpiling		<input type="checkbox"/> Floodway Permit
<input type="checkbox"/> Trenching		<input type="checkbox"/> Flood Map Revision
Complete Sections I, II, III and all other sections as possible		

II. LOT AND LAND USE INFORMATION			
TAX MAP KEY(S) 2-3-002:116		Lot Area: 80,091	(sq. ft./ac.)
Zoning District: Kakaako Dev	Development Plan Designation: HCDA Kakaako Dev District Mauka Area	State Land Use District: Urban	
Street Address/Location of Property: 423 Ward Avenue, Honolulu, HI 96814			
Present Use of Property/Building:			
Project Name (if any): Mahana Ward Village			
Request/Proposal (describe the nature of the request, proposed activity or project): The project proposes 465 residential units, 8,066 sf of retail/office space, and 4,034 sf of restaurant space			

III. APPLICANT INFORMATION					
Owner/Developer		Engineer/Architect		Contractor (or Agent for Subdivision apps only)	
Name (& title)	Victoria Ward, Ltd.		Brennan Nacario		
Mailing Address	1240 Ala Moana Blvd., Suite 200		1907 S. Beretania Street, Suite 400		
Honolulu	HI	96814	Honolulu	HI	96826
City	State	Zip	City	State	Zip
Phone Number(s)	(808) 591-8411		(808) 946-2277		
Email Address			bnacario@wilsonokamoto.com		
APPLICANT	Brennan Nacario		Project Manager		 Signature of applicant
Print NAME of applicant			Print TITLE of applicant		

IV. FOR GRADING/GRUBBING/STOCKPILING INFORMATION ONLY					
Estimated Dates: Start:	Completion:	Borrow Material:			
Area of work (sf or acres):		Borrow Site:			
Disturbed area (sf or acres):		Disposal Material:			
Estimated Quantity (cy): Cut:	Fill:	Disposal Site:			

V. AUTHORIZED AGENT					
This statement of authorization is used in reference to the information provided for in sections I, II and III above.					
I/We,	Print NAME and TITLE of person giving authority	hereby authorize	Print NAME of person receiving authority (Authorized Agent)		
to act in my/our behalf in obtaining/closing the Grading/Grubbing/Stockpiling/Trenching permit for the project.					
Signature of Owner/Developer giving authority			Date		

FOR DIVISION USE ONLY:					
Grading Permit No.:	Application No.:				
Trenching Permit No.:	Date of Application:				
Received By:					

SEE REVERSE FOR APPLICATIONS FOR TRENCHING AND SEWER CONNECTION

rev. 07/2020

SITE DEVELOPMENT DIVISION MASTER APPLICATION FORM

(REVERSE SIDE)

VI. FOR TRENCHING INFORMATION ONLY				Tax Map Key(s): 2-3-002:116	
Work to be performed for:				Work to be done:	<input type="checkbox"/> Service Connection <input type="checkbox"/> Repair <input type="checkbox"/> Borings
Estimated Dates: Start: _____ Completion: _____ Other: _____				Dimensions: _____ ft/in length _____ ft/in width _____ ft/in depth _____	
Estimated Value of work: \$ _____ in the city right - of - way					
AGENCY CLEARANCES	SIGNATURE	DATE	ADDRESS	PHONE NO.	
DPP, Wastewater Branch			650 So. King St., FMB, 1st Flr.	768-8210	
DTS, Traffic Signal			650 So. King St., FMB, 2nd Flr.	768-8388	
DDC, Street Lightning			650 So. King St., FMB, 11th Flr.	768-8431	
BWS, Customer Care			630 So. Beretania St., 1st Flr.	748-5460	
Hawaiian Electric Co., Inc., Construction Installation			820 Ward Avenue, 4th Flr. bryan.yonaha@hawaiielectric.com	543-5654	
Hawaiian Telcom, Excavation			1177 Bishop St., Lobby	546-7746	
Gasco., Inc., Maps & Records			515 Kamakee St., 1st Flr.	594-5575	
Spectrum, Engineering & Construction			200 Akamainui St. haw.engineering.research@charter.com	625-8443	
DFM, Division of Road Maintenance (if trenching 200 linear feet or more)			99-999 Iwaena Street, #214	484-7695	

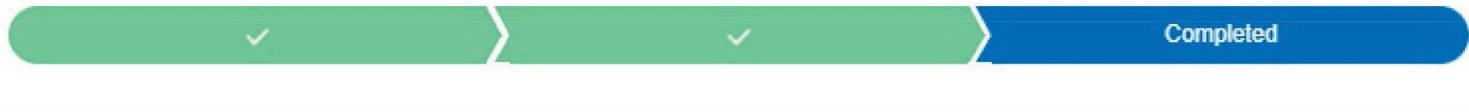
DPP: Dept. of Planning and Permitting DTS: Dept. of Transportation Services DDC: Dept. of Design and Construction BWS: Board of Water Supply DFM: Dept. of Facility Maintenance

Note to agencies providing clearances: Signature on this form may be reproduced (scanned and emailed) and submitted electronically for permitting purposes in accordance with HRS Chapter 489E. Original wet Signatures may be retained by the applicant(s).

Note to the applicants receiving clearances: The utilities listed above may not represent all underground utilities located within City rights-of-ways, nor do their utility clearances relieve the permittee from complying with all other applicable codes, rules, regulations, and/or permit procedures including, but not limited to, additional clearances and requirements for other utilities (i.e. irrigation, data transmission, etc.) located within City rights-of-ways. Pursuant to ROH 1990, Section 14-17.6, the permittee shall indemnify and save harmless the city for any injuries or damages to any person or property received or sustained by any person as a consequence of any act or acts of the permittee on work done under the trenching permit.

VII. FOR SEWER CONNECTION INFORMATION ONLY						To receive a response via e-mail, provide email address below and check box here: <input checked="" type="checkbox"/>					
<input checked="" type="checkbox"/> Residential: No. of Proposed Units 465 (Provide breakdown below)						bnacario@wilsonokamoto.com					
82	Studios	158	1 Bedroom	155	2 Bedrooms	70	3 Bedrooms	4 Bedrooms	Other		
<input checked="" type="checkbox"/> Non-Residential: (See attached sewer table for required category and quantity and provide any additional information in the remarks)						NEW WATER METER SIZE(S)					
CATEGORY(IES)						QUANTITY(IES)					
Restaurant						4,034 sf (1,815 seats per day)				2" for commercial	
Retail						8,066 sf					
Date of Connection: 2028 (approximate)						Connection Work Desired: <input type="checkbox"/> Use Existing Lateral <input type="checkbox"/> Other					
						Dimensions: 37 ft. 18 in. 4 ft.	length	size	depth		
Existing Structures/Dwellings on Property: (Provide breakdown below)						REMAIN				DEMOLISH	
TYPE (i.e. Single Family)						QUANTITY(IES)					
Commercial						80,684 sf				0 sf	
										80,684 sf	
Remarks: (Provide any additional information on the lines provided)						To receive a response via e-mail, provide email address below and check box here: <input checked="" type="checkbox"/>					
This application seeks to renew/extend previously approved 2023/SCA-0509											
FOR DIVISION USE ONLY:						Date of Application:				Received By:	Application No.:

rev. 07/2020


Home

Search Permits, Parcels, Address, etc..

Log in

**Application
2025/SCA-0425**[New Note](#)

Phase Completed	Status Approved	Type WWB Review	Decision Date	Applicant
--------------------	--------------------	--------------------	---------------	-----------

Details**Information**

Number 2025/SCA-0425	Account Brennan A. Nacario
Phase Completed	Status Approved
Type WWB Review	Completion Date 9/19/2025
Applicant	Expiration Date 9/19/2027

Scope

Project
Address
Parcel 23002116

Description

Job Description 2025/SCA-0425 Mahana Ward Village - 465 Units, 8066 sf of retail/office space, and 4034 sf of restaurant space
--

Honolulu Board of Water Supply**Request Letter
Adequacy Letter**

WILSON OKAMOTO
C O R P O R A T I O N

INNOVATORS - PLANNERS - ENGINEERS

8206-77

April 10, 2025

City and County of Honolulu
Board of Water Supply
Customer Care Operating Unit
630 South Beretania Street
Honolulu, HI 96813

Attention: Mr. Ernest Lau – Manager and Chief Engineer BWS
Subject: Mahana (Block N West) – BWS Water System Adequacy

Dear Mr. Lau:

We are requesting Board of Water Supply assistance to determine adequacy of the existing source, storage, and water distribution systems in Queen Street for the residential and commercial development of the Ward Village Mahana Condominium (Block N West) located at TMK: 2-3-002-116.

The development will include the following programming:

- Residential Units – 465 Units
 - Studio – 82 Units
 - 1 Bedroom – 158 Units
 - 2 Bedroom – 155 Units
 - 3 Bedroom – 70 Units
- Restaurant – 4,034 sf
- Commercial – 8,066 sf

In addition to your review of the existing water system, we would like to obtain pressure and flow information for any existing fire hydrants located adjacent the project site.

Please call or email me at bnacario@wilsonokamoto.com should you have any questions or require further information.

Sincerely,

Streetley,
Brennan Nacario
Brennan Nacario

Enclosure: Project Vicinity and Location Map

FIGURE A

PROJECT LOCATION AND VICINITY MAP

MAHANA - DEMOLITION & MASS GRADING / HONOLULU, OAHU, HAWAII

BOARD OF WATER SUPPLY
KA 'OIHANA WAI
CITY AND COUNTY OF HONOLULU

630 SOUTH BERETANIA STREET • HONOLULU, HAWAII 96843
Phone: (808) 748-5000 • www.boardofwatersupply.com

RICK BLANGIARDI
MAYOR
MEIA

ERNEST Y. W. LAU, P.E.
MANAGER AND CHIEF ENGINEER
MANAKIA A ME KAHU WILIKI

ERWIN KAWATA
DEPUTY MANAGER
HOPE MANAKIA

April 23, 2025

NĀ'ALEHU ANTHONY, Chair
JONATHAN KANESHIRO, Vice Chair
BRYAN P. ANDAYA
LANCE WILHELM
KĒHAULANI PU'U
EDWIN H. SNIFFEN, Ex-Officio
GENE C. ALBANO, P.E., Ex-Officio

Mr. Brennan Nacario
Wilson Okamoto Corporation
1907 South Beretania Street, Suite 400
Honolulu, Hawaii 96826

RECEIVED
APR 23 2025
WILSON OKAMOTO CORPORATION

Dear Mr. Nacario:

Subject: Your Letter Dated April 10, 2025 Regarding Availability of Water for the Ward Village Mahana Block N West Condominium off Ward Avenue, Tax Map Key: 2-3-002:116

Thank you for your letter regarding the proposed 465-unit, 4,034-square foot restaurant space, and 8,066-square foot commercial space mixed-use project.

The existing water system is currently adequate to accommodate the proposed development. However, please be advised that the existing Honolulu water system capacity has been reduced due to the shut-down of the Hālawa Shaft pumping station as a proactive measure to prevent fuel contamination from the Navy's Red Hill Bulk Storage Tank fuel releases. The final decision on the availability of water will be confirmed when the building permit application is submitted for approval, pending evaluation of the water system conditions at that time on a first-come, first-served basis. The Board of Water Supply (BWS) reserves the right to change any position or information stated herein up until the final approval of the building permit application.

We continue to request 10% voluntary water conservation of all customers until new sources are completed and require water conservation measures in all new developments. If water consumption significantly increases, progressively restrictive conservation measures may be required to avoid low water pressures and disruptions of water service.

Presently, there is no moratorium on the issuance of new and additional water services. Water distributed via the BWS water systems remains safe for consumption. The BWS is closely monitoring water usage and will keep the public informed with the latest findings. Please visit our website at www.boardofwatersupply.com and www.protectoahuwater.org for the latest updates and water conservation tips.

Mr. Brennan Nacario
April 23, 2025
Page 2

The applicant will be required to obtain a water allocation letter from Victoria Ward Limited for Water System Facilities Charge (WSFC) transmission credits and submit it to the BWS for our review and recording purposes.

When water is made available, the applicant will be required to pay our WSFC for resource development, the remaining balance for transmission impact fees, and daily storage.

Water conservation measures are required for all proposed developments. These measures include utilization of nonpotable water for irrigation using rain catchment, drought tolerant plants, xeriscape landscaping, efficient irrigation systems, such as a drip system and moisture sensors, and the use of Water Sense labeled ultra-low flow water fixtures and toilets. Prior to BWS approval of water availability, the developer is required to submit a Water Conservation and Reuse Plan for our review and approval.

Proposed mixed use developments are required to install separate domestic water meters and laterals serving the residential and non-residential spaces.

High-rise buildings with booster pumps will be required to install water hammer arrestors or expansion tanks to reduce pressure spikes and potential main breaks in our water system.

The proposed project is subject to BWS Cross-Connection Control and Backflow Prevention requirements prior to the issuance of the Building Permit Applications.

The construction drawings should be submitted for our approval, and the construction schedule should be coordinated to minimize impact to the water system.

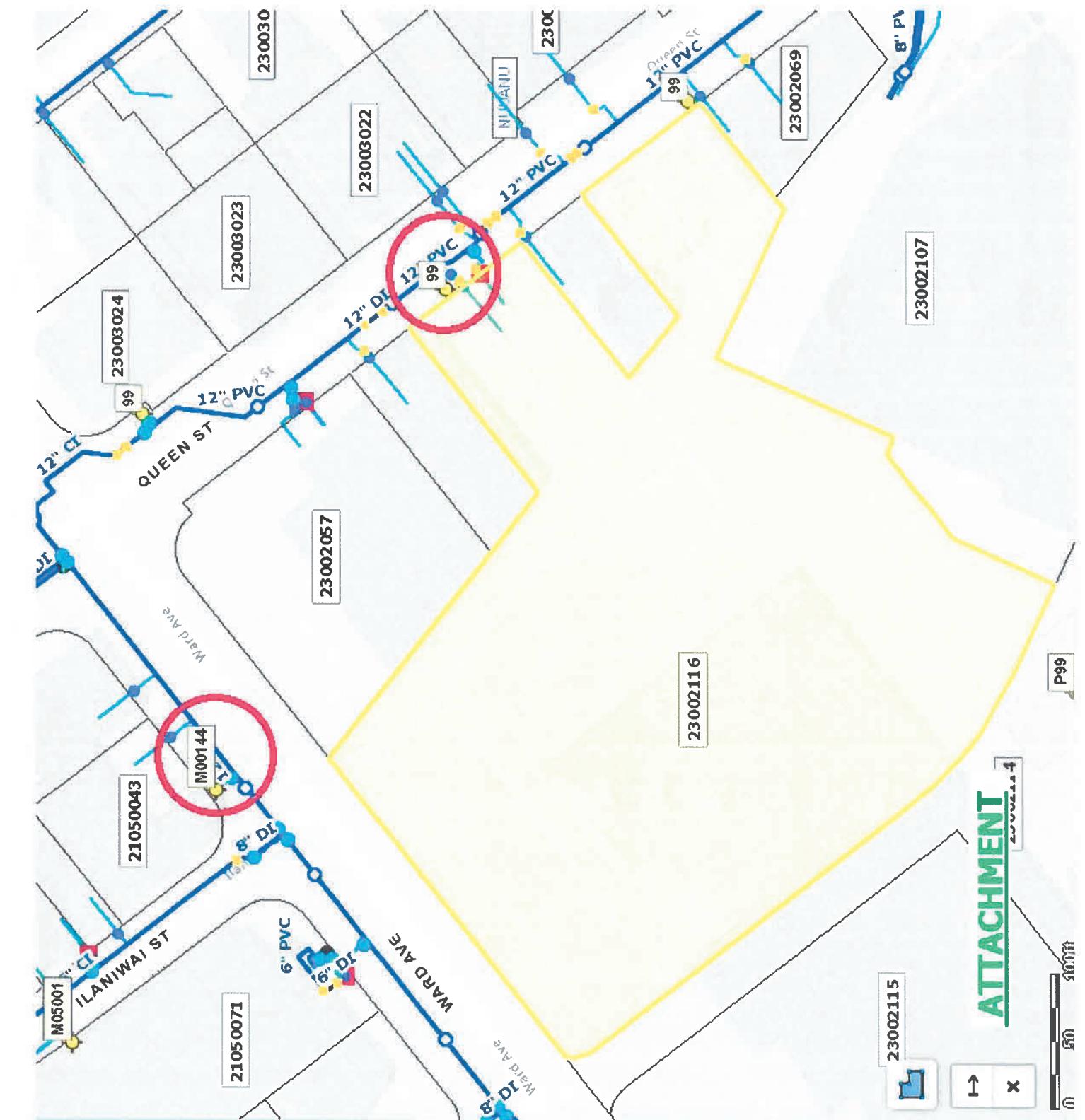
The BWS has suspended fire flow tests on fire hydrants as a water conservation measure. However, you may use the following calculated flow data for Fire Hydrant No. 99 and M00144:

Fire Hydrant Number	Location	Static Pressure (psi)	Residual Pressure (psi)	Flow (gpm)
99	Queen Street	72	58	4,000
M00144	Ward Avenue	72	61	4,000

The data is based on the existing water system, and the static pressure represents the theoretical pressure at the point of calculation with the reservoir full and no demands on the water system. The static pressure is not indicative of the actual pressure in the field. Therefore, to determine the flows that are available to the site, you will have to determine the actual field pressure by taking on-site pressure readings at various times of the day and correlating that field data with the above hydraulic design data.

Mr. Brennan Nacario
April 23, 2025
Page 3

The map showing the location of the fire hydrants is attached.


The on-site fire protection requirements should be coordinated with the Fire Prevention Bureau of the Honolulu Fire Department.

If you have any questions, please contact Barry Usagawa, Program Administrator of our Water Resources Division, at (808) 748-5900.

Very truly yours,

ERNEST Y. W. LAU, P.E.
Manager and Chief Engineer

Attachment

Honolulu Fire Department**HFD Email Correspondence**

From: Cassidy MASHIYAMA
Sent: Monday, April 28, 2025 1:19 PM
To: Zapata, Ricardo A
Subject: RE: Ward Village Block N West - HFD - ActionItem:00036:RXw40

Categories: Filed by Newforma

Hi Ricardo,

Thanks for confirming.

Kassidy MASHIYAMA
Civil Engineer

1907 South Beretania Street, Suite 400
Honolulu, Hawaii 96826
T (808) 946-2277
W <http://www.wilsonokamoto.com>

From: Zapata, Ricardo A <rzapata@honolulu.gov>
Sent: Monday, April 28, 2025 1:14 PM
To: Cassidy MASHIYAMA <kmashiyama@wilsonokamoto.com>
Subject: RE: Ward Village Block N West - HFD - ActionItem:00036:RXw40

Kassidy,
It looks good from a fire code perspective.
Ricardo

From: Cassidy MASHIYAMA <kmashiyama@wilsonokamoto.com>
Sent: Monday, April 28, 2025 10:38 AM
To: Zapata, Ricardo A <rzapata@honolulu.gov>
Cc: Brennan Nacario <BNacario@wilsonokamoto.com>
Subject: RE: Ward Village Block N West - HFD - ActionItem:00036:RXw40

CAUTION: Email received from an **EXTERNAL** sender. Please confirm the content is safe prior to opening attachments or links.

Hi Ricardo,

The programming of Block N West (Mahana) has recently changed, so we wanted to re-confirm our conformance to HFD site access and water supply requirements.

The proposed programming has been adjusted to the following:

- Residential Units – 465 units
- Restaurant – 4,034 sf
- Commercial – 8,066 sf

Although the site layout of the condo has remained similar to the layout before the programming change, there are a few minor changes. Please see the attached PDF for our updated Fire Code Figure. Feel free to let us know if you have any questions or comments.

Thanks,
Kassidy Mashiyama
Civil Engineer

**City and County of Honolulu - Department of Planning and Permitting
Civil Engineering Branch**

LID Correspondence

1907 South Beretania Street, Suite 400
Honolulu, Hawaii 96826
T (808) 946-2277
W <http://www.wilsonokamoto.com>

From: Miyashiro, Keith K
To: John Kim
Subject: RE: Ward Village Block N West - SWQ Strategy - ActionItem:00037:RXw40
Date: Thursday, April 13, 2023 9:10:30 AM

Hi John,

Based on the information the SWQ concept appears to be ok however actual confirmation of the concept and compliance with the Water quality Rules will be made at the time of formal plan review.

Thanks,

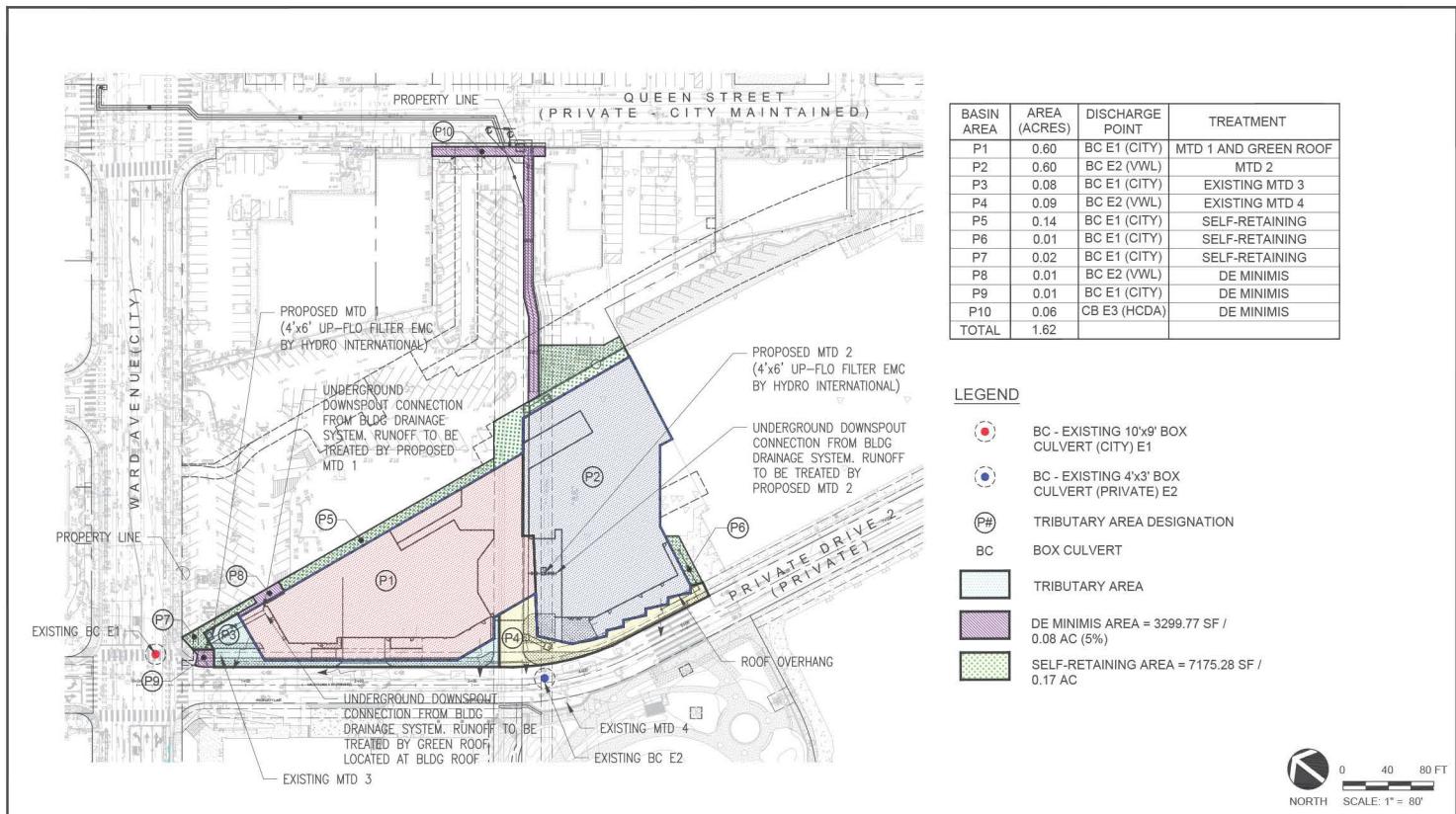
Keith K. Miyashiro

Civil Engineer
City and County of Honolulu
Department of Planning and Permitting
Civil Engineering Branch
650 S. King Street, Honolulu, HI 96813
Email: kmiyashiro1@honolulu.gov
Phone: 808-768-8106

From: John Kim <jkim@wilsonokamoto.com>
Sent: Thursday, April 13, 2023 9:01 AM
To: Miyashiro, Keith K <kmiyashiro1@honolulu.gov>
Subject: RE: Ward Village Block N West - SWQ Strategy - ActionItem:00037:RXw40

CAUTION: Email received from an **EXTERNAL** sender. Please confirm the content is safe prior to opening attachments or links.

Hi Keith,


Following up with the email below. Please let me know after you get a chance to review.

Thanks,
John S. H. Kim
T (808) 946-2277

From: John Kim <jkim@wilsonokamoto.com>
Sent: Monday, April 3, 2023 1:01 PM
To: Miyashiro, Keith K <kmiyashiro1@honolulu.gov>
Subject: RE: Ward Village Block N West - SWQ Strategy - ActionItem:00037:RXw40

Hi Keith,

I've confirmed with the design team that the green roof will be utilized to the maximum extent

practicable. We're anticipating +-10,000 sf of the green roof, but that number will continue to be refined as we proceed into the design and before submitting it for formal permit review. The proposed area between P9 and P10 is just utility AC trench restoration for the Water line and Gas line service off Queen St. Please see attached for the revised figure. Please let me know if the project's swq strategy generally conforms with the WQ standards, understanding that formal approval shall come during permitting.

Thanks,
John S. H. Kim
T (808) 946-2277

From: Miyashiro, Keith K <kmiyashiro1@honolulu.gov>
Sent: Wednesday, January 18, 2023 8:09 AM
To: John Kim <jkim@wilsonokamoto.com>
Subject: RE: Ward Village Block N West - SWQ Strategy - ActionItem:00037:RXw40

Hi John,

Sorry for the late response on this. CEB can confirm retention infeasibility via GWT elevation upon review of the grading plans and SWQR (grade elevations, soils report, etc.). For biofiltration is there a particular reason as to why a green roof is not incorporated into this project? I noticed that some of the other buildings utilized a green roof. No roof deck proposed for this project? Alternative compliance appears to be ok however landscaping should be incorporated to the MEP where applicable. Also what is being proposed for the area between P9 and P10?

Thanks,

Keith K. Miyashiro
Civil Engineer
City and County of Honolulu
Department of Planning and Permitting
Civil Engineering Branch
650 S. King Street, Honolulu, HI 96813
Email: kmiyashiro1@honolulu.gov
Phone: 808-768-8106

From: John Kim <jkim@wilsonokamoto.com>
Sent: Tuesday, January 17, 2023 4:32 PM
To: Miyashiro, Keith K <kmiyashiro1@honolulu.gov>
Subject: FW: Ward Village Block N West - SWQ Strategy - ActionItem:00037:RXw40

CAUTION: Email received from an **EXTERNAL** sender. Please confirm the content is safe prior to opening attachments or links.

Hi Keith,

Following up with the request below. Please let me know after you get a chance to review.

Thanks,
John S. H. Kim
T (808) 946-2277

From: John Kim <jkim@wilsonokamoto.com>
Sent: Friday, December 23, 2022 8:40 AM
To: Keith Miyashiro (kmiyashiro1@honolulu.gov) <kmiyashiro1@honolulu.gov>
Subject: Ward Village Block N West - SWQ Strategy - ActionItem:00037:RXw40

Hi Keith,

Victoria Ward Ltd. is proceeding with another high-rise residential condominium tentatively named Block N West. See attached for the location map.

Would it be possible to confirm if alternative compliance treatment via a manufactured treatment device could be used for this project, given the site constraints listed below, which makes infiltration and biofiltration BMPs infeasible for treatment to most of the site?

1. The ground water table is at +3.00 (with a 3' buffer up to +6.00).
2. The finish floor of the proposed building will be +7.25.
3. The proposed building covers most of the project site.
4. The existing grades around the site are low at around +4.00 to +6.50.
5. The BMP inverts would be within 3' of the GWT.
6. Minimum underground drainage system depths.

Feel free to contact me should you like to discuss further.

Thanks,
John S. H. Kim, PE
Associate Project Manager

1907 South Beretania Street, Suite 400
Honolulu, Hawaii 96826
T (808) 946-2277 F (808) 946-2253
W <http://www.wilsonokamoto.com>

This message contains information that might be confidential and privileged. Unless you are the addressee or are authorized by the sender, you may not use, copy or disclose the information contained in this message. If you have received this message in error, please delete it and advise the sender.

June 24, 2025

Hawaiian Electric Company**Will Serve Letter**

Mr. Max Mochizuki
Ronald N.S. Ho & Associates
2153 N. King Street #201
Honolulu, HI. 96819

Dear Mr. Mochizuki:

Re: Ward Village – Mahana

This is in response to your request for a "Will Serve" letter for the subject project.

We have existing distribution circuits along Robinson that could potentially be used to serve the proposed development. Please keep in mind that these circuits may need to be upgraded depending on the ultimate size of this project's load. At this time we do not have sufficient information and detailed plans to make this determination.

We request that you keep us informed on the status of your project. As soon as you have detailed plans, please create a Service Request with us, and be sure to allow sufficient time for us to work on the project.

Please let us know if we can be of assistance in any other way. Should you have any questions, please call me at 543-7017.

Sincerely,

Reid-Prieto, Alistair
Digitally signed by Reid-Prieto,
Alistair
DN: CN="Reid-Prieto, Alistair",
OU=Users, OU=HECO,
DC=hawaiianelectric, DC=net
Reason: I am the author of this
document
Date: 2025.06.24 07:31:28-10'00'

Alistair Reid-Prieto
Supervisor
Customer Engineering Department

Hawaiian Telcom

Will Serve Letter

May 27, 2025

Scott Shiraishi
Ronald N.S. Ho Associates

Subject: Will Serve Letter – Ward Village Block N-West Utility Assessment TMK as Follows: 2-3-002:116

Thank you for sharing information on your proposed Ward Village Block N-West Development. TMK listed above with the anticipated units listed as the following: 465 dwelling units. We are excited to be a part of the development and would gladly provide access to Hawaiian Telcom's services to this new development.

If you have any questions, please do not hesitate to contact me at (951) 203-2174 or email Braycen.lorenzo@hawaiiantel.com.

Sincerely,

Braycen Lorenzo

Braycen Lorenzo
OSP Network Engineer
Hawaiian Telcom

PO Box 2200, Honolulu, HI 96841 hawaiiantel.com

April 22, 2025

Charter Communications aka Spectrum**Will Serve Letter**

The Howard Hughes Corporation
1240 Ala Moana Blvd. Suite 200
Honolulu, HI 96814

Re: Will Serve Letter for Block N-West Development

Dear Howard Hughes Corporation:

Spectrum Oceanic LLC ("Spectrum"), directly or through its parent or affiliate companies, is an innovative provider of cable television, video, data, voice and other services (collectively, the "Services"). Howard Hughes Corporation ("Developer") is the developer of a proposed project located at Block N-West development with the TMK No. 2-3-002:116, consisting of 465 residential units. Spectrum's understanding is that the Developer wishes to make the Services available to residents and/or commercial tenants at the Project.

This is confirm that Spectrum is willing and able to provide the Services to the Project subject to all of the terms and conditions of its applicable franchise agreement with the State of Hawaii, all applicable federal, state and county laws, rules and regulations, and all other terms and conditions stated in this letter. Developer and/or its successors in interest will enter into a mutually agreeable services agreement with Spectrum, which shall specify the provision of equipment and facilities for the provision of the Services, the specific type(s) of Services provided, and other terms and conditions (which may include terms relating to the provision of easements, conduits, and accommodations for equipment).

The issuance of this letter by Spectrum, inclusive of the foregoing terms and conditions, is based upon the representations of the Developer to Spectrum with respect to the location and scope of the Project as of the date of this letter. Please contact us should you have any questions regarding the foregoing.

A handwritten signature in black ink that reads "Jaycie Ann Abe-Cameron".

JaycieAnn Abe-Cameron
200 Akamainui St. | Mililani, HI | 96789
Director, Spectrum Community Solutions
Cell: 808.445.7239

From: Cassidy Mashiyama
Sent: Thursday, April 10, 2025 10:22 AM
To: Keith Yamamoto
Subject: RE: Ward Village Mahana (Block N West) - Gas Availability

Hawaii Gas**Email Correspondence**

Hi Keith,

Thank you for the confirmation.

Thanks,
Kassidy

From: Keith Yamamoto <kkymamoto@hawaiigas.com>
Sent: Thursday, April 10, 2025 10:20 AM
To: Cassidy Mashiyama <kmashiyama@wilsonokamoto.com>
Cc: Brennan Nacario <BNacario@wilsonokamoto.com>
Subject: RE: Ward Village Mahana (Block N West) - Gas Availability

Kassidy,

Confirming the new 2" line from the intersection of Ward Ave and Queen St is sufficient for the project. The alignment is also acceptable.

Thanks,
Keith

From: Cassidy Mashiyama <kmashiyama@wilsonokamoto.com>
Sent: Thursday, April 10, 2025 9:26 AM
To: Keith Yamamoto <kkymamoto@hawaiigas.com>
Cc: Brennan Nacario <BNacario@wilsonokamoto.com>
Subject: [EXTERNAL EMAIL] RE: Ward Village Mahana (Block N West) - Gas Availability

CAUTION: This email was received from outside of Hawaii Gas. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Keith,

The programming of the Ward Village Mahana condominium has changed since WOC last coordinated with HiGas. In 2023, it was determined that a new line connecting to the existing 3" main at the intersection of Ward Avenue and Queen Street would be required to serve the project. We'd like to confirm that this requirement still stands with the revised programming:

82	Studio
158	1 BR
155	2 BR
70	3 BR

4,034 SF Restaurant
8,066 SF Retail
12,100 SF TOTAL

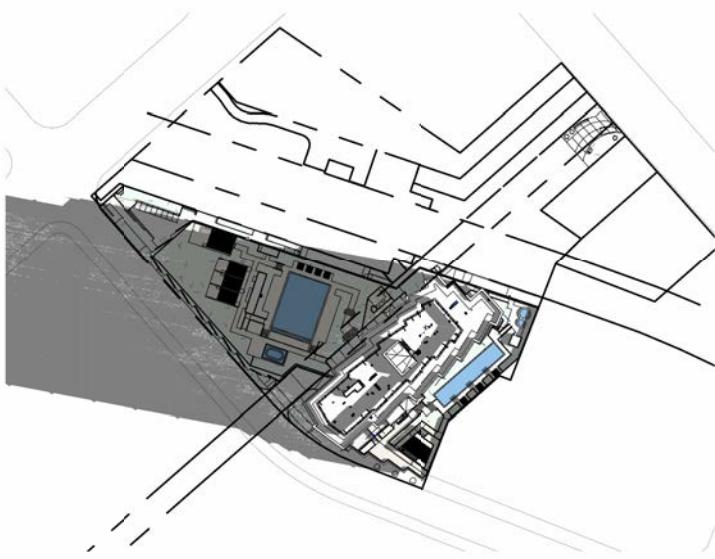
If the requirement remains, please confirm that the size and schematic routing on the PDF are acceptable.

Thanks,
Kassidy Mashiyama
Civil Engineer

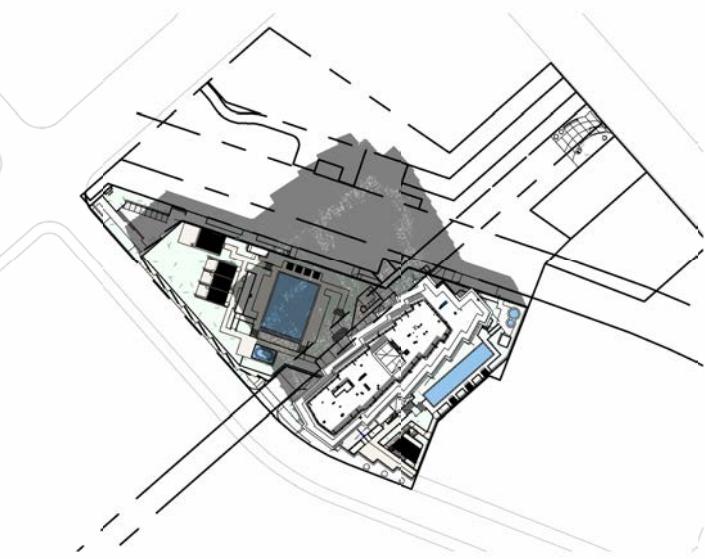
Traffic Review Branch
Email Correspondence

1907 South Beretania Street, Suite 400
Honolulu, Hawaii 96826
T (808) 946-2277
W <http://www.wilsonokamoto.com>

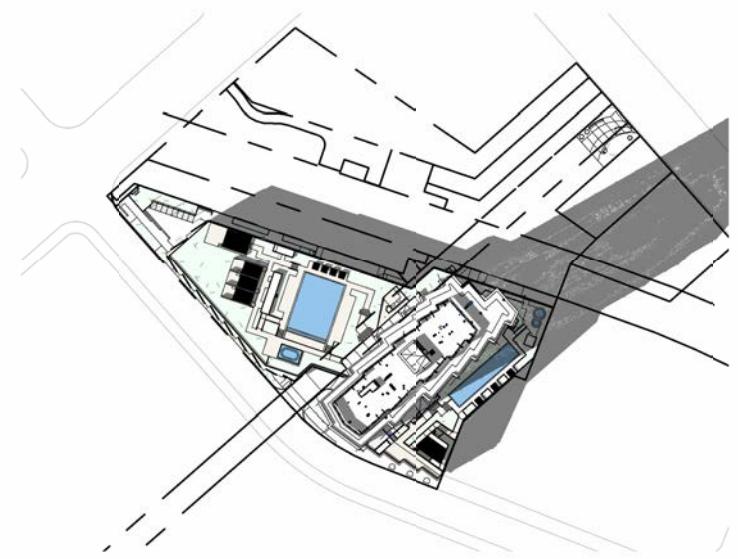
From: Pascua, Kaily A <kaily.pascua@honolulu.gov>
Sent: Wednesday, July 23, 2025 9:10 AM
To: Jennylyn Tapat Morrill
Cc: Andrade, Kamakaokalani M
Subject: Ward Village Block N-West TIAR Update

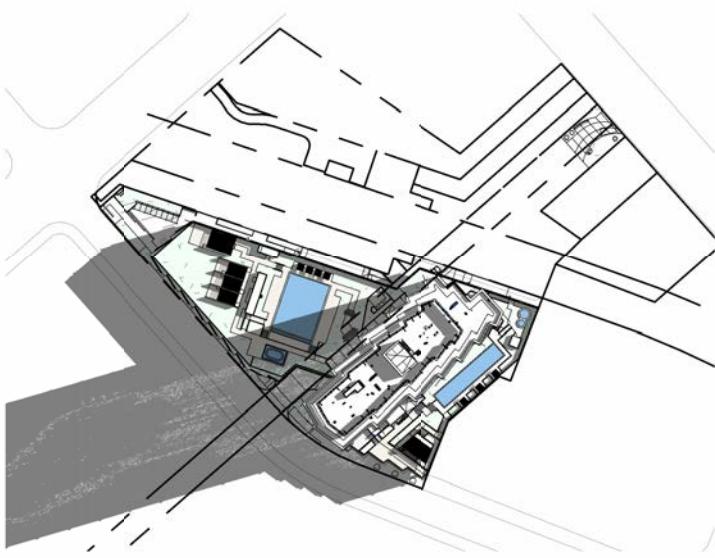

Hi Jenny,

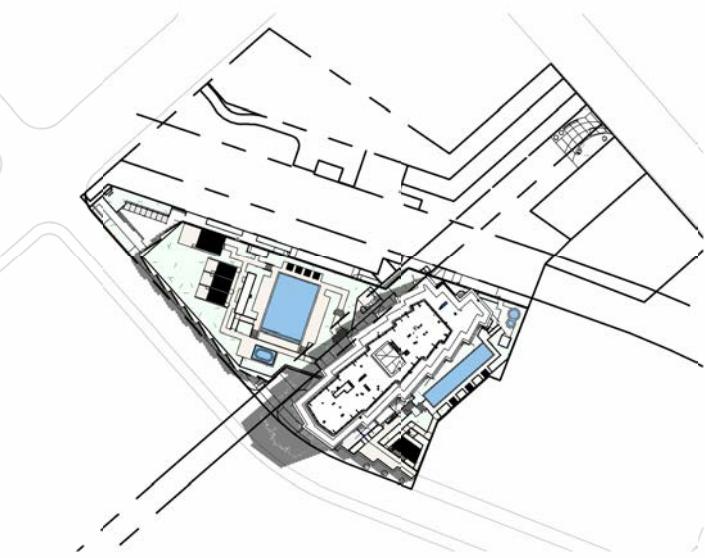
The TIAR has been accepted.

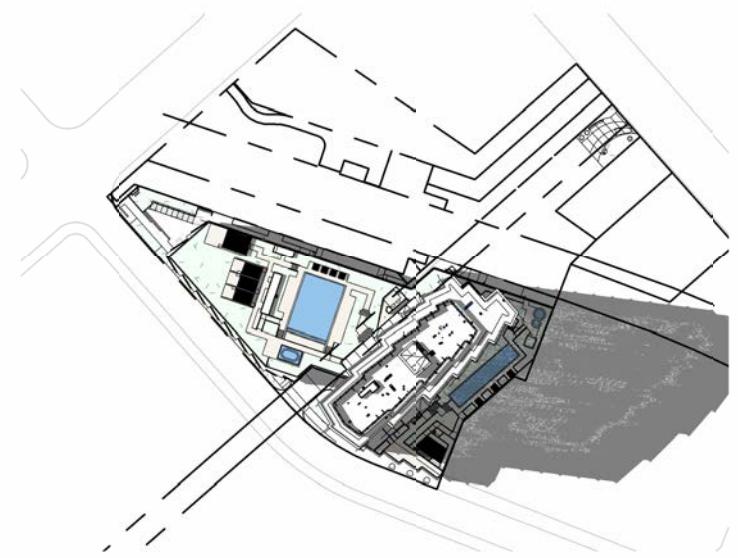

Kaily Pascua
City and County of Honolulu
Traffic Review Branch
(808)768-8077

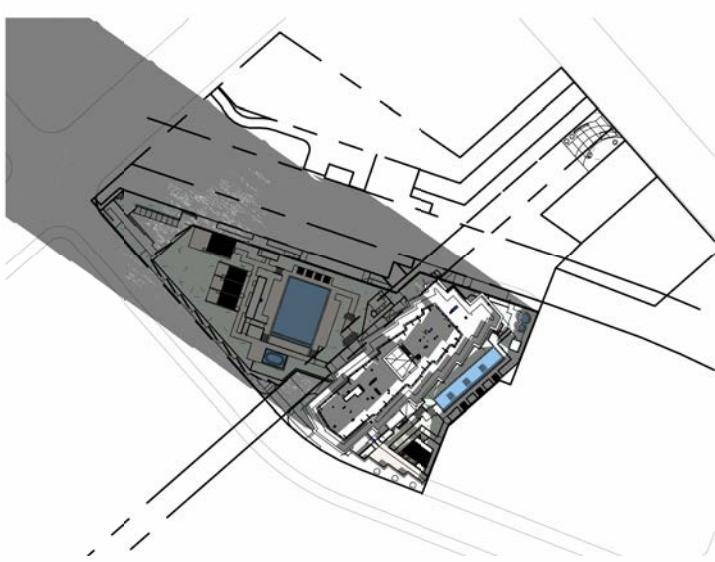
Appendix F

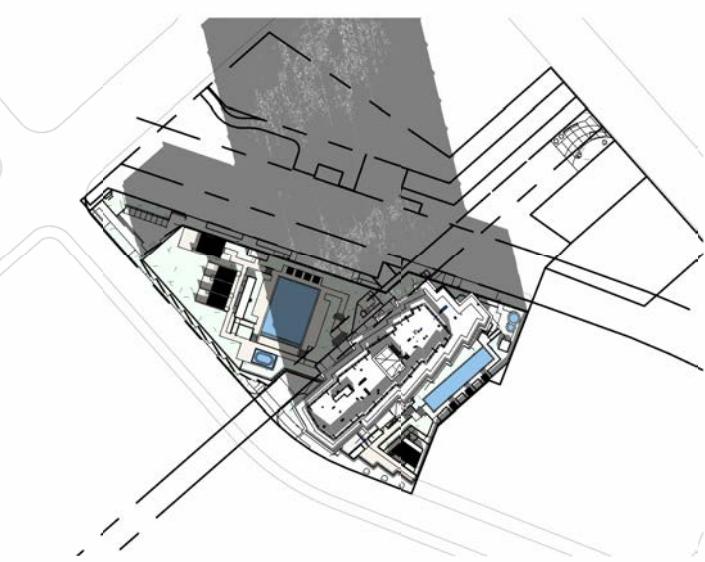

SHADE/SHADOW STUDY

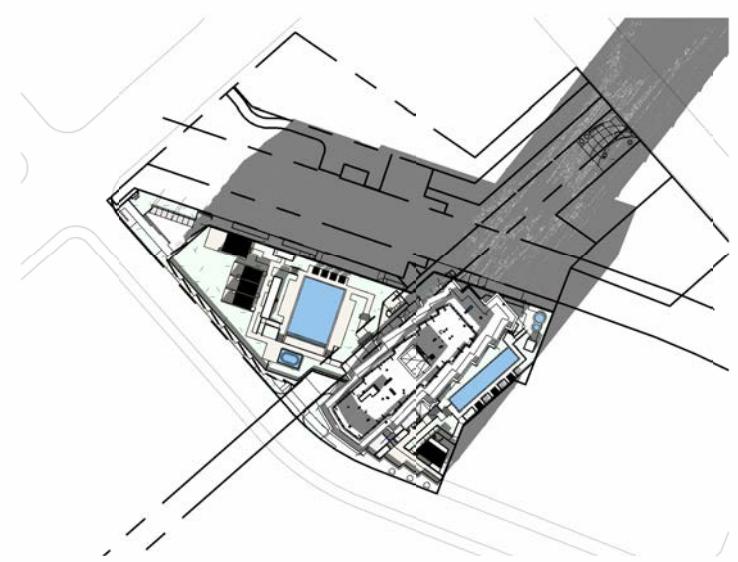

MARCH 22 9:00AM


MARCH 22 12:00PM


MARCH 22 3:00PM


JUNE 22 9:00AM


JUNE 22 12:00PM


JUNE 22 3:00PM

DECEMBER 22 9:00AM

DECEMBER 22 12:00PM

DECEMBER 22 3:00PM

0 100

© 2025 Solomon Cordwell Buenz

Architecture Planning Interior Design 255 California Street 3rd Floor San Francisco, CA 94111 T 415.216.2450 F 415.216.2451

PROJECT NAME: MAHANA WARD VILLAGE

DATE: _____

PROJECT NO: 2018028

REV.: _____

DRAWING TITLE: SHADOW STUDY

SHEET _____ of _____

DRAWING SCALE: 1" = 200'-0"

Appendix G

PEDESTRIAN WIND STUDY

REPORT

PEDESTRIAN WIND STUDY
WARD VILLAGE BLOCK N-WEST - MAHANA
RWDI #2302847
May 15, 2025

WARD VILLAGE BLOCK N-WEST - MAHANA

HONOLULU, HAWAII

PEDESTRIAN WIND STUDY

RWDI # 2302847

May 15, 2025

SUBMITTED TO

Steven Lee

Steven.Lee@howardhughes.com

Logan Hanohano

Logan.Hanohano@howardhughes.com

Cord Anderson

Cord.Anderson@howardhughes.com

The Howard Hughes Corporation

1240 Ala Moana Boulevard, Suite 200
Honolulu, HI 96814
T: 808.426.7686

SUBMITTED BY

Senwen Yang, Ph.D.

Technical Coordinator
Senwen.Yang@rwdi.com

Maryam Al Labbad, M.A.Sc., EIT

Technical Coordinator
Maryam.AlLabbad@rwdi.com

Hanqing Wu, Ph.D., P.Eng.

Senior Technical Director | Principal
Hanqing.Wu@rwdi.com

Dan Bacon

Senior Project Manager / Principal
Dan.Bacon@rwdi.com

RWDI

600 Southgate Drive
Guelph, Ontario, Canada N1G 4P6
T: 519.823.1311 x2245
F: 519.823.1316

EXECUTIVE SUMMARY

RWDI was retained to conduct a pedestrian wind assessment for the proposed Ward Village Block N-West in Honolulu, Hawaii (Image 1). Wind-tunnel testing was conducted in January 2024 for a previous design of the proposed development under the Existing, Proposed and Future configurations of the site and surroundings. The results for the Existing configuration of the site and surroundings are included in Appendix A.

RWDI received updated 3D model and architectural drawings of the proposed project in March 2025. This report summarizes the results from the second round of wind-tunnel testing conducted for the proposed development under the Proposed and Future configurations of the site and surroundings (Image 2). The results were analysed using the regional wind climate records (Image 3) and evaluated against the RWDI Pedestrian Wind Criteria for pedestrian comfort (pertaining to common wind speeds conducive to different levels of human activity) and pedestrian safety (pertaining to infrequent but strong gusts that could affect a person's footing). The predicted wind conditions are presented in Figures 1A through 2B and Table 1. Note that references to the orientation of streets and built features are based on Project North which is approximately aligned with Ward Avenue. Key findings are summarized as follows:

- The pedestrian wind safety criterion is predicted to be met at all assessed areas for all configurations studied.
- In the Proposed configuration, wind conditions at most areas assessed, including sidewalks/walkways, main entrances, and the pocket park, are predicted to be comfortable for the intended use year-round. Higher wind speeds and uncomfortable wind conditions are predicted near the intersection of Halekauwila Street and Ward Avenue on the west side of the podium, more notably during the summer months.
- Wind speeds at most areas on the Level 8 amenity deck are expected to be suitable for their intended use. Windier conditions are predicted around the family pool to the west of the tower, as well as to the east and northeast of the tower in both seasons.
- The addition of the future developments is predicted to reduce wind speeds near the intersection of Halekauwila Street and Ward Avenue. The future developments are not expected to impact the wind conditions in the designated pocket park to the north or on the Level 8 amenity deck.

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request.
© RWDI name and logo are registered trademarks in Canada and the United States of America
© 2025 Rowan Williams Davies & Irwin Inc. ("RWDI") ALL RIGHTS RESERVED

rwdi.com

rwdi.com

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1	INTRODUCTION	1
1.1	Project Description	1
1.2	Objectives	1
2	BACKGROUND AND APPROACH	2
2.1	Wind Tunnel Study Model	2
2.2	Wind Climate Data	5
2.3	RWDI Pedestrian Wind Criteria	6
2.4	General Wind Flow Mechanisms	7
3	RESULTS AND DISCUSSION	8
3.1	Existing Configuration	8
3.2	Proposed Configuration	8
3.2.1	Grade-Level (Locations 1 through 47)	8
3.2.2	Above Grade (Locations 48 through 89)	9
3.3	Future Configuration	9
4	STATEMENT OF LIMITATIONS	10
5	REFERENCES	12

LIST OF FIGURES

Figure 1A: Pedestrian Wind Comfort Conditions – Proposed Configuration – Summer
Figure 1B: Pedestrian Wind Comfort Conditions – Future Configuration – Summer
Figure 2A: Pedestrian Wind Comfort Conditions – Proposed Configuration – Winter
Figure 2B: Pedestrian Wind Comfort Conditions – Future Configuration – Winter

LIST OF TABLES

Table 1: Pedestrian Wind Comfort and Safety Conditions

LIST OF APPENDICES

Appendix A: Existing Pedestrian Wind Site Conditions

1 INTRODUCTION

RWDI was retained to conduct a pedestrian wind assessment for the proposed Ward Village Block N-West – Mahana in Honolulu, Hawaii. This report presents the project objectives, approach and the main results from RWDI's assessment and provides conceptual wind control measures, where necessary. Our Statement of Limitations as it pertains to this study can be found in Section 4 of this report.

1.1 Project Description

The project site is located at the northeast corner of the intersection of Ward Avenue and Halekauwila Street, and it is an addition to Block N-East (Image 1). The proposed building consists of a 33-story (approximately 365 ft) residential tower with a 7-story podium structure and accessible rooftop. As part of the development plan, there is a small area designated as a "Pocket Park" to the north of the project site on the south of Queen Street.

1.2 Objectives

The objective of the study was to assess the effect of the proposed development on local conditions in pedestrian areas on and around the study site and provide recommendations for minimizing adverse effects, if needed. This quantitative assessment was based on wind speed measurements on a scale model of the project and its surroundings in one of RWDI's boundary-layer wind tunnels. These measurements were combined with the local wind records and compared to RWDI criteria for gauging wind comfort and safety in pedestrian areas. The assessment focused on critical pedestrian areas, including building entrances, nearby walkways, pocket park and Level 8 amenity area.

Image 1: Aerial View of Site and Surroundings (Photo Courtesy of Google™ Earth)

2 BACKGROUND AND APPROACH

2.1 Wind Tunnel Study Model

To assess the wind environment around the proposed project, a 1:300 scale model of the project site and surroundings was constructed for the wind tunnel tests of the following configurations:

- A - Proposed: Proposed project with existing surroundings (Image 2A), and,
- B - Future: Proposed project with existing and future surroundings (Image 2B).

The wind tunnel model included all relevant surrounding buildings and topography within an approximate 1200 ft radius around the study site. The wind and turbulence profiles in the atmospheric boundary layer beyond the modelled area were also simulated in RWDI's wind tunnel. The wind tunnel model was instrumented with 89 specially designed wind speed sensors to measure mean and gust speeds at a full-scale height of approximately ft above local grade in pedestrian areas throughout the study site. The placement of wind measurement locations was based on our experience and understanding of the pedestrian usage for this site, and reviewed by The Howard Hughes Corporation. Wind speeds were measured for 36 directions in 10-degree increments. The measurements at each sensor location were recorded in the form of ratios of local mean and gust speeds to the mean wind speed at a reference height above the model.

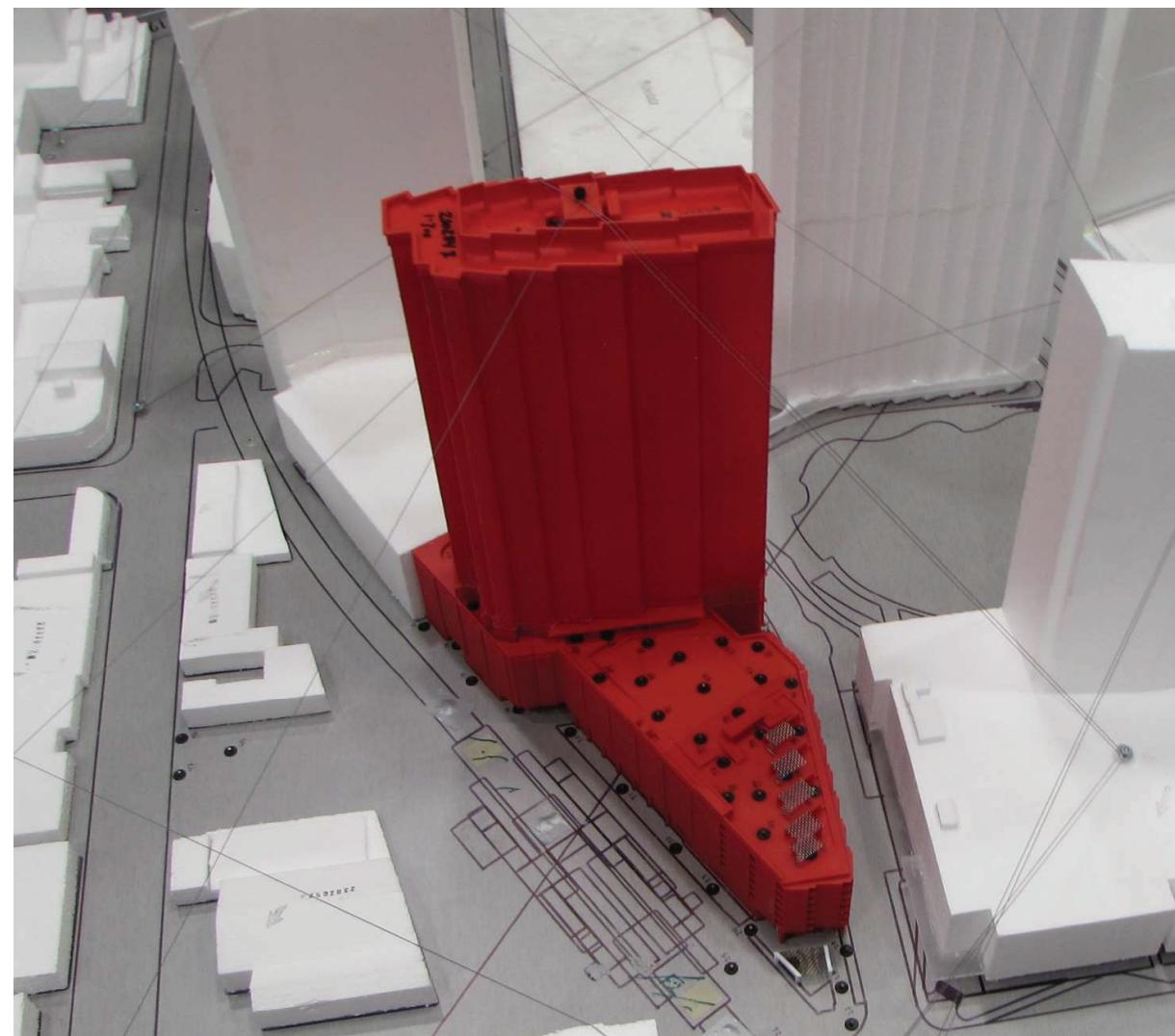


Image 2A: Wind Tunnel Study Model - Proposed Configuration

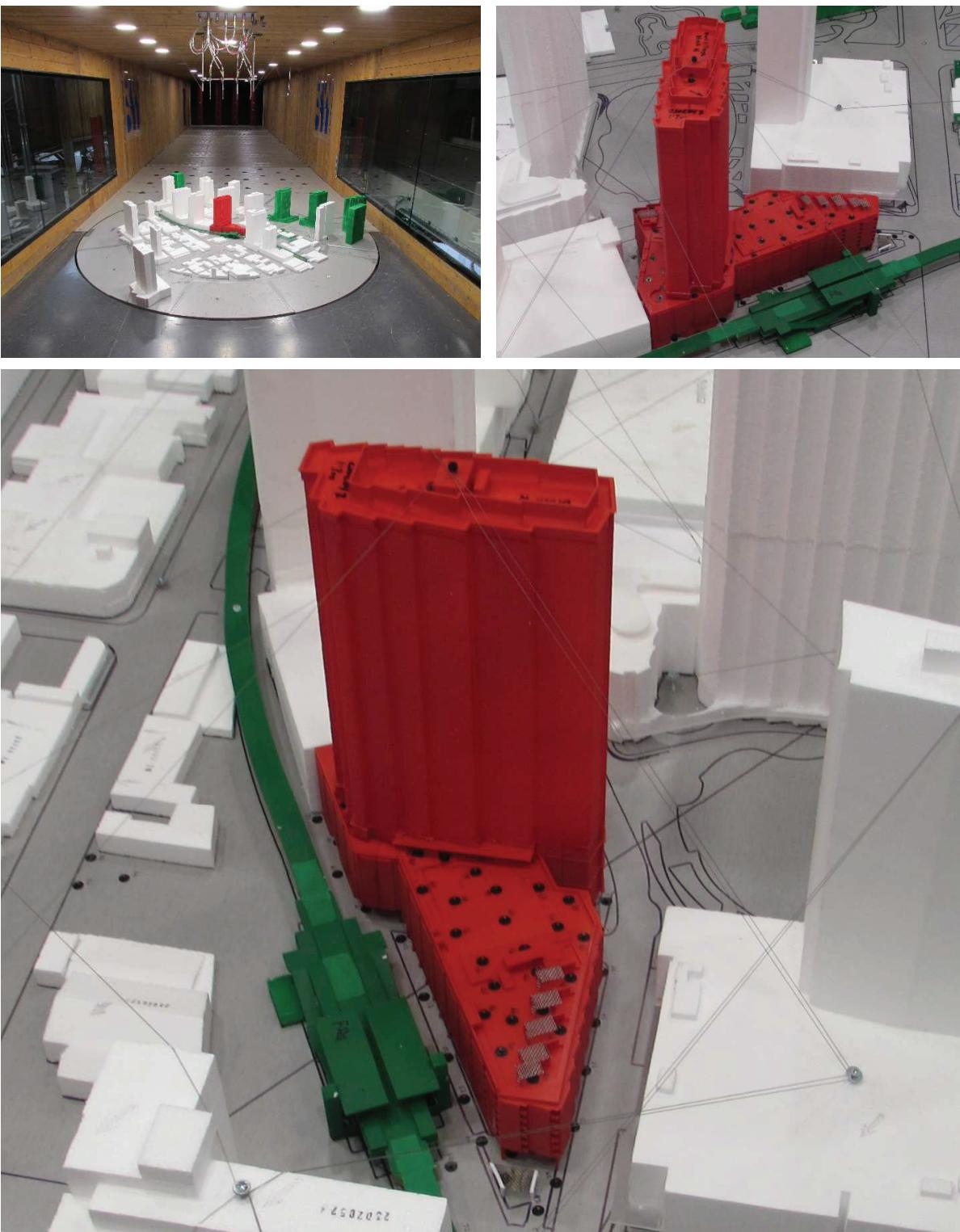


Image 2B: Wind Tunnel Study Model – Future Configuration

2.2 Wind Climate Data

Wind statistics recorded at Honolulu International Airport between 1993 and 2023, inclusive, were analyzed for the Summer (May through October) and Winter (November through April) seasons. Image 3 graphically depicts the directional distributions of wind frequencies and speeds for these two seasons. Winds from the northeast and east-northeast directions are predominant throughout the year, as indicated by the wind roses. Strong winds of a mean speed greater than 15 mph measured at the airport (at an anemometer height of 30 ft) occur for 25.8% and 19.6% of the time during the summer and winter seasons, respectively.

Wind statistics were combined with the wind tunnel data to predict the frequency of occurrence of full-scale wind speeds. The full-scale wind predictions were then compared with the wind criteria for pedestrian comfort and safety.

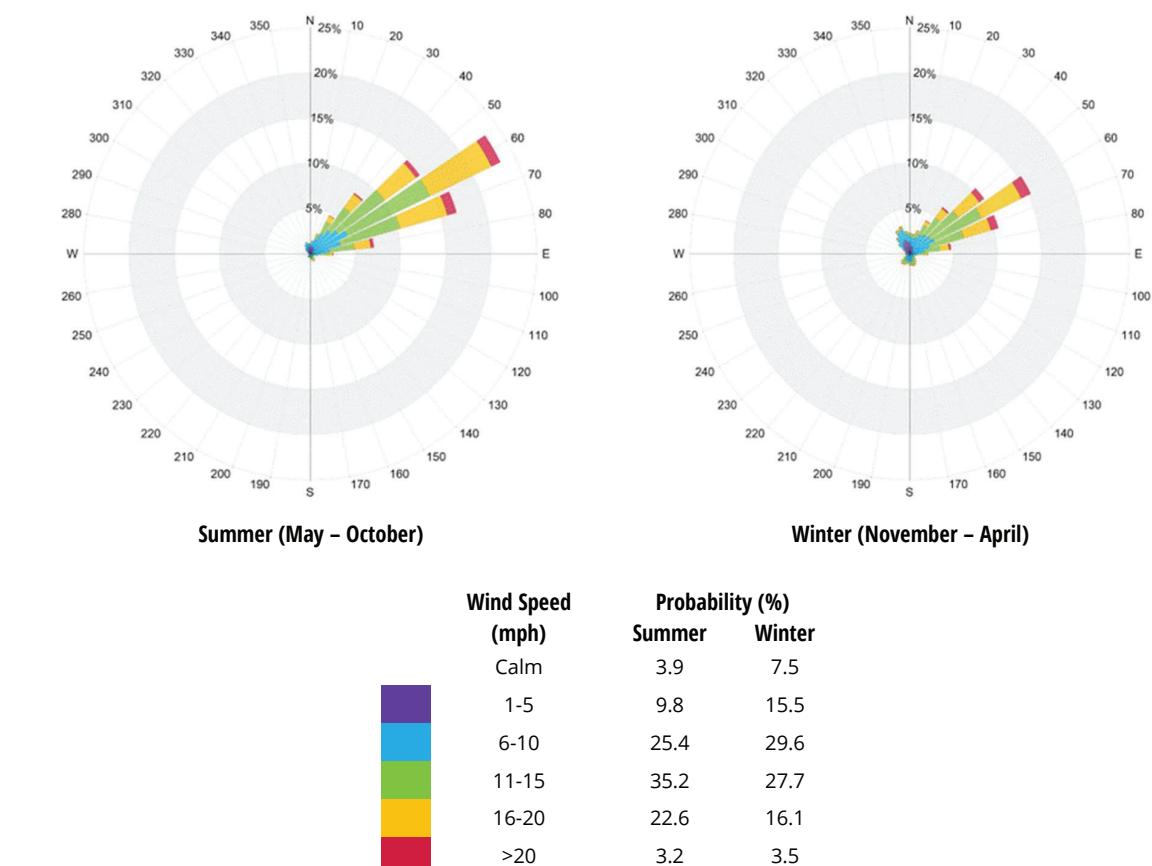


Image 3: Directional Distribution of Winds Approaching Honolulu International Airport between 1993 and 2023

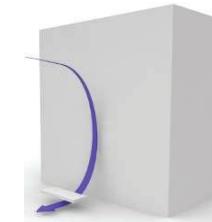
2.3 RWDI Pedestrian Wind Criteria

The RWDI pedestrian wind criteria, which have been developed by RWDI through research and consulting practice since 1974, are used in the current study. These criteria have been widely accepted by municipal authorities as well as by the building design and city planning community. Regional differences in wind climate and thermal conditions as well as variations in age, health, clothing, etc. can affect a person's perception of the wind climate. Therefore, comparisons of wind speeds for the existing and proposed building configurations are the most objective way in assessing local pedestrian wind conditions. In general, the combined effect of mean and gust speeds on pedestrian comfort can be quantified by a Gust Equivalent Mean (GEM).

Comfort Category	GEM Speed (mph)	Description
Sitting	≤ 6	Calm or light breezes desired for outdoor restaurants and seating areas where one can read a paper without having it blown away
Standing	≤ 8	Gentle breezes suitable for main building entrances, bus stops, and other places where pedestrians may linger
Strolling	≤ 10	Moderate winds that would be appropriate for window shopping and strolling along a downtown street, plaza or park
Walking	≤ 12	Relatively high speeds that can be tolerated if one's objective is to walk, run or cycle without lingering
Uncomfortable	> 12	Strong winds of this magnitude are considered a nuisance for all pedestrian activities, and wind mitigation is typically recommended

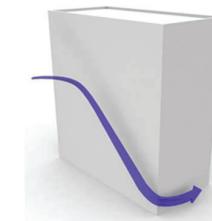
Notes:

- (1) GEM Speed = max (Mean Speed, Gust Speed/1.85) and *Gust Speed* = *Mean Speed* + 3**RMS Speed*.
- (2) A wind comfort category is applicable if the predicted GEM speeds are within the respective threshold for at least 80% of the time in the season assessed.
- (3) The comfort assessment was conducted for two seasonal periods, summer (May to October) and winter (November to April).
- (4) The assessment considers winds occurring between 6 AM and midnight. Limited usage of outdoor spaces is anticipated in the excluded period.

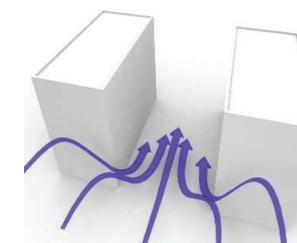

Safety Criterion	Gust Speed (mph)	Description
Exceeded	> 56	Excessive gust speeds can adversely affect a pedestrian's balance and footing. Wind mitigation is typically required.

Notes:

- (1) Based on an annual exceedance of 9 hours or 0.1% of the time for 24 hours a day; and,
- (2) Only gust speeds need to be considered in the wind safety criterion. These are usually rare events but deserve special attention in city planning and building design due to their potential safety impact on pedestrians.


2.4 General Wind Flow Mechanisms

In the discussion of wind conditions, reference is made to the following wind flow mechanisms (Image 4):


DOWNWASHING

Tall buildings tend to intercept the stronger winds at higher elevations and redirect them to the ground level. This is often the main cause for wind accelerations around large buildings at the pedestrian level.

CORNER ACCELERATION

When wind moves around the buildings a localized increase in the wind activity or corner acceleration can be expected around the exposed building corners at pedestrian level. The effect is intensified when the wind approaches an oblique angle to a tall façade and are deflected down and around the exposed corners.

CHANNELING EFFECT

Wind flow tends to accelerate through the space between buildings, under bridges or in passages through buildings due to channelling effect caused by the narrow gap. The effect is intensified if the channel is aligned with the predominant wind direction.

Image 4: General Wind Flow Mechanisms

If these building/wind combinations occur for prevailing winds, there is a greater potential for increased wind activity. Design details such as setting back a tall tower from the edges of a podium, deep canopies close to ground level, wind screens, tall trees with dense landscaping, etc. can help reduce wind speeds. The choice and effectiveness of these measures would depend on the exposure and orientation of the site with respect to the prevailing wind directions and the size and massing of the proposed buildings.

3 RESULTS AND DISCUSSION

The predicted wind conditions are shown on site plans in Figures 1A through 2B located in the "Figures" section of this report and the associated wind speeds are presented in Table 1, located in the "Tables" section of this report. The existing configuration results from the previous wind tunnel test are presented in Appendix A.

Generally, wind conditions that are comfortable for walking or strolling are appropriate for sidewalks and walkways, as pedestrians will be active and less likely to remain in one area for prolonged periods of time. Lower wind speeds, conducive to standing or sitting, are preferred at main entrances where pedestrians are apt to linger. Wind conditions that are comfortable for sitting are desired for outdoor amenities and seating areas. However, considering the tropical or warm climate of the area, slightly higher wind speeds comfortable for standing might be acceptable. The following is a detailed discussion of the suitability of the predicted wind conditions for the anticipated pedestrian use of each area of interest.

Wind conditions that meet the safety criterion are predicted at all assessed locations in all configurations.

3.1 Existing Configuration

Wind speeds throughout the year around the project site are mostly comfortable for standing or strolling, as shown in Appendix A. Similar wind conditions are expected in the pocket park area. Wind speeds during the summer are slightly higher than in the winter due to seasonal variations (Figures A1 and A2). The highest wind speeds around the project site are expected to occur at the northeast of the site, induced by the existing Block N-East. These wind speeds are comfortable for walking.

3.2 Proposed Configuration

3.2.1 Grade-Level (Locations 1 through 47)

As shown in Figures 1A and 2A, wind speeds at the main entrances (Locations 1 and 8) of the proposed building are expected to be comfortable for sitting year-round, making them suitable for their intended passive use. Wind conditions at the assessed locations in the pocket park (Locations 45-47) are predicted to be comfortable for standing or strolling year-round, which is similar to those in the Existing configuration.

Wind conditions at most assessed areas, including sidewalks and walkways, are predicted to be comfortable for walking or better in both winter and summer, generally suitable for their intended use. However, higher wind speeds and uncomfortable wind conditions are predicted on the west side of the podium, particularly during the summer months (Locations 26, 27, 30, and 31 in Figure 1A). Winds improve slightly during the winter months (Locations 26 and 31 in Figure 2A). These wind speeds are further reduced to more comfortable levels in the Future configuration – see Figures 1B and 2B and Section 3.3. If reduced wind speeds are desired in the interim, wind control strategies, such as wind screens and landscaping, are recommended along the sidewalks, as shown in Image 6.

Image 5: Example of mitigation measures on sidewalks and walkways

3.2.2 Above Grade (Locations 48 through 89)

Wind speeds at the assessed locations in the lounging area on the west and south portions of the podium are expected to be comfortable for standing or sitting, making them suitable for passive use throughout the year (Figures 1A and 2A). The wind conditions near the pool are anticipated to be comfortable for walking or strolling year-round. Higher wind speeds are expected near the east and northeast of the tower, with uncomfortable wind conditions anticipated in the summer (Locations 49, 50, and 53 in Figure 1A) and in the winter (Location 53 in Figure 2A). Wind control measures, including trellises, landscaping, and tall railings (at least 6 ft in height), are recommended, as shown in Image 7.

3.3 Future Configuration

As illustrated in Figures 1B and 2B, the addition of future developments is predicted to reduce wind speeds near the intersection of Haleakauwila Street and Ward Avenue. Wind speeds at all assessed grade-level locations are expected to be comfortable for walking. The future developments are not anticipated to affect wind conditions in the designated pocket park to the north. Additionally, wind conditions on the Level 8 amenity deck are projected to remain comparable to those in the Proposed configuration.

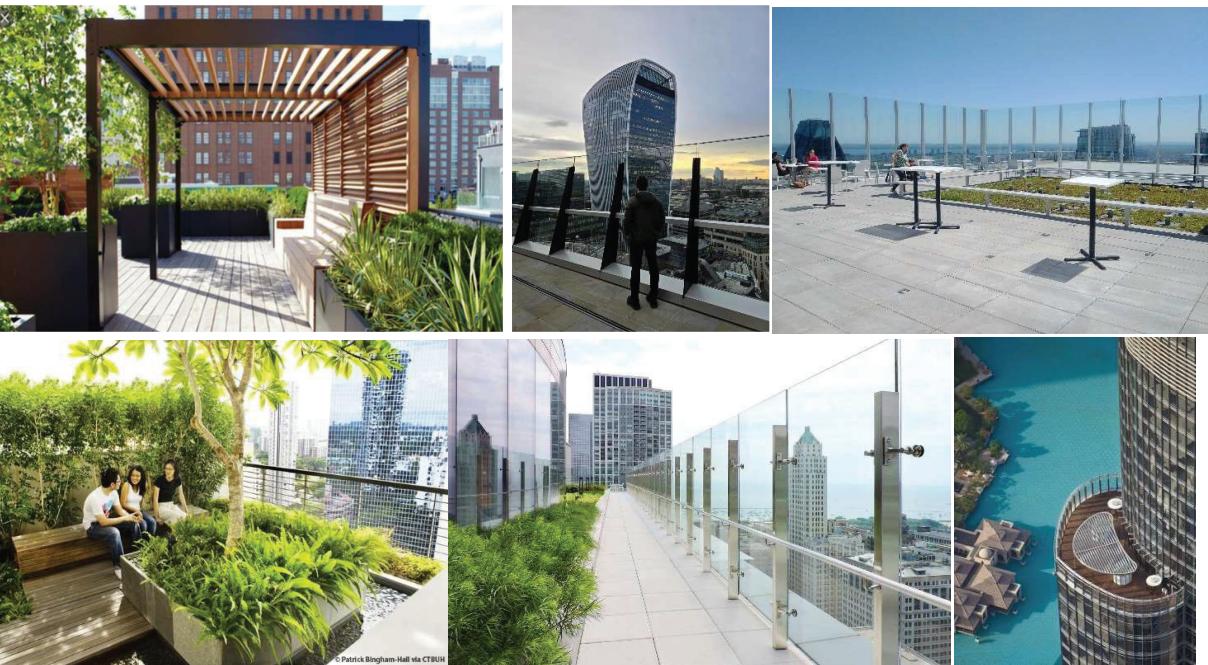


Image 6 Example of mitigation measures on outdoor amenity terraces

4 STATEMENT OF LIMITATIONS

Limitations

This report was prepared by Rowan Williams Davies & Irwin, Inc. ("RWDI") for Howard Hughes Corporation ("Client"). The findings and conclusions presented in this report have been prepared for the Client and are specific to the project described herein ("Project"). The conclusions and recommendations contained in this report are based on the information available to RWDI when this report was prepared.

The conclusions and recommendations contained in this report have also been made for the specific purpose(s) set out herein. Should the Client or any other third party utilize the report and/or implement the conclusions and recommendations contained therein for any other purpose or project without the involvement of RWDI, the Client or such third party assumes any and all risk of any and all consequences arising from such use and RWDI accepts no responsibility for any liability, loss, or damage of any kind suffered by Client or any other third party arising therefrom.

Finally, it is imperative that the Client and/or any party relying on the conclusions and recommendations in this report carefully review the stated assumptions contained herein and to understand the different factors which may impact the conclusions and recommendations provided.

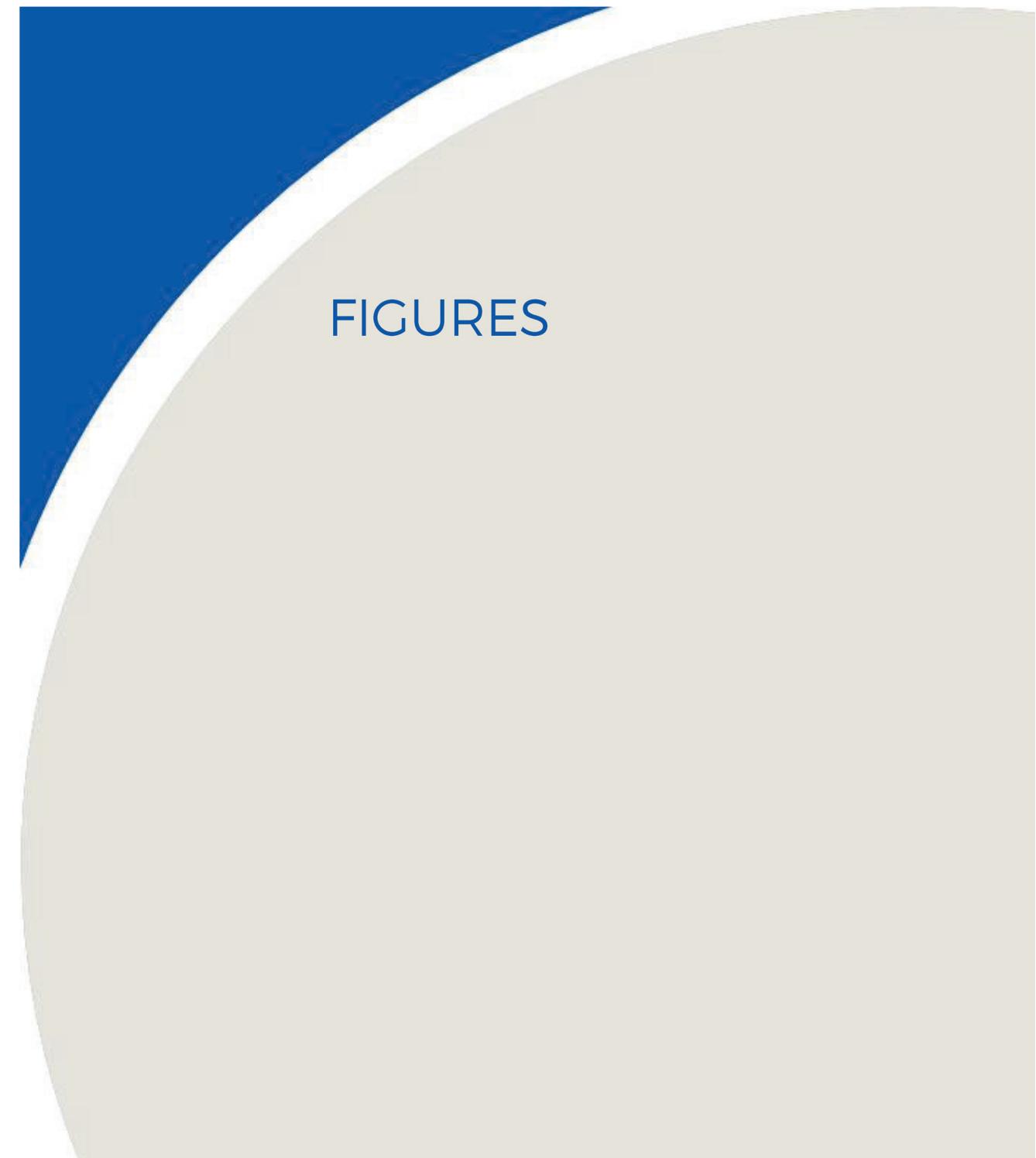
Design Assumptions

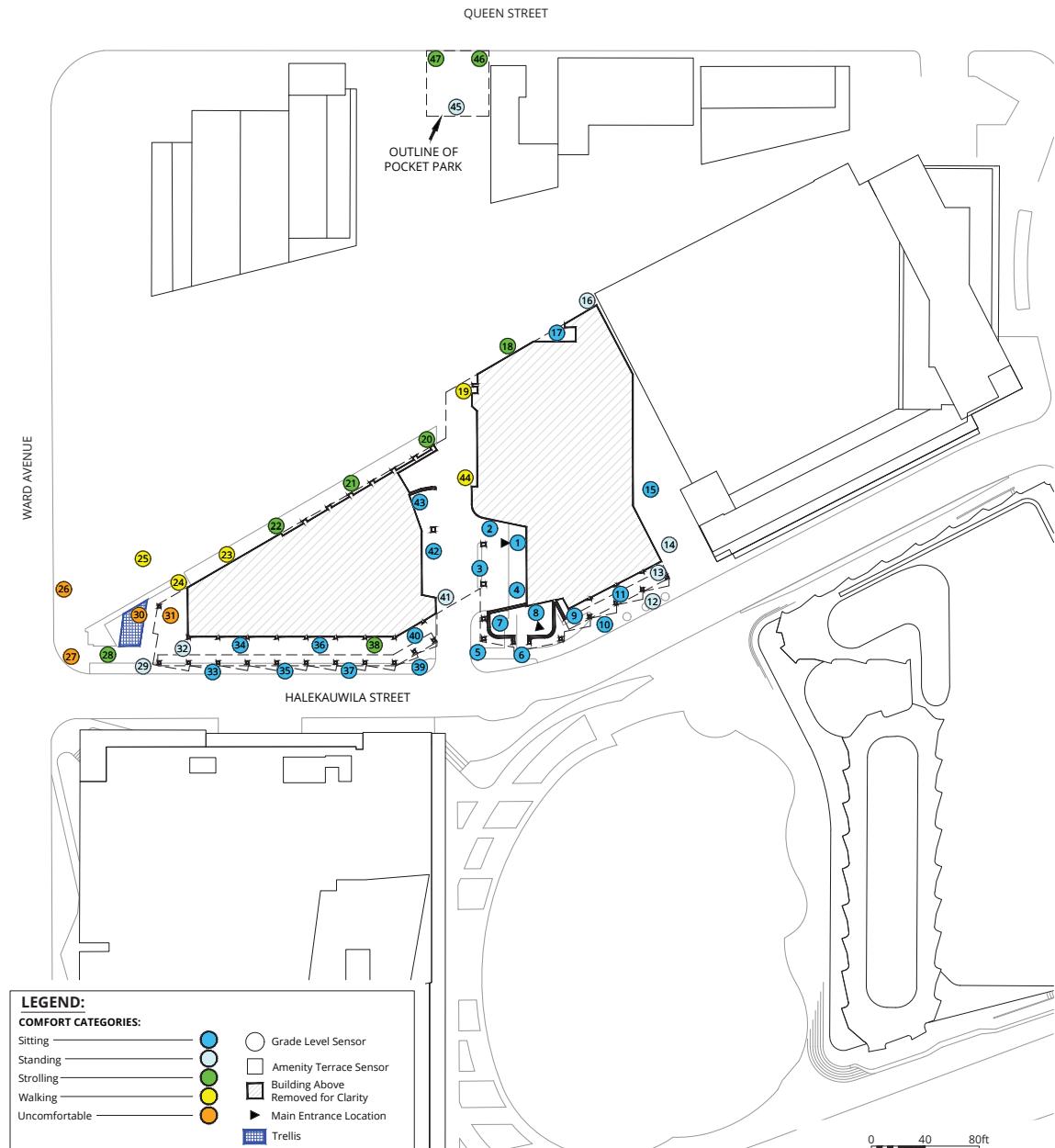
RWDI confirms that the pedestrian wind assessment (the "Assessment") discussed herein was performed by RWDI in accordance with generally accepted professional standards at the time when the Assessment was performed and in the location of the Project. No other representations, warranties, or guarantees are made with respect to the accuracy or completeness of the information, findings, recommendations, or conclusions contained in this Report. This report is not a legal opinion regarding compliance with applicable laws.

The findings and recommendations set out in this report are based on the following information disclosed to RWDI. Drawings and information listed below were received from the project team and used to construct the scale model of the proposed Ward Village Block N-West ("Project Data").

File Name	File Type	Date Received (dd/mm/yyyy)
2025-0228_Mahana_Architecture	PDF	05/03/2025
SCB_Mahana_Main	Revit	05/03/2025
SCB_Mahana_Skin	Revit	05/03/2025

The recommendations and conclusions are based on the assumption that the Project Data and Climate Data are accurate and complete. RWDI assumes no responsibility for any inaccuracy or deficiency in information it has received from others. In addition, the recommendations and conclusions in this report are partially based on historical data and can be affected by a number of external factors, including but not limited to Project design, quality of materials and construction, site conditions, meteorological events, and climate change. As such, the conclusions and recommendations contained in this report do not list every possible outcome.

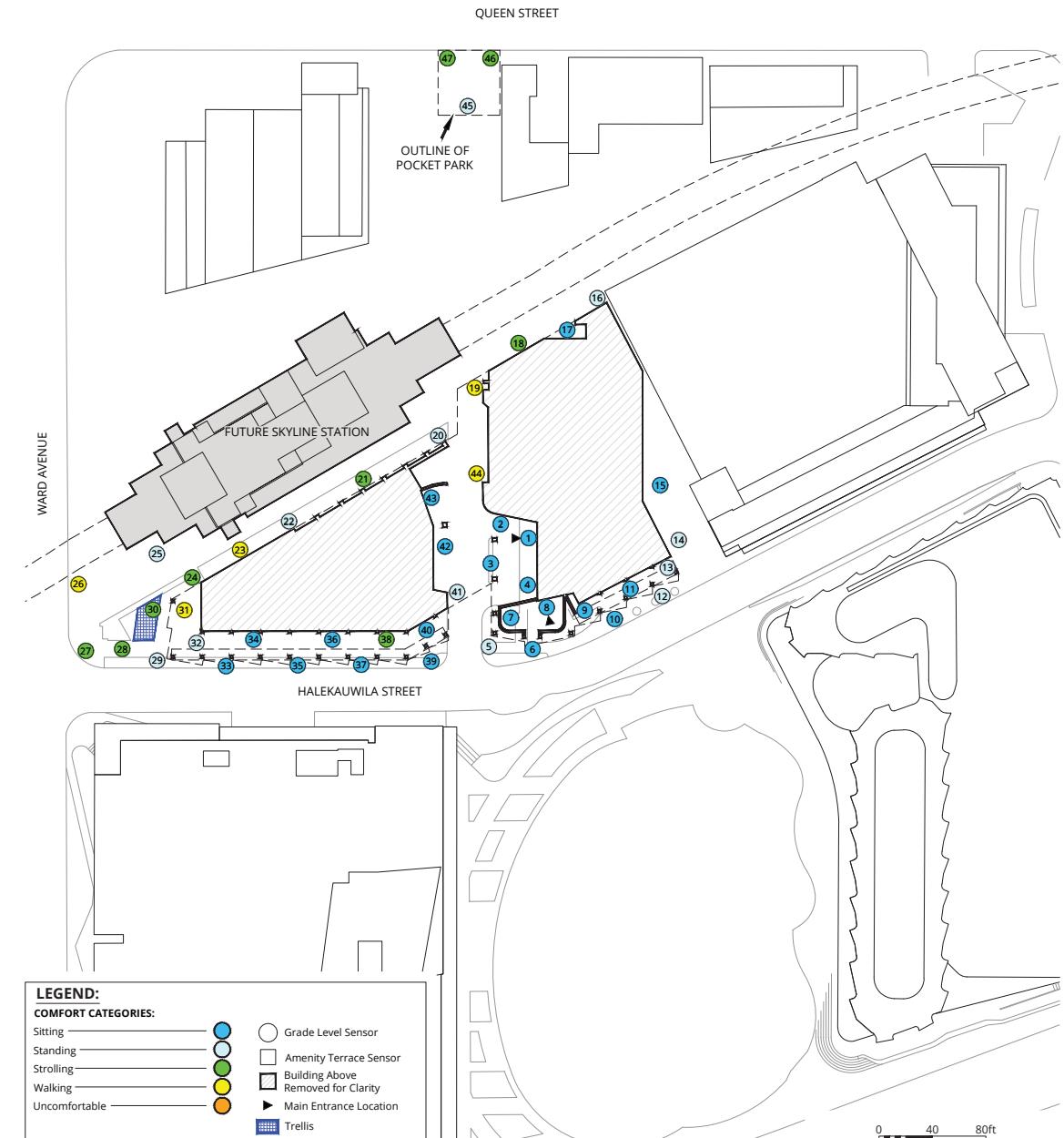

The opinions in this report can only be relied upon to the extent that the Project Data and Project Specific Conditions have not changed. Any change in the Project Data or Project Specific Conditions not reflected in this report can impact and/or alter the recommendations and conclusions in this report. Therefore, it is incumbent upon the Client and/or any other third party reviewing the recommendations and conclusions in this report to contact RWDI in the event of any change in the Project Data and Project Specific Conditions in order to determine whether any such change(s) may impact the assumptions upon which the recommendations and conclusions were made.



5 REFERENCES

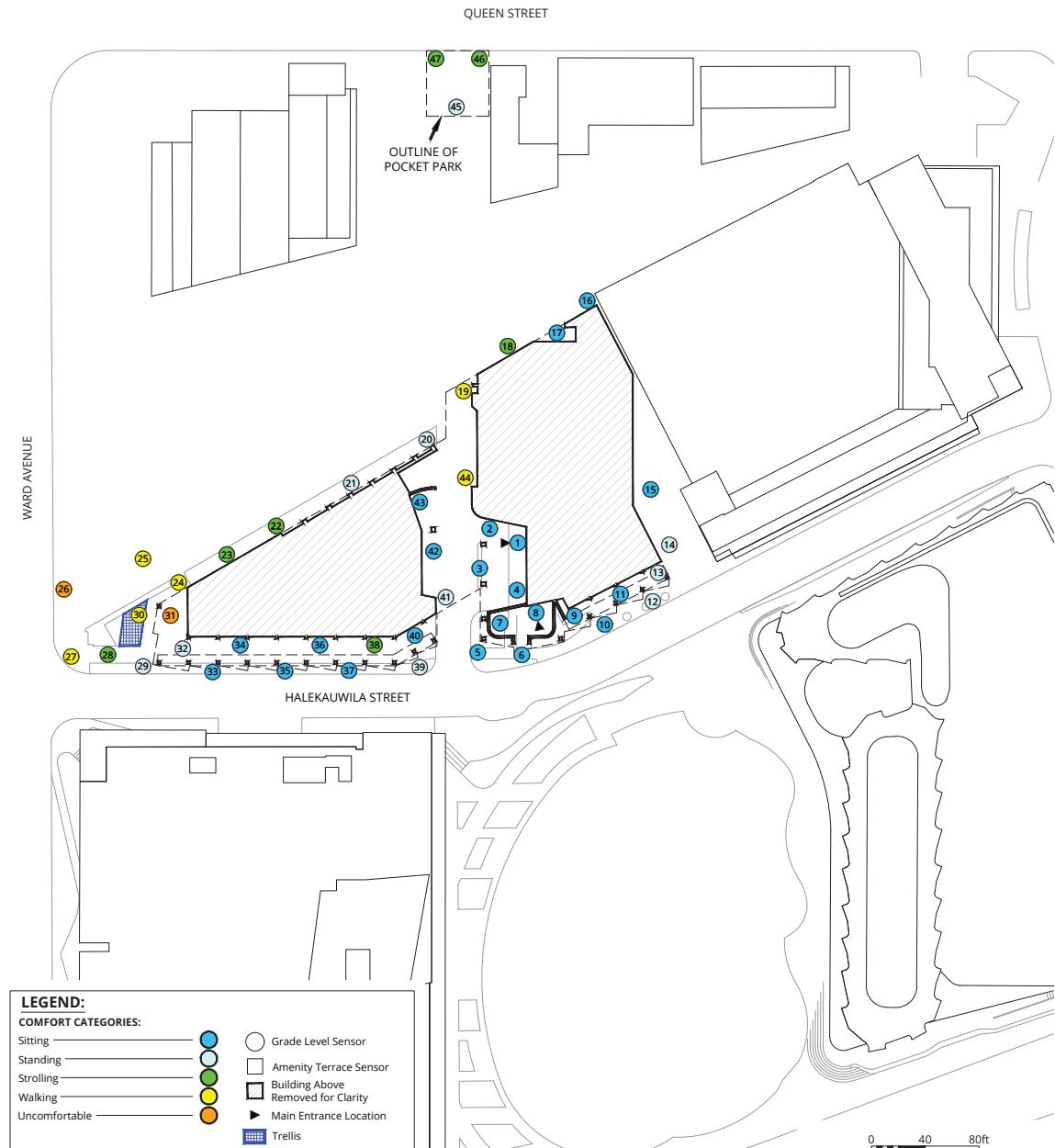
1. ASCE Task Committee on Outdoor Human Comfort (2004). *Outdoor Human Comfort and Its Assessment*, 68 pages, American Society of Civil Engineers, Reston, Virginia, USA.
2. Williams, C.J., Hunter, M.A. and Waechter, W.F. (1990). "Criteria for Assessing the Pedestrian Wind Environment," *Journal of Wind Engineering and Industrial Aerodynamics*, Vol.36, pp.811-815.
3. Williams, C.J., Soligo M.J. and Cote, J. (1992). "A Discussion of the Components for a Comprehensive Pedestrian Level Comfort Criteria," *Journal of Wind Engineering and Industrial Aerodynamics*, Vol.41-44, pp.2389-2390.
4. Soligo, M.J., Irwin, P.A., and Williams, C.J. (1993). "Pedestrian Comfort Including Wind and Thermal Effects," *Third Asia-Pacific Symposium on Wind Engineering*, Hong Kong.
5. Soligo, M.J., Irwin, P.A., Williams, C.J. and Schuyler, G.D. (1998). "A Comprehensive Assessment of Pedestrian Comfort Including Thermal Effects," *Journal of Wind Engineering and Industrial Aerodynamics*, Vol.77&78, pp.753-766.
6. Williams, C.J., Wu, H., Waechter, W.F. and Baker, H.A. (1999). "Experiences with Remedial Solutions to Control Pedestrian Wind Problems," *Tenth International Conference on Wind Engineering*, Copenhagen, Denmark.
7. Lawson, T.V. (1973). "Wind Environment of Buildings: A Logical Approach to the Establishment of Criteria", *Report No. TVL 7321*, Department of Aeronautic Engineering, University of Bristol, Bristol, England.
8. Durnin, F. H. (1997). "Pedestrian Level Wind Criteria Using the Equivalent average", *Journal of Wind Engineering and Industrial Aerodynamics*, Vol. 66, pp.215-226.
9. Wu, H. and Kriksic, F. (2012). "Designing for Pedestrian Comfort in Response to Local Climate", *Journal of Wind Engineering and Industrial Aerodynamics*, Vol.104-106, pp.397-407.
10. Wu, H., Williams, C.J., Baker, H.A. and Waechter, W.F. (2004), "Knowledge-based Desk-Top Analysis of Pedestrian Wind Conditions", *ASCE Structure Congress 2004*, Nashville, Tennessee.

FIGURES



Pedestrian Wind Comfort Conditions
Proposed Configuration
Summer (May to October, 6:00 to 23:00)

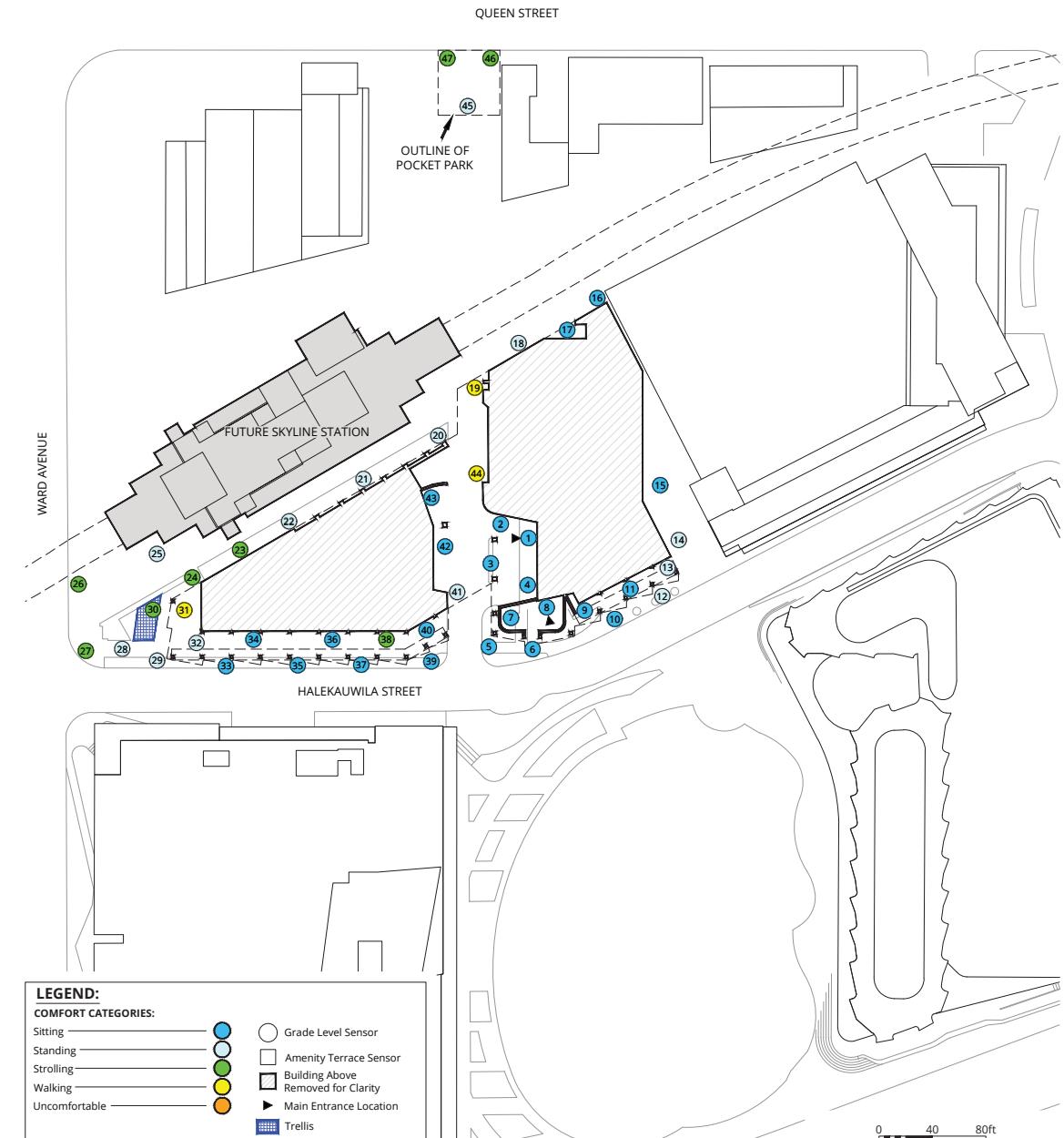
Ward Village Block N - Honolulu, HI


True North
Drawn by: ALJM Figure: 1A
Approx. Scale: 1"=80'
Project #2302847 Date Revised: May 6, 2025
RW

Pedestrian Wind Comfort Conditions
Future Configuration
Summer (May to October, 6:00 to 23:00)

Ward Village Block N - Honolulu, HI

True North
Drawn by: ALJM Figure: 1B
Approx. Scale: 1"=80'
Project #2302847 Date Revised: May 6, 2025
RW



Pedestrian Wind Comfort Conditions
Proposed Configuration
Winter (November to April, 6:00 to 23:00)

Ward Village Block N - Honolulu, HI

True North
Drawn by: ALJM Figure: 2A
Approx. Scale: 1"=80'

Project #2302847 Date Revised: May 6, 2025

Pedestrian Wind Comfort Conditions
Future Configuration
Winter (November to April, 6:00 to 23:00)

Ward Village Block N - Honolulu, HI

True North
Drawn by: ALJM Figure: 2B
Approx. Scale: 1"=80'

Project #2302847 Date Revised: May 6, 2025

TABLES

Table 1: Pedestrian Wind Comfort and Safety Conditions

Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (mph)	Rating	Speed (mph)	Rating	Speed (mph)	Rating
1	Proposed Future	2	Sitting	3	Sitting	10	Pass
2	Proposed Future	3	Sitting	3	Sitting	12	Pass
3	Proposed Future	6	Sitting	6	Sitting	22	Pass
4	Proposed Future	4	Sitting	4	Sitting	18	Pass
5	Proposed Future	6	Sitting	6	Sitting	26	Pass
6	Proposed Future	5	Sitting	5	Sitting	26	Pass
7	Proposed Future	3	Sitting	3	Sitting	16	Pass
8	Proposed Future	3	Sitting	3	Sitting	16	Pass
9	Proposed Future	5	Sitting	5	Sitting	20	Pass
10	Proposed Future	6	Sitting	6	Sitting	22	Pass
11	Proposed Future	5	Sitting	6	Sitting	22	Pass
12	Proposed Future	8	Standing	8	Standing	27	Pass
13	Proposed Future	7	Standing	7	Standing	28	Pass
14	Proposed Future	7	Standing	7	Standing	26	Pass
15	Proposed Future	5	Sitting	5	Sitting	21	Pass
16	Proposed Future	7	Standing	6	Sitting	21	Pass
17	Proposed Future	5	Sitting	5	Sitting	16	Pass

Table 1: Pedestrian Wind Comfort and Safety Conditions

Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (mph)	Rating	Speed (mph)	Rating	Speed (mph)	Rating
18	Proposed Future	9	Strolling	9	Strolling	30	Pass
		9	Strolling	8	Standing	28	Pass
19	Proposed Future	12	Walking	12	Walking	40	Pass
		12	Walking	11	Walking	38	Pass
20	Proposed Future	9	Strolling	8	Standing	25	Pass
		8	Standing	7	Standing	23	Pass
21	Proposed Future	9	Strolling	8	Standing	30	Pass
		9	Strolling	8	Standing	28	Pass
22	Proposed Future	10	Strolling	10	Strolling	33	Pass
		8	Standing	7	Standing	25	Pass
23	Proposed Future	11	Walking	10	Strolling	34	Pass
		11	Walking	10	Strolling	34	Pass
24	Proposed Future	12	Walking	11	Walking	37	Pass
		10	Strolling	9	Strolling	31	Pass
25	Proposed Future	12	Walking	11	Walking	36	Pass
		8	Standing	8	Standing	26	Pass
26	Proposed Future	13	Uncomfortable	13	Uncomfortable	36	Pass
		11	Walking	10	Strolling	33	Pass
27	Proposed Future	13	Uncomfortable	12	Walking	35	Pass
		10	Strolling	9	Strolling	29	Pass
28	Proposed Future	10	Strolling	10	Strolling	31	Pass
		9	Strolling	8	Standing	26	Pass
29	Proposed Future	8	Standing	8	Standing	26	Pass
		7	Standing	7	Standing	23	Pass
30	Proposed Future	13	Uncomfortable	12	Walking	38	Pass
		10	Strolling	9	Strolling	30	Pass
31	Proposed Future	14	Uncomfortable	13	Uncomfortable	41	Pass
		12	Walking	11	Walking	35	Pass
32	Proposed Future	8	Standing	8	Standing	31	Pass
		8	Standing	7	Standing	27	Pass
33	Proposed Future	5	Sitting	5	Sitting	23	Pass
		4	Sitting	5	Sitting	23	Pass
34	Proposed Future	4	Sitting	5	Sitting	17	Pass
		4	Sitting	4	Sitting	16	Pass

Table 1: Pedestrian Wind Comfort and Safety Conditions

Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (mph)	Rating	Speed (mph)	Rating	Speed (mph)	Rating
35	Proposed Future	5	Sitting	5	Sitting	26	Pass
		4	Sitting	5	Sitting	26	Pass
36	Proposed Future	3	Sitting	4	Sitting	18	Pass
		3	Sitting	3	Sitting	17	Pass
37	Proposed Future	6	Sitting	6	Sitting	27	Pass
		5	Sitting	6	Sitting	27	Pass
38	Proposed Future	9	Strolling	9	Strolling	26	Pass
		9	Strolling	9	Strolling	25	Pass
39	Proposed Future	6	Sitting	7	Standing	26	Pass
		6	Sitting	6	Sitting	26	Pass
40	Proposed Future	4	Sitting	5	Sitting	27	Pass
		4	Sitting	5	Sitting	25	Pass
41	Proposed Future	7	Standing	7	Standing	26	Pass
		7	Standing	7	Standing	25	Pass
42	Proposed Future	6	Sitting	6	Sitting	21	Pass
		6	Sitting	6	Sitting	20	Pass
43	Proposed Future	3	Sitting	3	Sitting	13	Pass
		3	Sitting	3	Sitting	13	Pass
44	Proposed Future	12	Walking	12	Walking	36	Pass
		12	Walking	12	Walking	34	Pass
45	Proposed Future	7	Standing	7	Standing	24	Pass
		7	Standing	7	Standing	24	Pass
46	Proposed Future	10	Strolling	10	Strolling	33	Pass
		10	Strolling	9	Strolling	32	Pass
47	Proposed Future	10	Strolling	9	Strolling	30	Pass
		10	Strolling	9	Strolling	30	Pass
48	Proposed Future	8	Standing	7	Standing	27	Pass
		9	Strolling	8	Standing	30	Pass
49	Proposed Future	13	Uncomfortable	12	Walking	41	Pass
		13	Uncomfortable	11	Walking	40	Pass
50	Proposed Future	13	Uncomfortable	12	Walking	41	Pass
		14	Uncomfortable	12	Walking	42	Pass
51	Proposed Future	10	Strolling	9	Strolling	31	Pass
		10	Strolling	10	Strolling	32	Pass

Table 1: Pedestrian Wind Comfort and Safety Conditions

Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (mph)	Rating	Speed (mph)	Rating	Speed (mph)	Rating
52	Proposed Future	8 9	Standing Strolling	8 8	Standing Standing	25 25	Pass Pass
53	Proposed Future	14 14	Uncomfortable Uncomfortable	13 13	Uncomfortable Uncomfortable	44 45	Pass Pass
54	Proposed Future	11 12	Walking Walking	10 10	Strolling Strolling	39 40	Pass Pass
55	Proposed Future	2 2	Sitting Sitting	2 2	Sitting Sitting	7 7	Pass Pass
56	Proposed Future	10 11	Strolling Walking	9 10	Strolling Strolling	35 36	Pass Pass
57	Proposed Future	12 12	Walking Walking	10 11	Strolling Walking	41 42	Pass Pass
58	Proposed Future	3 4	Sitting Sitting	3 4	Sitting Sitting	14 13	Pass Pass
59	Proposed Future	4 4	Sitting Sitting	4 4	Sitting Sitting	16 16	Pass Pass
60	Proposed Future	8 9	Standing Strolling	8 8	Standing Standing	28 28	Pass Pass
61	Proposed Future	6 6	Sitting Sitting	6 6	Sitting Sitting	20 20	Pass Pass
62	Proposed Future	9 9	Strolling Strolling	8 8	Standing Standing	30 31	Pass Pass
63	Proposed Future	5 5	Sitting Sitting	5 5	Sitting Sitting	27 20	Pass Pass
64	Proposed Future	2 2	Sitting Sitting	2 2	Sitting Sitting	7 6	Pass Pass
65	Proposed Future	4 4	Sitting Sitting	4 4	Sitting Sitting	17 15	Pass Pass
66	Proposed Future	8 7	Standing Standing	8 7	Standing Standing	28 26	Pass Pass
67	Proposed Future	6 5	Sitting Sitting	6 5	Sitting Sitting	18 18	Pass Pass
68	Proposed Future	8 8	Standing Standing	7 7	Standing Standing	25 24	Pass Pass

Table 1: Pedestrian Wind Comfort and Safety Conditions

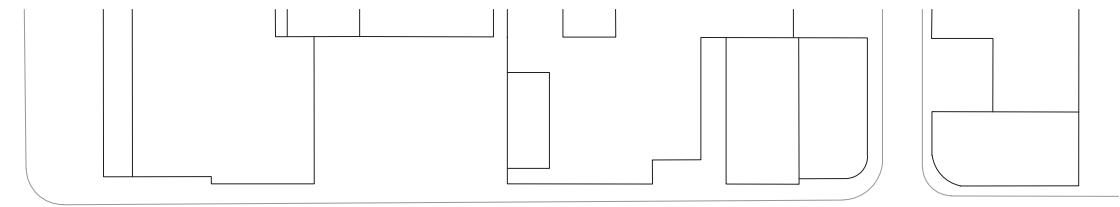
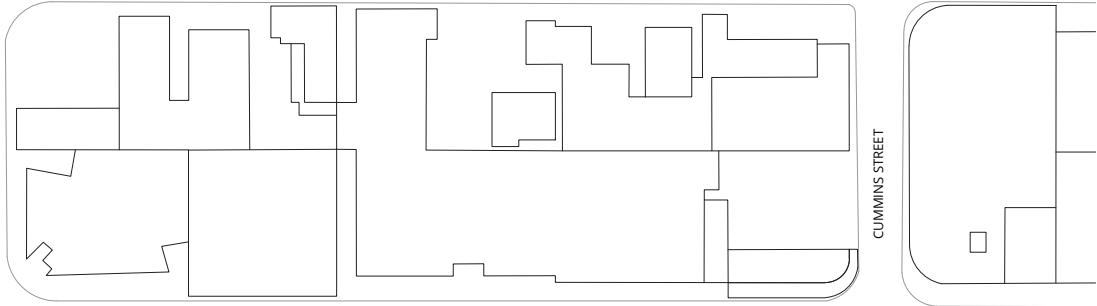
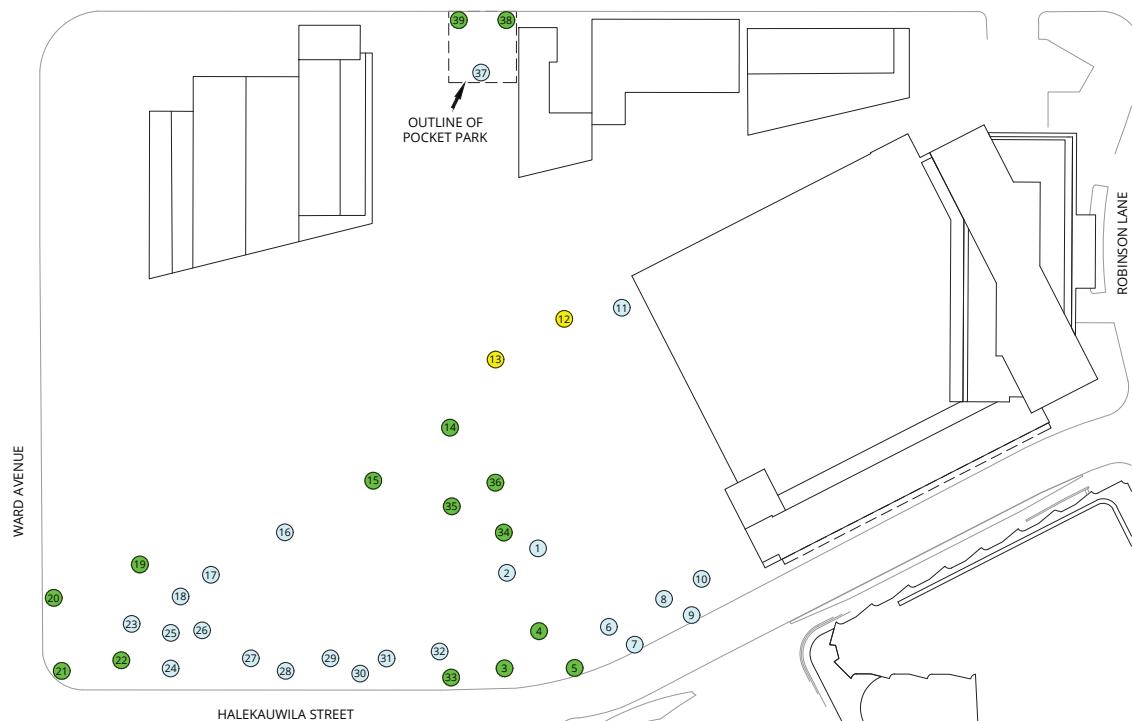

Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (mph)	Rating	Speed (mph)	Rating	Speed (mph)	Rating
69	Proposed Future	12 10	Walking Strolling	11 10	Walking Strolling	44 41	Pass Pass
70	Proposed Future	12 11	Walking Walking	11 10	Walking Strolling	39 36	Pass Pass
71	Proposed Future	11 10	Walking Strolling	10 10	Strolling Strolling	36 34	Pass Pass
72	Proposed Future	7 7	Standing Standing	7 7	Standing Standing	30 27	Pass Pass
73	Proposed Future	7 7	Standing Standing	7 7	Standing Standing	27 26	Pass Pass
74	Proposed Future	11 10	Walking Strolling	11 10	Walking Strolling	35 33	Pass Pass
75	Proposed Future	10 9	Strolling Strolling	10 9	Strolling Strolling	33 31	Pass Pass
76	Proposed Future	10 9	Strolling Strolling	9 9	Strolling Strolling	31 29	Pass Pass
77	Proposed Future	9 8	Strolling Standing	9 8	Strolling Standing	29 28	Pass Pass
78	Proposed Future	8 7	Standing Standing	8 7	Standing Standing	26 25	Pass Pass
79	Proposed Future	8 7	Standing Standing	8 7	Standing Standing	26 25	Pass Pass
80	Proposed Future	9 8	Strolling Standing	9 8	Strolling Standing	28 26	Pass Pass
81	Proposed Future	7 7	Standing Standing	7 7	Standing Standing	28 27	Pass Pass
82	Proposed Future	8 8	Standing Standing	8 7	Standing Standing	27 26	Pass Pass
83	Proposed Future	8 8	Standing Standing	7 7	Standing Standing	24 24	Pass Pass
84	Proposed Future	9 8	Strolling Standing	8 8	Standing Standing	27 26	Pass Pass
85	Proposed Future	7 7	Standing Standing	7 6	Standing Sitting	24 23	Pass Pass

Table 1: Pedestrian Wind Comfort and Safety Conditions


Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (mph)	Rating	Speed (mph)	Rating	Speed (mph)	Rating
86	Proposed Future	7 7	Standing Standing	7 6	Standing Sitting	22 22	Pass Pass
87	Proposed Future	7 6	Standing Sitting	6 6	Sitting Sitting	21 21	Pass Pass
88	Proposed Future	8 8	Standing Standing	7 7	Standing Standing	26 26	Pass Pass
89	Proposed Future	10 10	Strolling Strolling	9 9	Strolling Strolling	29 28	Pass Pass

Season	Months	Hours	Comfort Speed (mph)	Safety Speed (mph)
Summer	May - October	6:00 - 23:00 for comfort	(20% Seasonal Exceedance)	(0.1% Annual Exceedance)
Winter	November - April	6:00 - 23:00 for comfort	≤ Sitting	≤ 56 Pass
Annual	January - December	0:00 - 23:00 for safety	7-8 Standing 9-10 Strolling 11-12 Walking > 12 Uncomfortable	> 56 Exceeded
Configurations				
Proposed	Project with existing surroundings			
Future	Project with future surroundings			


APPENDIX A

KAWAIAHAO STREET

QUEEN STREET

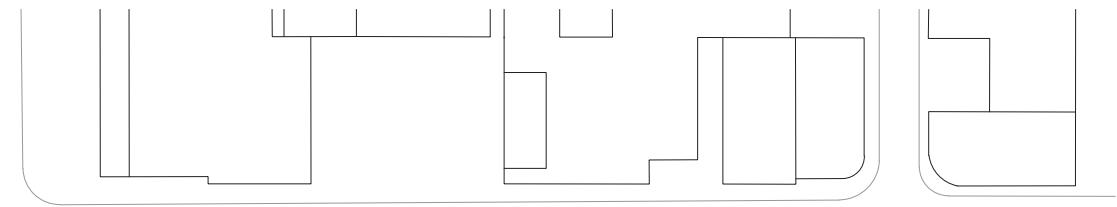
Legend:
COMFORT CATEGORIES:
Sitting _____ (Blue dot)
Standing _____ (Green dot)
Strolling _____ (Yellow dot)
Walking _____ (Orange dot)
Uncomfortable _____ (Grey dot)
Grade Level Sensor

Pedestrian Wind Comfort Conditions
Existing Configuration
Summer (May to October, 6:00 to 23:00)

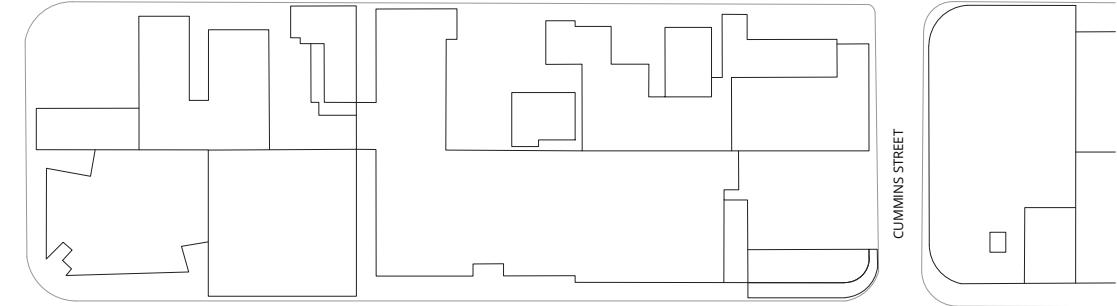
Ward Village Block N - Honolulu, HI

True North
Drawn by: GRE Figure: 1A
Approx. Scale: 1"=80'

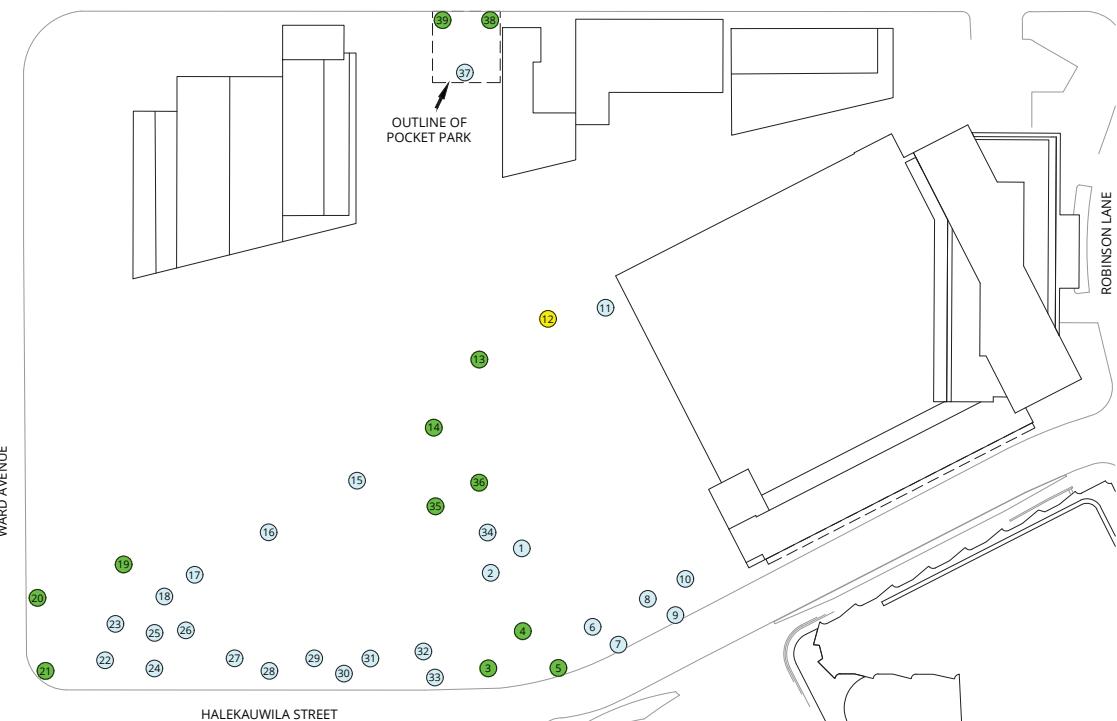
Project #2302847


True North
Drawn by: GRE Figure: 2A
Approx. Scale: 1"=80'

Date Revised: Jan. 23, 2024


True North
Drawn by: GRE Figure: 2A
Approx. Scale: 1"=80'

Project #2302847


Date Revised: Jan. 23, 2024

KAWAIAHAO STREET

QUEEN STREET

Legend:
COMFORT CATEGORIES:
Sitting _____ (Blue dot)
Standing _____ (Green dot)
Strolling _____ (Yellow dot)
Walking _____ (Orange dot)
Uncomfortable _____ (Grey dot)
Grade Level Sensor

Pedestrian Wind Comfort Conditions
Existing Configuration
Winter (November to April, 6:00 to 23:00)

Ward Village Block N - Honolulu, HI

Appendix H

ACOUSTICAL CONSULTANT LETTER

9 July 2025

Emily Kuo
Solomon Cordwell Buenz
255 California Street, Floor 3
San Francisco, CA 94111
emily.kuo@scb.com

Subject: Ward Village Block N-West (Mahana)
Noise Impact Summary
Salter Project 22-0479

Dear Emily:

We have conducted a noise impact summary for the project. This report summarizes the noise impacts at the project site and the mitigation measures included in the design.

The project is a new 39-story mixed-use development bounded by Queen Street and a private extension of Halekauwila Street, near the east side of Ward Avenue in Honolulu. The noise environment at the site is predominantly controlled by vehicular traffic from Ward Avenue and Queen Street. Train passbys on the future Honolulu Authority of Rapid Transit (HART) elevated tracks will also contribute to the noise environment.

ENVIRONMENTAL NOISE

Although there are no State or City codes related to environmental noise intrusion, we have completed an environmental noise study for the project. To quantify the existing noise environment, we conducted one long-term noise measurement from 9 to 13 December 2022 along Queen Street. The monitor was at a height of 12 feet above grade. This data was used in conjunction with our collected data from other Ward Village projects (i.e., Blocks A, B, C-West, H, and N-East).

The future HART system will be directly adjacent to the Block N-West residential tower. We have included the HART passbys as a noise source in our calculations.

Based on our measured data and future noise projections, we used the CadnaA 3-D noise model to calculate noise levels at the building facade. Using the room sizes and locations shown in the drawings,

we calculated the window STC ratings needed to meet the project criterion¹, which range from 30 to 36. We understand the glazing used for the project will meet or exceed the STC ratings shown in our Environmental Noise Study (dated 28 April 2025).

INTERIOR SOUND ISOLATION

Residences

Party walls and floor-ceiling assemblies have been designed to meet industry standards for market-rate condominiums, which exceeds the Code minimum standards. Residential entry doors will be equipped with perimeter sound gasketing, door shoes, and solid thresholds to be tight-fitting to the frame and sill, as required by Code.

Amenity Spaces

The design includes methods of reducing noise and vibration from the Level 8 amenities to adjacent spaces, including upgraded flooring and ceilings at specific noise-sensitive adjacencies (e.g., guest suites, residences). Limiting amenity use during nighttime hours may also be recommended.

PROJECT-RELATED NOISE IMPACT

Noise mitigation recommendations will be made throughout the design and construction phases project-wide. The following recommendations are intended to reduce environmental noise complaints from future residents and neighboring properties.

MEP Equipment

MEP equipment noise impact to adjacent properties will be analyzed throughout the project design. Potential noise sources include the ground floor transformers, garage exhaust fans, and rooftop mechanical equipment. All stationary mechanical equipment (e.g., garage exhaust fans, rooftop cooling towers) will comply with the required noise limits at the property lines.

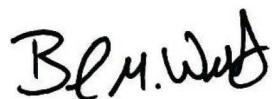
Potential recommendations to mitigate MEP equipment noise include acoustical duct liner, silencers, louvers, and barriers. We will review equipment sound data and provide more specific input when this information is available.

¹ The Hawai'i Building Code (i.e., 2012 International Building Code) does not include standards for environmental noise intrusion. However, the Department of Housing and Urban Development (HUD) has a criterion of DNL 45 dB for multi-family residential projects, which is used as the criterion for this project. This criterion is also used in the California Building Code.

Parking and Loading Area

Parking and loading areas might generate intrusive noise to nearby residences and adjacent properties. Potential mitigation includes adding absorptive finishes, selecting a garage floor finish that does not easily cause “tire squeal”, and keeping potential noise-making obstructions outside of the drive aisle.

Construction


Temporary construction noise might impact nearby properties. The contractor should utilize best practices to mitigate construction noise, as feasible. The contractor is required to submit for a noise permit with the Hawai'i Department of Health. Noise-generating construction activity is permitted from 7:00 am to 6:00 pm on weekdays and 9:00 am to 6:00 pm on Saturdays. Noise-generating construction activity is prohibited on Sundays and holidays.²

* * *

This concludes our noise impact summary for Ward Village Block N-West (Mahana). Should you have any questions, please give us a call.

Best,

SALTER

Blake Wells, LEED GA
Senior Associate

Eric Mori, PE
Executive Vice President

² Hawai'i Administrative Rules, Title 11 Department of Health, Chapter 46 Community Noise Control